
Citation: Wu, S.-J.; Hsu, C.-T.; Shen,

J.-C.; Chang, C.-H. Modeling the 2D

Inundation Simulation Based on the

ANN-Derived Model with Real-Time

Measurements at Roadside IoT

Sensors. Water 2022, 14, 2189.

https://doi.org/10.3390/w14142189

Academic Editors: Marco Franchini

and Luca Martinelli

Received: 24 April 2022

Accepted: 7 June 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Modeling the 2D Inundation Simulation Based on the
ANN-Derived Model with Real-Time Measurements at
Roadside IoT Sensors
Shiang-Jen Wu 1,*, Chih-Tsu Hsu 2, Jhih-Cyuan Shen 3 and Che-Hao Chang 4

1 Department of Civil and Disaster Prevention Engineering, National United University, Miaoli 36063, Taiwan
2 National Center for High-Performance Computing, Hsinchu 30076, Taiwan; 1003135@narlabs.org.tw
3 FondUS Technology Co., Ltd., Taichung 40676, Taiwan; coop.shen@gmail.com
4 Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;

chchang@ntut.edu.tw
* Correspondence: sjwu@nuu.edu.tw

Abstract: This study aims to develop a smart model for the two-dimensional (2D) inundation
simulation based on the derived artificial neural network (ANN) model with real-time measurements
at the roadside IoT (Internet of Things) sensors; in detail, the flooding zones and associated area can
be quantified by combining the inundation-depth estimates at the ungauged locations (defined by
the virtual IoT sensor, VIOT) via the corresponding inundation-estimation equations, established
using the ANN-derived model with the measurements at the IoT sensors (named SM_EID_VIOT
model). Moreover, the resulting inundation-depth estimates at the ungauged locations from the
proposed SM_EID_VIOT model can be improved by means of the real-time error-correction approach
for the 2D inundation simulation. To demonstrate the reliability of the results from the proposed
SM_EID_VIOT model, 1000 simulations of the rainfall-induced flood events within the study area
of the Miaoli City of Northern Taiwan are generated as the model-training and validation datasets.
Consequently, the proposed SM_EID_VIOT could estimate the inundation depths with an acceptable
accuracy at the ungauged locations in time and space based on a low root mean square error (RMSE)
of under 0.01 m and a high coefficient of determination (R2) of over 0.8; and it also can delineate the
flooding zone to quantify the corresponding area in high reliability in terms of the precision ratio of
about 0.7.

Keywords: ANN-derived model; IoT sensors; 2D inundation simulation; real-time measurements

1. Introduction

Due to climate change and extreme rainstorm events, rainfall-induced flood frequently
occurs, causing severe damage to people’s lives and property [1]. Therefore, modeling
flood simulation plays a vital role in providing relevant information on preventing flood-
induced hazards. When carrying out the flood early warning to mitigate the flood-induced
hazard, the flooding information is necessarily measured and estimated in advance to
delineate the potential inundation regions and estimate the inundation depths at the
gauged and ungauged locations. Recently, because of the establishment of the levee
system, flood is rarely triggered by overtopping from the embankments; on the contrary,
inundation frequently occurs in urban areas attributed to the failure of the surface drainage
system [2]; thus, regarding the flood information issued, the inundation depths at the
specific locations and induced flooding area are needed for detecting the detail of flood-
induced hazard/disaster to configure the facing supplement.

The hydraulic/hydrodynamic models are comprehensively utilized to numerically exhibit
the complicated hydrological process and flood dynamics [3] under consideration of the
precipitation observations/forecasts. That is, through the hydraulic numerical models, the
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inundation depths and the potential flooding zones, as well as the associated area, can be
estimated in the case of the various types of rainfalls, such as the design rainfall events of the
different return periods and the precipitation forecasts as well as observations [2,4–7]. Despite
the hydraulic numerical models being applied in the flood simulation, their reliability and
accuracy might be affected by the uncertainties in the requirement of sufficient observations,
the complex model structures, hydrological/hydraulic features, and extensive computation
time [3,4,8]. Recently, the artificial intelligence (AI) models have been comprehensively
employed in flood-induced inundation based on machine learning (ML) techniques [9].
Of the relevant ML approaches commonly used, the two types of natural network (NN)
methods, the convolutional NN (CNN) and artificial NN (ANN) models, are both more
efficiently established for describing the nonlinear mathematic relationships by configuring
the linear multi-layer network with all possible predictor variables under the multiple
training algorithm. In addition to the input and output layers, the CNN model includes
the convolution and pooling layers, differing from the ANN model with the hidden layers.

With computation power increasing, the CNN-based and ANN-derived models are
widely applied to the relevant hydrological/hydraulic analysis, especially in flood-related
simulations/forecasts [1,3,4,9–14]. In detail, the CNN-based model is derived via the
neutral network, comprising the convolution, pooling, and fully connected layers, requiring
extensive 2D data (i.e., gridded data) as datasets (e.g., the image and videos) for the model
training and application [3,4,15]; accordingly, the CNN model can efficiently provide the
single model output from the grid-format model inputs. That is to say, the CNN-based
model is advantageous concerning the 2D flood simulations for predicting or estimating
the spatiotemporal flood-related variates (e.g., the inundation depths and corresponding
area) [9]. The CNN-derived models have been proven to be efficiently implemented in
the 2D flood forecast with the gridded inputs (such as the grid-based radar precipitation);
however, without the mixed data, including the single dataset (e.g., at-site water level)
and grid-format data under high-performance computing servers [3], it might cause the
extensive computation time in the model training and application. Additionally, the
resulting inundation results from the CNN-based models are just identified from the
existing flood-related images database solved in the pooling layers used in the model
training without considering the changes in the required hydrological factors (e.g., the
precipitation) and merely reflecting the experimental flooding conditions in terms of the
real-time recorded observations at the gauges and IoT (internet of thing) sensors.

In contrast, the ANN model with the multilayer artificial neural networks is a pioneer-
ing approach for the AI models [15] in which the activation function, number of hidden
layers, and associated neurons should be known in advance; moreover, the corresponding
weights of neurons at various layers are commonly calibrated via the backpropagation (BP)
algorithm. However, the ANN model is hardly configured due to the problems with the
neural network, e.g., the difficulty of determining the proper network structures, unex-
plained behavior of the network, the difficulty of evaluating the mathematical shape of
a nonlinear relationship between outputs and inputs, and extensive computation time of
model training [16,17]. Nevertheless, the ANN-derived model can establish the linear and
nonlinear relationships between various input-output combinations by configuring the lin-
ear multi-layer network using all possible predictor variables through the multiple training
algorithm, especially for hydrological forecasts, such as the precipitation, discharge, and
water level [16].

However, the simulations of spatiotemporal hydrological variables are barely carried
out by the ANN-derived models with simultaneous considering the correlation in time and
space [18]. Nonetheless, the ANN-derived model is advantageous for estimating the at-site
hydrological variables; thus, the spatiotemporal hydrological variable could be obtained
by aggregating the temporal results from the ANN-derived models at various locations
or forecasting the temporal average via the ANN-derived models [19,20]. As a result, in
this study, the 2D inundation simulation intends to be accomplished by combining the
gridded inundation depths estimated by the ANN-derived model for different locations.
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Moreover, it is well known that the roadside IoT sensors have recently been implemented
in the real-time measurement of the hydrological variables (e.g., water levels), and they
are proven to be advantageous to water conservation computerization [1,9,21]. Therefore,
to efficiently estimate the inundation depths at all ungauged locations (named virtual IoT
sensors, VIOTs) with the real-time measurements at the roadside IoT sensors for delineating
the flooding zones, this study aims to model the 2D inundation simulation based on the
ANN-derived model; in detail, the relationship of the estimated inundation depths at each
ungauged location with the real-time measurements at the roadside IoT sensors (VIOTs)
could be established based on the ANN-derived model (called the SM_EID_VIOT model).

Additionally, to boost the reliability of the proposed SM_EID_VIOT model in the 2D
inundation simulation, a significant number of rainfall-induced inundation simulations
are treated as the training dataset. Additionally, in seeking to enhance the accuracy
of the resulting inundation-depth estimates at the ungauged locations, the proposed
SM_EID_VIOT model is developed by coupling it with the real-time error-correction
technique regarding the hydrological variables based on the different estimations and
observations at the previous times during the rainfall-induced flood event. It is expected
that the proposed SM_EID_VIOT can provide the inundation depths at the ungauged
locations with high reliability and delineate the flooding area induced, which is helpful
for the early warning operation.

2. Methodology
2.1. Model Concept

As mentioned in Section 1, an ANN-derived inundation-depth estimation model
at the ungauged locations (named the virtual IoT sensors, VIOT) is developed herein,
called the SM_EID_VIOT model. In seeking to facilitate the accuracy and reliability of
the results from the proposed SM_EID_VIOT model, a significant number of the regional
rainstorms are simulated via the stochastic modeling for generating the gridded short-term
rainstorms (i.e., SM_GSTR model) [22]; they are then adopted in reproducing numerous
two-dimension (2D) inundation simulations employing the hydraulic dynamic numerical
model (i.e., SOBEK) [23]. Thus, the resulting datasets, containing the simulations of the
gridded rainstorms and the corresponding inundation depths at all grids, including the
ungauged locations and the roadside IoT sensors, could be utilized in the development
of the proposed SM_EID_VIOT model by training the ANN_derived model ANN_GA-
SA_MTF model [1] for quantifying the relationships of the inundation depths between the
inundation depths at the ungauged locations and the IoT sensors. Afterward, as a result
of reducing the uncertainties in the observations and model parameters which commonly
influences the reliability and accuracy of the model outputs, the proposed SM_EID_VIOT
model is coupled with the real-time error correction method for 2D inundation simulation,
RTEC_2DIS [2] to immediately adjust the resulting inundation-depth estimates at the
ungauged locations from the proposed SM_EID_VIOT model. Eventually, by overlaying
the resulting inundation-depth estimates at all grids on the digital elevation map (DEM), the
flooding zone can be delineated, and the corresponding inundation area can be accordingly
quantified by multiplying the number of the inundated grids multiplied by the size of the
grid (i.e., the spatial resolution in the DEM).

To obtain more reliable and accurate results from the proposed SM_EID_VIOT model,
regarding the model development, 1000 simulations of the rainfall-induced flood events are
produced in advance, and the real-time error correction method of the resulting gridded
inundation depths from the proposed SM_EID_VIOT model is carried out in the model
application. As a result, the framework of the model development and application can
comprise five parts: (1) generation of the gridded rainstorm events in the study area; (2) 2-D
inundation simulations using the well-known hydrodynamic numerical modeling and
(3) identification of the ungauged locations as the virtual IoT sensors; (4) establishment of
an ANN-derived model for estimating inundation depths at the ungauged locations and
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(5) integration with the real-time error method as shown in Figure 1. The aforementioned
relevant methods and concepts are addressed below:
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Figure 1. The graphic framework of the development and application regarding the proposed
SM_EID_VIOT model.

2.2. Simulation of Rainfall-Induced Inundation Events

Generally speaking, an excellent training dataset is essential in training the ANN-
based models. Thus, in this study, to train the ANN_GA-SA_MTF model of interest, a
significant number of the rain fields consisting of the rainstorms at all grids in the study
reproduced by the SM_GSTR model are used in the 2D inundation simulation carried out
by the SOBEK model to obtain the gridded inundation-depth simulations in the study area.

Regarding the SM_GSTR model, the event-based rainstorm is characterized in terms
of three rainfall characteristics, the event-based rainfall duration, gridded rainfall depths
(regarded as the spatial variates), and gridded storm depths comprised of the dimensionless
rainfalls at the various dimensionless times (treated as the Spatio-temporal correlated
variates); as for the gridded storm pattern, it can be grouped into two components, the
areal average of the dimensionless rainfalls (i.e., the storm pattern) and the associated
deviations at the various dimensionless times. Figure 2 graphically illustrates the process
of characterizing the gridded rainstorms into the five gridded rainfall characteristics.

After that, the statistical analysis for the gridded rainfall characteristics is performed
to quantify their uncertainties in time and space, including the first four statistical moments,
correlation coefficients, and the appropriate probability functions. However, a great number
of the gridded rainfall characteristics are re-produced using the correlated multivariate
Monte Carlo simulation method [24] with the normalized-based algorithms, including
the standardized, orthogonal, and inverse transformations, in which their correlations are
calculated via the Nataf distribution [25]:

ρij =

∞∫
−∞

∞∫
−∞

⌊
xi − µi

σi

⌋⌊ xj − µj

σj

⌋
∅ij

(
〈 zi, zj

∣∣∣ρ∗ij 〉)dzidzj (1)
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zi =
xi − µi

σi
; zj =

xj − µj

σj
(2)

where xi and xj are the correlated variables at the points i and j, respectively, with the
means µi and µj, the standard deviations σi and σj, and the correlation coefficient ρij; zi and
zj are corresponding bivariate standard normal variables to the variable xi and xj with the
correlation coefficient and the joint standard normal density function ∅ij(·). Eventually, the
simulations of the gridded storm patterns are reproduced by combing the simulations of the
areal averages of dimensionless cumulative rainfalls and the associated gridded bias; then,
the gridded rainstorms are emulated by coupling the simulated storm patterns at all grids
with the simulations of the gridded rainfall depths for the simulated event-based duration.
The detailed introduction to the SM_GSTR model can be referred to in the investigation by
Wu et al. [22].
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Afterward, using the SOBEK model comprehensively applied in the 2D inundation
simulation, especially in regions with various hydraulic structures, a significant number of
simulations of the rainfall-induced flood events could be accordingly accomplished with
a large number of simulated gridded rainstorms. The resulting massive rainfall-induced
inundation simulations would be treated as the training and validating datasets for the
proposed SM_EID_VIOT model.

2.3. Identification of the Virtual IoT (VIOT) Grids

Based on the results derived from the simulation of the gridded rainstorm events
within the study area, a 2D inundation simulation with high spatial and temporal resolution
could be used to determine the locations of the virtual IoT (VIOT) grids. In this study, the
VIOT grids are defined as the locations in association with high flooding risk quantified
from the above rainfall-induced inundation simulations by the following equation:

Pf

(
h f > 0

)
=

∑
NGRS
i=1

(
I f

(
hi

f

))
NGRS

I f

(
hi

f

)
= 1, i f max

(
h f

)
> 0

I f

(
hi

f

)
= 0, i f max

(
h f

)
= 0

(3)

where I f

(
hi

f

)
is the flooding indicator, and max

(
h f

)
stands for the maximum value of

gridded inundation depth max
(

h f

)
resulting from a rainfall-induced flood event. In

Equation (7), if the maximum of gridded inundation depth is greater than zero, the corre-
sponding flooding probability I f

(
hi

f

)
is equal to one; otherwise, it is similar to 0.

Consequently, the locations of the VIOT grids can be recognized based on the results
from the quantification of gridded flooding risk within the region considered; namely, in this
study, the VIOT is defined as the grid in association with the nonzero flooding probability.

2.4. Artificial Neural Network Model Associated with Multiple Transfer Functions

In this study, to reduce the variation in the outputs of the ANN-derived models
attributed to the uncertainties in the selection of the activation/transform functions, the
calibration of the weights between layers, the ANN_GA-SA_MTF model [1] is used to
establish the relationship between the inundation-depth estimates at virtual spots and
observations at the practical IoT sensors. The ANN_GA-SA_MTF model is developed by
adopting the network structure of three layers with the multiple transfer functions (see
Table 1) and the number of the associated neurons calculated using the equations (see
Table 2), in which the associated ANN weights are calibrated using the genetic algorithm
based on the sensitivities to the model parameters (called the GA-SA algorithm) [26].

Table 1. The formula for estimating the number of hidden neurons [1].

No of Formula Formula

1 NHN =
(√

1 + 8× NIP − 1
)
/2

2 NHN = NIP − 1

3 NHN = 2× NIP/NIP+1

4 NHN =
√

NIP × NOP

5 NHN = 2NIP − 1

6 NHN =
[
4× (NIP)

2 + 3
]/[

(NIP)
2 − 8

]
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Table 2. Transform functions commonly used [1].

Transfer Function Formula Derivative

TF1 Logistic(soft step, Sigmoid) f(x) = 1
1+e−∝x f ′(x) = f(x)(1− f(x))

TF2 Tanh f(x) = tanh(x) = 2
1+e−2∝x − 1 f ′(x) = 1− f (x)2

TF3 Arctan f(x) = tan−1(∝ x) f ′(x) = 1
(∝x)2+1

TF4 Identity f(x) =∝ x f ′(x) = ∝

TF5 Rectified linear unit (ReLU) f(x) =
{

0 f or x < 0
x f or x ≥ 0 f ′(x) =

{
0 f or x < 0
1 f or x ≥ 0

TF6
Parameteric rectified linear
unit (PReLU, leaky ReLU) f(x) =

{
∝ x f or x < 0

x f or x ≥ 0 f ′(x) =
{

∝ f or x < 0
1 f or x ≥ 0

TF7 Exponential linear unit(ELU) f(x) =
{

∝ (ex − 1) f or x < 0
x f or x ≥ 0 f ′(x) =

{
f (x)+ ∝ f or x < 0

1 f or x ≥ 0

TF8 Inverse abs (IA) y(x) x
1+|∝x| y ′(a) = 1

(1+|a∝x|)2

TF9 Rootsig (RS) y(x) = ∝x

1+
√

1+(∝x)2
y′(x) = 1(

1+
√

1+(∝x)2
)√

1+a(∝x)2

TF10 Sech function (SF) y(x) = 2
exp(∝x)+exp(−∝x) y ′(x) = −y(x)tan h(∝ x)

When training the ANN_GA-SA_MTF model to determine the associated parameters
using the GA-SA algorithm, the weighted averages of the model estimates are defined as
the resulting model outputs using the following equation:

ŶWA =
NTF
∑

i=1

[
Wi

TF × Ŷ
(

θ
j
TFi

)]
Wi

TF =

1
E(θi

TF)

∑
NTF
i=1

1
E(θi

TF)

(4)

in which NTF is the number of transfer functions considered; Yk and Ŷk
(
θi

TF
)

denote the
observed model inputs and estimated model outputs by the ANN_GA-SA_MTF model
with the jth set of the appropriate parameters θi

TF, respectively; and Wi
TF represents the

weighted factor of the ith transfer function with the appropriate parameters. θi
TF calculated

with the E
(
θi

TF
)

is the objective-function value corresponding to the following equation:

E
(

θi
TF

)
=

√√√√ 1
Ndata

Ndata

∑
k=1

[
Yk − Ŷk

(
θi

TF
)]2 (5)

where Ndata is the number of observed hydrological estimates. The detailed concept of the
ANN_GA-SA_MTF can be referred to in the investigation by

In this study, deriving the SM_EID_VIOT model, the inundation depths at the VIOT
spots are first estimated by the geostatistical approach (i.e., the inverse distance method)
treated as the spatial average h

t
IDW,VIOT using the following equation:

h
t
IDW, VIOT= ∑3

i=1

[
ht

IOTi ×
( 1

Li

∑3
i

1
Li

)]
(6)

where ht
IOTi and Li stand for the observed inundation depth at the ith IoT sensor and asso-

ciated distance to the virtual IoT grids (VIOT), respectively; the equations of the estimated
inundation depths at the VIOT grids with the observations at the roadside IoT sensors are
then established based on the ANN_GA-SA_MTF model; namely, the ANN_GA-SA_MTF
model derived can be regarded as an equation for adjusting the estimated spatial averages
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of the inundation depths at the specific VIOT grids (h
t
IDW, VIOT1) to be the corresponding

inundation-depth estimates (ĥt
EST,VIOT1) as follows:

ĥt
EST,VIOT1 = fANNGA−SA_MTF (h

t
IDW,VIOT1) (7)

Figure 3 presents the graphical process of calculating the average of the IoT-related
inundation depths as the model inputs for the ANN_GA-SA_MTF model to estimate the
inundation depths at the VIOT grids within the proposed SM_EID_VIOT model.
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2.5. Integration with Real-Time Correction Approach

Despite the proposed SM_EID_VIOT model providing the more reliable inundation
depths at the VIOT grids using the ANN_GA-SA_MTF model, the accuracy of the result-
ing inundation depths at the ungauged locations and corresponding flooding area are
probably impacted due to the uncertainties in the parameters of the ANN_GA-SA_MTF
model (i.e., ANN weights); also, in referring to Equation (6), the correlation between the
estimated inundation depths at the VIOT grids and observation at the roadside IoT sensors
might decline with their distances from the VIOT spots, accounting for the less accurate
inundation-depths from the proposed SM_EID_VIOT model would be obtained at the
VIOT spots further away from the IoT sensors. Therefore, to boost the accuracy of the
estimated inundation depths at the VIOT grids, the proposed SM_EID_VIOT model collab-
orates with the real-time error correction method for the 2D inundation simulation (named
RTEC_2DIS) [2].

The RTEC_2DIS model has two steps: at-site correction and regional correction. With
respect to the at-site correction, the water-level error at the current time t∗ and t∗ + 1
estimated equations are derived through the time-series approach and Kalman filtering
algorithm (name RTEC_TS&KF) [27], respectively:

εt∗
corr = ht∗

obs − ht∗
est (8)

εt∗+1
corr = εt∗+1

TS + εt∗+1
KF (9)

where ht∗
obs and ht∗

est stand for the observed and estimated water level at the current time

t∗, respectively; and ε
tpred
TS and ε

tpred
KF serve as the forecast error estimated by the time series

approaches and Kalman filtering method, respectively; after that, within the regional-
correction step, the corresponding water-level errors at the ungauged locations can be
quantified using the Kriging equation with the weighted semivariogram functions [28,29].

Within the adjustment of the inundation–depth estimates at the VIOT grids using
the RTEC_2DIS algorithm, the spatial averages (h

t
IOT) of the estimated inundation depths
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ht∗
VIOTi) by the proposed SM_EID_VIOT model at the four VIOT grids around the specific

IoT sensors are treated as the corresponding simulations via the following equation:

h
t
IOT =

1
4

4

∑
1

ht
VIOTi (10)

Thus, the corresponding errors at the IoT sensors could be quantified based on the
difference between the simulations and observations at the previous time steps during the
rainstorm using Equations (8) and (9). Since the proposed SM_EID_VIOT model estimates
the inundation depths at the VIOT grids with the measurements at the road IoT sensors, the
errors of the estimated inundation depths at the current time are considered in quantifying
the error of the inundation-depth estimates at the VIOT grids within the regional error
correction. Eventually, the correction of the VIOT-related inundation depths estimated via
the proposed SM_EID_VIOT model can be achieved by the following equation:

ht
Corr, VIOTi = ht

Est, VIOTi + εt∗
corr,VIOTi (11)

where ht
Est, VIOTi is the estimated inundation depth at the ith VIOT grid regarding the

current time step t; ht
Est, VIOTi is the estimated error of the inundation-depth estimate

at the ith VIOT grid by the RTEC_2DIS method; and ht
Corr, VIOTi denotes the corrected

inundation-depth estimate at the ith VIOT grid.

2.6. Model Framework

To sum up the introduction to the concepts mentioned above, the development and
application of the proposed SM_EID_VIOT model can be classified into five parts: (1) gen-
eration of the rainstorm events at all grids within the study area; (2) 2D rainfall-induced
inundation simulations; (3) Identification of the ungauged grids as the virtual IoT (VIOT)
grids; (4) Training of the ANN_GA-SA_MTF model in the estimation of the inundation
depths at the VIOT grids; and (5) Integration with the 2D real-time error correction model
for the 2D inundation simulation. Note that the proposed SM_EID_VIOT model can
be separated into two parts: the conceptual and actual models. In detail, the proposed
SM_GA-SA_MTF model developed can be regarded as the conceptual model for training
the ANN-GA-SA_MTF model using the simulations of rainfall-induced flood events ob-
tained by the SOBEK with the generated rainstorms. Then, the proposed SM_EID_VIOT
model can be treated as an actual model in which the resulting ANN-GA-SA_MTF model
can be applied in the estimation of the ungauged locations. The detained framework of
the model development (conceptual model) and application (actual model) are addressed
as follows:

2.6.1. Conceptual Model

Step 1: Collect the gridded hyetographs of historical rainstorm events within the
study area and extract their gridded characteristics, i.e., rainfall duration, gridded rainfall
depth, the areal average of the cumulative dimensionless rainfall, and the associated bias;

Step 2: Generate a significant number of rainfall fields with high spatiotemporal
resolutions comprised of the simulated gridded rainfall characteristics by the SM_GSTR
model with the statistical properties of gridded rainfall characteristics extracted at Step [1].

Step 3: Perform the 2D inundation simulation using the SOBEK model with the
numerous gridded rainstorms simulated at Step 2 to obtain the simulations of inundation
depths at all the grids, including the VIOT grids and IoT sensors.

Step 4: Recognize the inundated grids defined as the virtual (VIOT) grids associated
with the probabilities of the corresponding nonzero inundation depths at all the grids from
a great number of rainfall-induced rainfall flood events.
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Step 5: Extract inundation-depth estimates regarding the specific time steps during
the simulated flood events at the VIOT grids and IoT sensors regarding the particular
time steps.

Step 6: Calculate the spatial average of inundation-depth estimates obtained in Step
5 at the roadside IoT sensors through Equation (6) as the model inputs of the ANN_GA-
SA_MTF at the VIOT grids, where the corresponding simulations of the inundation depth
are treated as the model outputs.

Step 7: With the model inputs and outputs summarized in Step 6, training the
ANN_GA-SA_MTF model regarding the VIOT grids to determine the associated ANN-
related coefficients as the parameters of the SM_EID_VIOT model.

2.6.2. Actual Model

Step 1: Collect the observed inundation depths during the rainfall-induced flood
events at the IoT sensors using the inverse distance method to calculate the areal average at
the VIOT grids of interest, as shown in Figure 4.
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Step 2: Obtain the resulting inundation-depth estimates at the VIOT grids within the
study area from the proposed SM_EID_VIOT model.

Step 3: Compute the averages of the inundation-depth estimates at the four VIOT
grids around the IoT sensors of interest as the corresponding estimations via Equation (9).

Step 4: Carry out the real-time correction for the resulting inundation-depth esti-
mates at all the VIOT grids from the proposed SM_EID_VIOT model coupled with the
RTEC_2DIS method based on the bias of the inundation-depth estimates in comparison to
the measurements at the IoT sensors obtained in Step 4.

Step 5: Delineate the flooding zone according to the corrected inundation-depth
estimates at all VIOT grids and summarize the number of the inundated VIOT grids to
quantify the flooding area. The framework for the model development and application
regarding the proposed SM_EID_VIOT can be referred to in Figure 4.

3. Study Area and Data

Miaoli County is a county in western Taiwan adjacent to Hsinchu County and
Hsinchu City to the north, Taichung to the south, and borders the Taiwan Strait to the
west (see Figure 5). Miaoli County comprises the eighteen townships in which Miaoli
City, selected as the study area, is the county’s capital. Of the main neighboring rivers
within Miaoli County, including the Houlong River and Zhonggang River, the Houlong
River is the biggest one in Miaoli County, of which the watershed area and length are
approximately 537 km2 and 58.3 km, respectively.
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Figure 5. Location of Miaoli County (note: blue circles are the radar-precipitation grid, and red points
are the roadside IoT sensors).

Within Miaoli County, various hydrological measurement sites have been set up,
including 65 rain-gauges, three water-level stations, and two reservoirs (Min-Te and Liyu-
Lake). Note that the 22 roadside IoT sensors, whose symbol is the redpoint (see Figure 5),
immediately detect the inundation depths through the internet of Things (IoT) technique
configured in Miaoli City. In addition to the hydrological measurement sites, the 1045 radar-
precipitation grids (symbolled as the blue circles) with a high resolution in time (15 min)
and space (1.5 km× 1.5 km) provided by the Taiwan Central Weather Bureau (CWB), the
22 radar-precipitation grids of which are located in the Miaoli City. In this study, the
50 rainstorm events recorded from 2009 to 2018 are utilized to simulate the rainfall-induced
inundation as the training and validating datasets for the proposed SM_EID_VIOT model.

In addition to the gridded rainstorms, the topographical data are supposed to be
required in the hydraulic modeling, of which the topographical information, the digital
elevation map (DEM), is comprehensively used for describing the flow paths triggered by
flood events so that the DEM within in Miaoli County (see Figure 6) is applied in the 2D
inundation simulation. In Figure 6, it can be seen that the west of Miaoli County is the
plain region, and the other side is an alpine zone, meaning that apparent variation exists in
the elevation within Miaoli County.Water 2022, 14, x FOR PEER REVIEW 12 of 32 
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Figure 6. The DEM of Miaoli County.
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4. Results and Discussions
4.1. Simulation of Rainfall-Induced Inundation
4.1.1. Extraction of Gridded Rainstorms

Before carrying out the rainfall-induced inundation in the model development, as
shown in Figure 5, the gridded rainfall characteristics should be extracted from the 50 histor-
ical events (see Figure 7), meaning that the maximum and minimum duration of historical
rainstorms of interest are approximate 149 h and 20 h, respectively, with the average of 60 h;
the maximum gridded rainfall depths in space at each time step are located between 5 mm
and 1490 mm associated with a spatial average ranging from 100 to 800 mm; addition-
ally, the maximum of the rainfall intensity regarding 50 events, on average, approximates
77 mm/h, with a significant variance coefficient of 0.75. In summary, it can be said that
the various storm patterns, the distribution of rainfall in time, can be recognized, implying
a variety of the rainstorms with significantly different spatial and temporal variations in
Miaoli County.
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Figure 7. Summary of the gridded rainfall characteristics from 50 historical rainstorms in
Miaoli County.
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Using the SG_GSTR model with the statistical features of the gridded rainfall char-
acteristics, the 1000 simulations of the rain fields consisting of the simulated gridded
rainfall characteristics can be obtained. Figure 8 presents the varying trend of the simulated
rainstorm of 101 h at all grids in time, showing that the simulated rainstorm realistically
moves from the ocean beach (East) to the Mountain zone (West) within the study area
(Miaoli County). The maximum rainfall occurs near the mountain zone, apparently in
response to the gridded rainfall characteristics in Miaoli County.
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4.1.2. Simulation of Rainfall-Induced Inundation Events

This study employs the SOBEK 1D-2D hydrodynamic model to implement the in-
undation simulation with 40 m ×40 m DEM (see Figure 6). In addition to the DEM of
Miaoli County, a variety of hydraulic structures, such as the drainage channel, the pumping
stations, sewer system, and draining gates, are required in seeking to configure the 2D inun-
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dation simulation model; Table 3 lists the computation objects, simulating the hydrological
and hydraulic analysis, adopted in the configuration of the 2D SOBEK regarding Miaoli
County. Furthermore, in the resulting SOBEK model, rainfall-induced runoff is quantified
via rainfall-runoff models (e.g., SCS-UH and SAC-SMA). Consequently, Figure 9 shows
the river-channel network and the computation objects (as listed in Table 3) set up in the
SOBEK model based on the DEM of Miaoli County.

Table 3. Summary of computation objects adopted in the SOBEK model regarding Miaoli County.

Function Facilities Number

Hydraulic analysis

Sub-basins 4731
Cross-sections 9838

Gates 62
Bridges 9018
Sewer 68.6 km

Maintenance of sewer system 1382
Hydrological analysis Rainfall-runoff node 4097Water 2022, 14, x FOR PEER REVIEW 15 of 32 
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Figure 9. 2D SOBEK model for Miaoli County.

Finally, using the SOBEK model derived for Miaoli County with the 1000 simulations
of the gridded rainstorm events, the resulting 2D inundation simulations, including the
gridded inundation depths and corresponding flooding area, could be accordingly repro-
duced. Figure 10 illustrates the simulated flooding areas drawn based on the maximum
inundation depths for three simulated rainfall-induced flood events (i.e., EV402, EV907,
and EV921), indicating that the flooding regions in Miaoli County could be briefly grouped
into the three zones, including the Northern, Middle and Southern zones as shown in
Figure 11. Since Miaoli City is the capital of Miaoli County near the Middle zone, this study
selects Miaoli City as the primary study area where the model development and validation
regarding the proposed SM_EID_VIOT would be achieved.
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4.2. Identification of Ungauged Locations as VIOT Grids

According to the framework of developing the proposed SM_EID_VIOT model, the
ungauged locations are treated as the VIOT grids based on the results from the simulated
grid-based inundation depths within the study area; the flooding risk at all the grids in the
study area Miaoli City can be quantified through Equation (3) in terms of the probability of
the inundated grids (Pf

(
h f > 0

)
) as shown in Figure 12, involving the five IoT sensors. As

a result, it can be known that the 6823 ungauged locations can be defined as the VIOT grids
(symbolized as the white points); additionally, among the five roadside IoT sensors, IOT3,
IOT4 and IOT5 sit within the VIOT grids.
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4.3. Training of ANN-Derived Model

Based on the model-development framework, the proposed SM_EID_VIOT model
in estimating the inundation depths at VIOT is derived by calibrating the parameters of
the ANN_GA-SA_MTF model with the model inputs and outputs related to the estimated
inundation depths at the 6823 VIOT grids and three roadside IoT sensors. In detail, when
developing the SM_EID_VIOT model for the 6823 VIOT grid, as shown in Figure 12, the
simulations of inundation depths at the IoT3-IoT5 sensors are extracted in advance to
calculate their average corresponding to the VIOT grids through Equation (6) as the model
inputs of the ANN_GA-SA_MTF model; whereas, the corresponding simulated inundation
depths at the VIOT grids are then treated as the model output. It should be noted that the
parameters of the ANN_GA-SA_MTF model can be calibrated for each VIOT grid; namely,
the VIOT grids have their parameters of the ANN_GA-SA_MTF. Therefore, the 6823 sets
of the ANN_GA-SA_MTF-appropriate parameters are supposed to be determined for the
SM_EID_VIOT model for the study area Miao City.

When training the ANN-derived models, the initial conditions, including the num-
ber of hidden layers, the total number of neurons, and transfer functions of interest (see
Table 2), should be given in advance. It is well-known that the 3-layer network structure:
one input layer, one output layer, and one hidden layer, is frequently utilized in hydro-
logical/hydraulic modeling [1,14]; thus, the proposed SM_EID_VIOT model is developed
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using the 3-layer ANN_GA-SA_MTF model. Additionally, the number of neurons can be
estimated via the numerous formulae (see Table 1) with the number of model inputs and
outputs. Figure 13 shows the resulting number of neurons from the different equations
ranging from one to three, implying that the three neurons are suitable for exhibiting the
nonlinear relationship between the inundation depths at the VIOT grids and roadside
IoT sensors. Concerning the remaining parameters, e.g., the statistical moments of ANN
weights and bias and adjustment factor, their initial conditions can be considered in Table 4.
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Table 4. Settings of the proposed ANN-GA-SA_MTF model.

Parameters Definition

Transfer functions used TF1-TF10

Input factors
Resulting areal average of

Inundation depth from
IoT sensors

h
t
IDW,VIOT1

Output factor Inundation depth at
VIOT grids ĥt

EST,VIOT1

Number of hidden levels 1
Number of neurons 3

Calibration of parameters
of transfer function

Number of optimizations 10

Weights of neurons (ωHL)
Mean 1

Standard deviation 3

Bias of function (θTF)
Mean 0

Standard deviation 1

Adjusting factor (∝TF)
Mean 1

Standard deviation 0.005

Using the parameter definition shown in Table 5, the SM_EID_VIOT model can be
developed by training the ANN_GA-SA_MTF model with the simulations of the inun-
dation depths regarding the specific time steps, equal to the ratio of 0.3, 0.4, 0.5, 0.7, 0.8
and 0.9 multiplied by duration, at the IoT sensors and the VIOT grids, extracted from
1000 rainfall-induced inundation-simulation datasets. Table 5 summarizes the appropriate
parameters of the ANN_GA-SA_MTF model calibrated using the transfer function TF1
(Sigmoid function). Additionally, Figure 14 presents the weighted factors of the transfer
functions used for calculating the weighted average of the resulting inundation-depth
estimates from various transfer functions, indicating that the various transfer functions
with the different scales of the weighted factors significantly contribute to the estimation of
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the inundation depths at the VIOT grids. Among the transfer functions, the TF1 and TF5
contribute to estimating the inundation depths at the 500th VIOT grid due to the extensive
weights, 0.33(TF1) and 0.62 (TF6), respectively.

Table 5. Summary for the appropriate calibrated parameters of the ANN_GA-SA_MTF model at the
500th VIOT grid.

Transfer
Function

No of
Optimization

Adjust Factor
(∝TF) 1.00113

1 OPT1
Weights of

neurons ωHL

The 1st hidden layer Input factors
1 Bias

Neuron
1 2.27251 −1.14272
2 0.58986 −2.71961
3 4.56974 −4.28293

Output layer The 1st hidden layer
1 2 3 Bias

Input factor 1 −0.87316 1.04999 0.08291 −0.21039Water 2022, 14, x FOR PEER REVIEW 19 of 32 
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neurons ωHL Consequently, within the ANN_GA-SA_MTF model for the estimated
inundation depths at the VIOT grids, uncertainty in the formulation of the transfer func-
tions on the estimation of model outputs can be effectively reduced by computing the
corresponding weighted average of the results from the multiple transfer functions. Since
the 6823 VIOT grids are recognized in the study area Miaoli City, the 6823 sets of the
appropriate parameters of the ANN_GA-SA_MTF models should be determined; Table 5
illustrates the results from the parameter calibration of the ANN_GA-SA_MTF model for
the 500th VIOT grid, the location (TWD97_X: 231658.5, TWD97_Y: 271841).

4.4. Model Validation

To demonstrate the reliability and accuracy of the proposed SM_EID_VIOT model,
its performance could be made in comparison to the inundation depths at the ungauged
locations (i.e., VIOT grids) and corresponding flooding area. In theory, the accuracy and
reliability of the results from the proposed model should be compared with the observations.
However, flooding merely taking place the Miaoli City leads to few inundation depths
observed at the IoT sensors considered. Thereby, a simulated rainfall-induced inundation
event, i.e., the 921st simulated rainstorm event of 51 h, in which the associated simulations
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of the inundation-depth and flood-area hydrographs would be applied in the model
development and validation.

4.4.1. Extraction of Validation Data

Since the proposed SM_EID_VIOT model estimates the inundation depths at the
ungauged locations (i.e., VIOT grids) based on the measurements at the roadside IoT
sensors, the inundation-depth estimates at the roadside IoT sensors should be extracted
from the training data as shown in Figures 15 and 16 (named the validated data). From
Figure 15, it can be known that inundation obviously occurs from t = 13-h, meaning that
the inundation-depth estimates at the IoT4-5 are 0 m between t = 1-h and 12-h; whereas
the inundation-depth estimates increase with time and reach the maximum values, 0.47 m
(IOT3), 0.04 m (IOT5) at t = 15-h; then, they generally decline to 0.02 m (ITO3) and 0.0002 m
(IOT4 and IOT5) from t = 16-h to t = 51-h.

Water 2022, 14, x FOR PEER REVIEW 20 of 32 
 

 

4.4.1. Extraction of Validation Data 
Since the proposed SM_EID_VIOT model estimates the inundation depths at the un-

gauged locations (i.e., VIOT grids) based on the measurements at the roadside IoT sensors, 
the inundation-depth estimates at the roadside IoT sensors should be extracted from the 
training data as shown in Figures 15 and 16 (named the validated data). From Figure 15, 
it can be known that inundation obviously occurs from t = 13-h, meaning that the inunda-
tion-depth estimates at the IoT4-5 are 0 m between t = 1-h and 12-h; whereas the inunda-
tion-depth estimates increase with time and reach the maximum values, 0.47 m (IOT3), 
0.04 m (IOT5) at t = 15-h; then, they generally decline to 0.02 m (ITO3) and 0.0002 m (IOT4 
and IOT5) from t = 16-h to t = 51-h. 

 
Figure 15. The SOBEK model simulated inundation-depth hydrographs at the IoT sensors for the 
921st simulation case as the validated data. 

Additionally, Figure 16 shows the maximum and average of the resulting inunda-
tion-depth estimates from the SOBEK model, meaning that the average has a slight in-
crease with time from 0 m (t = 8-h) to 0.46 m (t = 32-h); after that, the inundation-depth 
estimates remain as a constant (about 0.44 m). As for the maximum of the inundation-
depth estimates at the VIOT grids, the estimated inundation depth generally increases 
from 0 m to 4.8 m (t = 15-h), and the maximum approximates a constant (about 0.49 m), 
indicating that the flood mainly occurs between t = 10-h and t = 15-h; accordingly, the 
inundation depth sharply rises in 15 h, but slowly drains away until the final time step (t 
= 51-h). Moreover, by observing the flooding maps composed of the inundation-depth 
estimate at all VIOT grids regarding the various time steps (see Figure 17), the correspond-
ing inundation area exhibits a similar varying change in time to the maximum inundation-
depth estimate in referring to Figure 18, meaning that the flooding area obviously rises 
with time to the maximum at t = 15-h (approximately 7 km2) and then gradually decreases 
to 2 km2. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 6 12 18 24 30 36 42 48 54 60

In
un

da
tio

n 
de

ph
t (

m
)

Time (hours)

IOT3
IOT4
IOT5
Average

Figure 15. The SOBEK model simulated inundation-depth hydrographs at the IoT sensors for the
921st simulation case as the validated data.
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Additionally, Figure 16 shows the maximum and average of the resulting inundation-
depth estimates from the SOBEK model, meaning that the average has a slight increase
with time from 0 m (t = 8-h) to 0.46 m (t = 32-h); after that, the inundation-depth estimates
remain as a constant (about 0.44 m). As for the maximum of the inundation-depth estimates
at the VIOT grids, the estimated inundation depth generally increases from 0 m to 4.8 m
(t = 15-h), and the maximum approximates a constant (about 0.49 m), indicating that the
flood mainly occurs between t = 10-h and t = 15-h; accordingly, the inundation depth
sharply rises in 15 h, but slowly drains away until the final time step (t = 51-h). Moreover,
by observing the flooding maps composed of the inundation-depth estimate at all VIOT
grids regarding the various time steps (see Figure 17), the corresponding inundation area
exhibits a similar varying change in time to the maximum inundation-depth estimate in
referring to Figure 18, meaning that the flooding area obviously rises with time to the
maximum at t = 15-h (approximately 7 km2) and then gradually decreases to 2 km2.

As a result, the performance of the proposed SM_EID_VIOT model can be quanti-
fied and evaluated in comparison to the results from the SOBEK model, including the
inundation-depth estimates of the VIOT grids and flooding areas regarded as the vali-
dated data. In detail, the performance for evaluating the difference in the average and
maximum of the resulting inundation depths and the flooding area from the SOBEK and
SM_EID_VIOT models, respectively, can be described in terms of the root mean square
error (RMSE) and coefficient and determination (R2) (i.e., the square of the coefficient of
correlation) which are commonly utilized in the evaluation of the ANN-derived mod-
els [24,26,27]. Furthermore, to evaluate the accuracy of the proposed SM_EID_VIOT in
the quantification of the flooding area composed of the inundation-depth estimates, three
types of performance indices, including the precision index, recall-index, and F1-index, are
addressed as follows [3]:

Precision =
NIG_EST_VAL

NIG_EST
(12)

Recall =
NIG_EST_VAL

NIG_VAL
(13)

F1 = 2×
(

Precision× Recall
Precision + Recall

)
(14)

where NIG_EST and NIG_VAL serve as the number of the grids regarded as the inundated
ones based on the associated nonzero inundation depths estimated by the proposed
SM_EID_VIOT model and SOBEK model as the validated data, respectively, and NIG_EST_VAL
denotes the number of the inundated grids identified both by the proposed SM_EID_VIOT
model and SOBEK model. In referring to Equations (12)–(14), a high precision index means
that the grids with the most of the nonzero inundation depths estimated by the proposed
SM_EID_VIOT model can be regarded as the inundated ones by the SOBEK model, reveal-
ing that the proposed SM_EID_VIOT model can provide the practically inundated grids
with high reliability, while a great recall-index value indicates that the inundated grids
identified by the proposed SM_EID_VIOT model can also be treated as the inundated ones
by the SOBEK model, implying that the proposed SM_EID_VIOT model can capture the
practically inundated grids with high likelihood. Eventually, by substituting the precision-
and recall-index calculated in Equation (14), the F1-index can be obtained, the high value of
which implies that the resulting flooding regions from the proposed SM_EID_VIOT model
have excellent agreement with the validated data.
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4.4.2. Evaluation of the Inundation-Depth Estimates

Since the proposed SM_EID_VIOT model aims to estimate the inundation depths
at the ungauged locations, named VIOT grids in this study, with the measurements at
the experimental roadside IoT sensors, its performance related to the estimations of the
inundation depths at the VIOT grids should be evaluated in advance. As mentioned above,
the maximum and average estimated inundation depths by the proposed SM_EID_VIOT
model can be compared to the validated data, i.e., results from the SOBEK model. From
Figure 15, although the validation event mainly begins inundating at t = 13-h, the inunda-
tion depths between t = 6-h and t = 51-h are adopted in the model validation to assess the
applicability of the proposed SM_EID_VIOT model, which should provide the inundation
depths of 0 m as a result of the non-inundation occurred at the IoT sensors. In addition,
the three VIOT grids close to the IoT sensors, including the VOT 1676 (TWD97X: 232258.5;
TWD97_Y: 2717301), VOT6655 (TWD97X: 234018.6; TWD97_Y: 2718821) and VOT2978
(TWD97X: 232698.5; TWD97_Y: 2718741) are selected in the comparison of the inundation-
depth hydrograph. The above relevant results for the model evaluation can be found in
Figures 19 and 20 and Table 6.

Figure 19 indicates that the average and maximum from the proposed SM_EID_VIOT
model are 0 m between t = 6-h and t = 13-h; they steeply rise to the maximum value at
t = 13-h and gradually decline with time. A similar conclusion can be found regarding the
maximum inundation depth. In detail, as for the average of the inundation-depth estimates
at the VIOT girds, the validated data from the SOBEK model significantly exceed the results
from the proposed SM_EID_VIOT model, excluding the inundation-depth estimate at
t = 14-h and t = 15-h, 0.48 m and 0.57 m, respectively. Among them, the underestimated
average and the maximum of the inundation depths via the proposed SM_EID_VIOT
model at the time step t less than 13-h are obtained due to the zero inundation depths
at the IoT sensors; this reveals that the proposed SM_EID_VIOT model can reasonably
produce the inundation depths at the ungauged locations in response to the non-inundation
situation at the roadside IoT sensors. Additionally, regarding the results at the time steps
t > 13-h, although the average and maximum of the estimated inundation depths via the
proposed SM_EID_VIOT model are also less than the validated data, the RMSE values
of which are about 0.103 m and 0.015, their varying trend in time have a good match
with the validated data as a result of the high coefficient of determination (R2) correlation
coefficient of 0.8 (see Table 6). Moreover, in the case of the comparison regarding the
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inundation-depth hydrograph, as shown in Figure 20, the estimated hydrographs at the
specific VIOT grids approach the validated data with a small RMSE value on average, less
than 0.002 m. Moreover, the temporal change in the inundation depths estimated by the
proposed SM_EID_VIOT model significantly resembles validated data by a high coefficient
of determination (R2), over 0.98.

Water 2022, 14, x FOR PEER REVIEW 24 of 32 
 

 

Table 6. Performance indices of the resulting inundation-depth estimates from the proposed 
SM_EID_VIOT model. 

Performance Index 
Inundation Depth 

Average Maximum VIOT1676 VIOT6655 VIOT2978 
Root mean square error 

RMSE (m) 
0.103 0.015 0.002 0.000 0.000 

Coefficient of determina-
tion (R2) 

0.891 0.703 0.993 1.000 1.000 

 

 
(a)  

(b) 

Figure 19. Comparison of the average and maximum of the inundation depths at the VIOT grids by 
the proposed SM_EID_VIOT model with the validated data. (a) Average inundation depth. (b) Max-
imum inundation depth. 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 7 13 19 25 31 37 43 49 55

In
un

da
tio

n 
de

pt
h 

(m
)

Time (hour)

SM_EID_VIOT

SOBEK

0

1

2

3

4

5

6

1 7 13 19 25 31 37 43 49 55

In
un

da
tio

n 
de

pt
h 

(m
)

Time (hour)

SM_EID_VIOT

SOBEK

Figure 19. Comparison of the average and maximum of the inundation depths at the VIOT grids
by the proposed SM_EID_VIOT model with the validated data. (a) Average inundation depth.
(b) Maximum inundation depth.
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Figure 20. Comparison of the resulting inundation-depth hydrograph at the specific VIOT grids from
the proposed SM_EID_VIOT model with the validated data.
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Table 6. Performance indices of the resulting inundation-depth estimates from the proposed
SM_EID_VIOT model.

Performance Index
Inundation Depth

Average Maximum VIOT1676 VIOT6655 VIOT2978

Root mean square
error RMSE (m) 0.103 0.015 0.002 0.000 0.000

Coefficient of
determination (R2) 0.891 0.703 0.993 1.000 1.000

To sum up the above results, the proposed SM_EID_VIOT model can effectively pro-
duce the reasonable inundation depths at the ungauged locations based on the observation
at the roadside IoT sensors under an acceptable bias and high correlation in time and
space. In particular, the accuracy of the inundation depths estimated by the proposed
SM_EID_VIOT model can be markedly related to the inverse distance of the corresponding
VIOT grids to the roadside IoT sensors.

4.4.3. Assessment of the Flooding Area

In addition to the evaluation of the gridded inundation depths, the performance for
delineating the flooding zones and quantifying the corresponding areas comprised of the
estimated inundation depths at the VIOTs grids are supposed to be tested by graphically
comparing the validated data at the specific time steps as shown in Figures 21 and 22 and
calculating the corresponding performance indices, i.e., the precision-index and recall-index
through the Equations (12)–(14) as shown in Figure 21 in which their statistical properties
are listed in Table 7; additionally, the corresponding root mean square and coefficient of
determination (R2) can be found in Table 7.
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Figure 22. Comparison of flooding-area hydrograph quantified estimated via the proposed
SM_EID_VIOT model with the results from the SOBEK as validated data.

Table 7. Statistics of the performance indices of the estimated flooding region.

Performance Index Precision
Index

Recall
Index F1 RMSE

(km2) R2

Statistical
properties

Mean 0.669 0.364 0.461

0.161 0.65
Standard
deviation 0.209 0.220 0.208

Maximum 1.000 1.000 1.000
Minimum 0.000 0.000 0.000

Figure 21 presents the resulting flooding regions from the proposed SM_EID_VIOT
model as less than the validated data from the SOBEK model; however, the joint flooding
region can be found near the central zone and the three roadside IoT sensors. Additionally,
as compared with Figure 22, although the flooding area via the proposed SM_EID_VIOT
model increases from t = 6-h to 15-h and then declines with time to a constant in as-
sociation with the result of the RMSE being 0.161 (km2), the temporal change in the
flooding-area estimates is similar to the validated data with a high correlation coefficient
of 0.65 (see Table 7).

Regarding the performance indices of the resulting flooding region, as shown in
Figure 23 and their statistical properties (see Table 7), the performance indices (i.e., the
precision and recall index) are equal to 1.0 between t = 6-h and 9-h and 0.0. They are then
zero from t = 10-h to t = 12-h, indicating that the performance indices gradually rise with
time. Of the performance indices, the precision-index increases from 0.4 to a constant
(about 0.7), while the recall index has a similar, varying trend in time, approximately from
0.1 to 0.3. Based on the results from the precision index and recall index, the corresponding
F1 index exhibits a similar change with time to the precision and recall indices, excluding
those between t = 6-h and t = 12-h in which the magnitudes are 1.0 and 0.0, respectively;
the F1 index sharply increases to a constant, approximating 0.5.
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Figure 23. Summary of the performance indices of the estimated flooding region by the proposed
SM_EID_VIOT model.

In detail, the reason for the high precision and low recall index is that the VIOT
grids with the low validated inundation depths obtained by the SOBEK model, probably
caused by the light rainfall-induced flood, are excluded as the inundated grids identified
by the proposed SM_EID_VIOT model; hence, the amount of the inundation data declines,
obtaining the low recall index. Additionally, the proposed SM_EID_VIOT can produce the
accurate non-inundation simulation under conditions of IoT sensors with zero inundation-
depth observations; nonetheless, the proposed SM_EID_VIOT model could capture the
completed flooding zones with somewhat difficulty according to the low recall index (on
average 0.4). However, the resulting inundated grids are the accurate flooding locations
with a high likelihood based on the high precision index (about 0.7). Eventually, as a result
of the F1index, on average, of 0.5, the flooding regions comprising the inundation-depth
estimates via the proposed SM_EID_VIOT model can nearly match the validated ones.

In conclusion, it can be proven that the proposed SM_EID_VIOT model can effectively
achieve the goal of estimating the inundation depths at the ungauged locations based on
the roadside IoT sensors. Additionally, it can delineate the flooding zones to quantify the
flood-induced acreage by accounting for the grids of nonzero inundation-depth estimates
(named inundated grids) times the grid size. As a result, the proposed SM_EID_VIOT
model can provide more reliable and realistic 2D inundation information, including the
hydrographs of ungauged inundation depths, the potential flooding regions, and associated
area in response to the flood characteristics at the roadside IoT sensors.

5. Conclusions

This study aims to develop the intelligent modeling for estimating the inundation
depths at the ungauged locations (i.e., the virtual roadside IoT water-level sensors, VIOT
grids) named SM_EID_VIOT model applied in the 2D inundation simulation to obtain the
resulting flooding zones and at-site inundation depths. Using the proposed SM_EID_VIOT
model, the flooding zones and associated areas could be achieved by combining the
inundation-depth estimates at all VIOT grids through the ANN_GA-SA_MTF with the
three-layer neural network based on the measurements recorded at the roadside IoT sensors.
To carry out the model development and demonstration, the hydrological and geographical
data in the Miaoli City of North Taiwan are used in the 1000 simulations of rainfall-induced
flood events as the model-training and validating datasets.
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According to the results from the model validation, the spatial average and maximum
of the estimated inundation depths via the proposed SM_EID_VIOT model have good
agreement with those from the validation datasets based on the corresponding low root
mean square error (RMSE) of under 0.01 and high coefficient of determination (R2) and
over 0.8, respectively, meaning that the inundation-depth estimates at the ungauged grids
close to the roadside IoT sensors are significantly correlated with the validated data at the
roadside IoT sensors. Nevertheless, the proposed SM_EID_VIOT model could possibly
capture the completed flooding zones with some difficulty due to a low recall index of about
0.4, but the resulting inundated grids recognized by the proposed SM_EID_VIOT model
are classified as the actual flooding locations with a high precision ratio of approximately
0.7. This reveals that the proposed SM_EID_VIOT model can delineate the flooding zones
and quantify the corresponding flooding area in agreement with the validation datasets
regarding the spatial variation.

The proposed SM_EID_VIOT can efficiently issue the flooding zones according to the
real-time observations at the existing roadside IoT sensors; however, it hardly emulates
inundation without the available inundation depths at the IoT sensors during a rainfall-
induced flood event. Therefore, selecting the specific ungauged locations as the study
spots would be helpful to further enhance the reliability and accuracy of the proposed
SM_EID_VIOT model, especially for the delineation of the flooding region by adopting
the rainfall factors as the input factors of the ANN-derived model. To simplify the model
improvement, the above VIOT grids, where the rainfall factors are treated as the model
inputs, can be selected based on the resulting potential flooding-risk maps from the simula-
tions of the rainfall-induced flood events. Eventually, in addition to the observation at the
roadside IoT sensor, the relevant flood forecast models which can produce the water-level
forecasts at the IoT sensors would be coupled with the proposed SM_EID_VIOT model to
provide the gridded inundation-depth forecasts which are advantageous for the flooding
early warning and flooding hazard mitigation.
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