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Abstract: Water microorganisms contribute to the key components of ecosystems in dryland waters,
which are extremely important for wildlife. However, the distribution patterns of water microbes
across different basal water sources are still largely unknown. This study was conducted to compare
microorganisms in the water bodies of different types of water sources in the Kalamaili Mountain
Ungulate Nature Reserve in China. Bioinformatic analysis revealed that the undirected microbial
co-existence network consisted of 15 main modules referring to different water sources, which in-
dicated specific molecular co-existence relationships. It was found that the most dominant phyla
(namely Proteobacteria, Patescibacteria, Firmicutes, Bacteroidota, and Actinobacteriota) of the molec-
ular ecological network shared the same structures as the microbial community, which justified
the construction of the network via a random network formation. Principal coordinate analysis
(PCoA) based on Bray–Curtis distances revealed that there were still considerable variations among
different habitats, showing separate sample clusters. Additionally, the different topological roles of
subnetworks trimmed to a uniform size indicated different co-existence patterns in the microbiome.
The artificially recharged water from concrete pond substrate (ARC) subnetworks had a relatively
discrete co-occurrence, while the natural water sources (NRE) and artificially recharged water from
earthen pond substrate (ARE) groups were more compact with giant modules. The NRE and ARE
groups were also richer in microbial composition and had a higher number of species with low
abundance. Consequently, concrete substrates may contribute to dysfunction in water microbiomes.
Moreover, the functional diversity of the NRE and ARE groups is due to more intra-module connec-
tions and more inter-module connections, indirectly leading to a stable function resilient to external
environmental influences. In conclusion, the microecology of the NRE was more stable than that of
the concrete substrate, and artificial transportation had less effect on the microbial community.

Keywords: Kalamaili Mountain Ungulate Nature Reserve; water microbiome; microbial dysregulation;
molecular ecological network; wildlife water source

1. Introduction

Microbes are widespread in water, soil, air, and other environments, and they play
important roles in agro-ecosystems [1]. As decomposers, microorganisms can break down
fertilizers, pesticides, bait residues, and excreta through metabolism [2], and they can also
break down organic compounds directly into inorganic products through mineralization,
driving various material cycles, such as nitrogen fixation, nitrification, and denitrifica-
tion, and playing a key role in promoting energy flow and maintaining environmental
homeostasis [3–5]. As is well known, nitrifying bacteria eliminate ammonia and nitrite to
reduce water toxicity [6], while Bacillus can convert organic carbon into CO2 or mucilage to
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improve water quality [7]. It was previously found that not only does Lactobacillus promote
the immune response and improve the survival of Litopenaeus vannamei, but it also increased
the activity of digestive enzymes and optimized the survival rate of shrimp [8]. However,
when ecosystems are out of balance, conditioned pathogenic bacteria in the environment
may cause disease in plants and animals and jeopardize their healthy growth [9]. Therefore,
microorganisms largely determine the productivity and eco-efficiency of wildlife water
sources’ ecosystems, and it is important to investigate the diversity and community struc-
ture of the microorganisms in wildlife water sources’ ecosystems for conservation biology.

As is often the case, a highly complex and heterogeneous microbiota establishes the
dynamic microbial ecosystem [10]. Ecological network models are an important tool to
elucidate microbial community interactions, and their analysis using visual networks can
provide new insights into the environmental response of complex microbial communi-
ties [11], offering additional information that is difficult to obtain using traditional research
methods. A series of topological parameters, such as modularity, clustering coefficients, and
connectivity, can reflect the systemic characteristics of a community [12]. However, the roles
of key nodes in regulating the functional potential of microbial communities are largely
unexplored and unstudied [13]. Additionally, numerous complex intra-species interactions
contribute to the same work [14], shaping the structure and function of microbial commu-
nities. Previously, attention has mainly been focused on the construction of large-scale
microbial networks; the interactions of microorganisms within a single host or habitat and
their functions remain poorly investigated [2]. However, relatively little research exists to
support the importance of the relative abundance of key nodes in water microbial networks.
Key nodes can re-establish themselves even when disturbed by environmental factors.
Microbial dysbiosis has been reported to lead to metabolic disorders [15]. Determining the
response to nutrients and the functional importance of the microbial taxa of key nodes is
particularly important in order to better understand how microbial communities support
metabolic functions.

The Kalamaili Mountain Ungulate Nature Reserve (KNR) is located in the Junggar
Basin of Xinjiang, China, and it is a major area for ungulate wildlife. Since the establishment
of the reserve in the 1980s, wildlife such as Przewalski’s horses (Equus ferus przewalskii),
Mongolian wild asses (Equus hemionus hemionus), and Gazella subgutturosa has increased
significantly in the KNR [16]. The climate is moderately temperate and continental, with an
average annual temperature of only around 2 ◦C, and annual precipitation is scarce. There
is no surface water in the reserve, only a dozen or so salt springs overflowing from fissure
water, rainfall, and snowmelt in the lowlands and a few artificial wide-mouth wells, which
serve as natural watering points for wildlife in the dry season. Water scarcity is a major
constraint to the survival of wildlife in the area. Consequently, natural water sources and
artificially transported water sources are the main solutions to the wildlife drinking water
problem in nature reserves [17]. At present, there are two main types of storage for man-
made water sources—namely, earthen pond storage and concrete pond storage. Earthen
ponds are prone to downward seepage and have limited water storage, while concrete water
storage offers good prospects. However, some studies have reported that concrete is not
conducive to ecological restoration and tends to disrupt the microecological environment
of water bodies [18]. According to previous reports, this could be because concrete may
adsorb microorganisms in the water, reducing the microbial diversity in the water and
enriching the microorganisms around the concrete [19,20]. Microbes in water bodies are
an important part of aquatic ecosystems. A close link has been found between microbial
communities and water quality [21]. Changes in the structures of microbial communities
respond well to the accumulation of water pollution loads and have a very important
role in the cycling of microbial biogenic elements, the decomposition of organic matter,
and the purification of pollutants. The diversity and structure of freshwater microbial
communities are determined by the temporal and spatial variability of physicochemical and
biological parameters, responding rapidly to changes in the environment and adjusting the
community structure to adapt to changes in the ecological environment. Therefore, in this
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study, a comparative analysis of the diversity and community structure of microorganisms
in artificially transported water sources and in water bodies under different substrates
was carried out based on high-throughput sequencing of 16S rDNA amplicons, with the
aim of revealing the impact of artificial intervention on the ecological environment from a
microbial perspective. The aim is to provide a scientific basis for ecological research and
the further development of water bodies in arid environments, and to provide theoretical
support for the sustainable development of the KNR.

2. Materials and Methods
2.1. Experimental Management

Forty-three water samples were collected from water sources in the KNR—namely,
18 from natural water sources (NRE), 19 from artificially recharged water from earthen
pond substrate (ARE), and 6 from artificially recharged water from concrete pond substrate
(ARC) (Figure 1). Artificially recharging water means transporting groundwater to a water
source from the earthen pond substrate or concrete pond substrate through a water tanker.
Therefore, ARC was the most affected by humans, the second being ARE, and NRE was
not influenced by humans. The water samples were collected during May 2021.
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Figure 1. Locations of the sampling site for water sources in Kalamaili Mountain Ungulate Nature
Reserve (KNR). Natural water sources (NRE, dots): W1 (rw1, rw2, rw3), W2 (rw4, rw5, rw6), W7
(rw7, rw8, rw9), W9 (rw10, rw11 rw12), W14 (rw13, rw14, rw15), W16 (rw16, rw17, rw18); artificial
recharged water from earthen pond substrate (ARE, triangles): W3 (rh1, rh2, rh3), W4 (rh4, rh5, rh6),
W5 (rh7, rh8, rh9), W6 (rh10, rh11, rh12), W8 (rh13, rh14, rh15), W11 (rh16, rh17), W12 (rh18, rh19);
artificial recharged water from concrete pond substrate (ARC, pentagons): W10 (rc1, rc2, rc3), W13
(rc4, rc5, rc6).

2.2. Sampling and Analysis
2.2.1. Sampling

Water samples were collected in sterile water collection bags and marked with the
sample name, sampling time, sampling location, collector, and other collection information.
The water samples were taken using a sterile 250 mL syringe while wearing sterile gloves.
A total of 100 mL of water was collected from the same water source at different locations,
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resulting in 500 mL water samples being collected from each location. Two to three
replicates were taken from each water source. A disposable filter cup containing a 0.45 µm
filter membrane (PALL Microfunnel), a rubber stopper, a 500 mL filter bottle, and an electric
pump were connected to form a complete filtration unit. Water samples from the sampling
bag were poured into the filter cups over a 24 h period and vacuumed using an electric
vacuum pump to speed up the flow rate, stopping filtration when the water flow rate was
3 drops in 10 s [22]. The filter membranes were rolled into sterile tubes using disposable
sterilized forceps and placed in −20 ◦C freezing storage until DNA extraction.

2.2.2. 16S rDNA Sequencing and Water Microbiota Analysis

The high-throughput sequencing of 16S rDNA against water samples was performed
using a method described in a previous publication [11], where the primers used were 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′).
Purified amplicons were pooled in equimolar units and paired-end sequenced on an
Illumina MiSeq PE300 platform/NovaSeq PE250 platform (Illumina, San Diego, CA, USA)
according to the standard protocols of Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai,
China). The raw 16S rRNA gene sequencing reads were demultiplexed, quality-filtered by
fastp version 0.20.0 [23], and merged by FLASH version 1.2.7 [24] with the following criteria:
(i) the 300 bp reads were truncated at any site receiving an average quality score of <20 over
a 50 bp sliding window, and the truncated reads shorter than 50 bp were discarded; reads
containing ambiguous characters were also discarded; (ii) only overlapping sequences
longer than 10 bp were assembled according to their overlapped sequence; the maximum
mismatch ratio of overlap region was 0.2, and reads that could not be assembled were
discarded; (iii) samples were distinguished according to the barcode and primers, and
the sequence direction was adjusted, exact barcode matching, 2 nucleotide mismatches
in primer matching. After a series of quality control checks, the raw sequences were
annotated to different taxonomic levels, with operational taxonomic units (OTUs) at 97%
similarity grouped into the same genera [25], and chimeric sequences were identified and
removed. The taxonomy of each OTU representative sequence was analyzed by RDP
Classifier version 2.2 [26] against the 16S rRNA database (Silva v138), using a confidence
threshold of 0.7. The R package phyloseq was used to sample the absolute abundance
tables equally in order to remove low-abundance OTUs for later analysis.

2.2.3. Construction and Visualization of Co-Occurrence Ecology Networks

Weighted gene co-expression network analysis (WGCNA) based on the absolute
abundance OTU table was used to construct co-occurrence networks using R packages
igraph and Hmisc to describe interspecific interactions [27]. The methods can be found
described in detail in the previous report [11]. First, the absolute abundance table was
transposed to calculate the proportion of each operation unit and the Spearman correlation
coefficient and its significance by using the “corAndPvalue” function in the WGCNA
package, and an adjacency matrix was constructed. Then, the multtest package was used
to correct the p-value and reconstruct the adjacency matrix. Briefly, the combination of a p-
value greater than 0.05 and a correlation absolute value less than 0.4 in the adjacency matrix
was filtered out. Second, the “graph.adjacency” function was used to convert the adjacency
matrix into an igraph object and to delete isolated and self-correlated nodes. Third, the
data output was realized by the igraph package (version: 1.3.2, https://cran.r-project.org/,
accessed on 6 July 2022) and visualized in perl (version: 5.30.2, https://www.perl.org/,
accessed on 6 July 2022), gephi (version: 0.9.6, https://gephi.org/, accessed on 6 July 2022)
and cytoscape (version: 3.9.1, https://cytoscape.org/, accessed on 6 July 2022).

The parameters of networks can be described as network size, avgK, GD, avgCC, and
modularity. Among these, network size (node) is the number of all nodes in the network.
Network size (edge) is the number of all edges in the network. Average degree (avgK)
stands for the average degrees (the number of edges) of all nodes in the network. Average
path distance (GD) stands for the length of the shortest path between nodes. Average
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clustering coefficient (avgCC) describes the probability that two adjacent nodes linked to
one node are also adjacent to each other. Modularity is a method used to measure the
quality of community division in community discovery. A relatively good result is where
the connectivity of nodes within the community is high, while the connectivity of nodes
outside the community is low.

2.3. Statistical Analysis

The experimental raw data were initially processed and analyzed using R (version
4.0.3). The R package vegan was also used to analyze alpha and beta diversities (Bray–
Curtis distance) based on unweighted principal component analysis. The R package
microeco was then used to construct evolutionary branching relationships utilizing linear
discriminant analysis effect size (LEfSe) analysis (LDA score = 4.0).

3. Results
3.1. Microbial Diversity

The influence of concrete substrate on water microbial communities was investigated
using 43 samples from three different types of water sources. A total of 27,675 high-quality
sequences (median 562) ranging from 143 to 2240 were derived from bacterial profiles.
A total of 12,266 bacterial OTUs were detected in all samples, with a sequencing depth
and coverage of over 90%. The network inclusion was limited to 5090 OTUs present
in the normalized sample, using the R package phyloseq in order to reduce noise and
false positive predictions. At the phylum level, Proteobacteria, Patescibacteria, Firmicutes,
Bacteroidota, and Actinobacteriota were the most dominant microbial communities, as
shown in Supplementary Figure S1. There were 122 OTUs (4.71%) that were shared by
all three groups, with those that were unique to each water environment being 906 (NRE,
34.97%), 863 (ARE, 33.31%), and 151 (ARC, 2.43%), and those that were shared between
the two groups being 445 (NRE-ARE, 17.17%), 63 (NRE-ARC 2.09%), and 41 (ARE-ARC,
1.58%). The lowest Observed, Chao1, ACE, Shannon, and Simpson values were found in the
ARC group (Figure S2). Additionally, the differences in the water microbial communities
from different substrates were found to be statistically significant after permutational
multivariate analysis of variance (PERMANOVA analysis, R2 = 0.078, p = 0.001). It could
be seen that most samples in the NRE and ARE groups clustered together, with a tendency
to sort under PCoA based on Bray–Curtis distance (Figure 2), revealing that there were no
differences between the two treatments. In contrast, the concrete substrate water microbes
were arranged in isolation, indicating that the concrete substrate led to a greater effect than
the other two treatments.

3.2. Differential Analysis

LEfSe analysis of water microbiota revealed that differential OTUs were a few of
the biomarkers with high scores at the corresponding taxonomic level (Figure S3). The
cladogram showed that the differential OTUs were mainly distributed among the groups in
the dominant phyla, such as Proteobacteria, Patescibacteria, Firmicutes, Bacteroidota, and
Actinobacteriota (Figure S3). These findings, together with the distribution histogram’s
findings, reveal that the differential indicator species that ranked in the top 10 in the
natural water microbiome were Rhodobacterales and Sphingomonadales at the order
level classified into Alphaproteobacteria in Proteobacteria and Patescibacteria. Artificial
recharge contributed to a significant increase in Actinobacteria at the class level classified
into Actinobacteriota, as well as Clostridia classified into Firmicutes, the abundance of
which showed an obvious decrease in the microbiome of the artificially recharged water in
the cement substrate. Moreover, the concrete substrate significantly increased the relative
abundance of Rhodobacterales at the order level classified into Alphaproteobacteria in
Proteobacteria, as well as Bacteroidia at the class level classified into Bacteroidota.
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3.3. Water Microbial Co-Occurrence Network

Three microbial subnetworks were constructed with conservative statistical cut-off
values applied (p > 0.05, abs(r) < 0.4). The three subnetworks were merged into a total
microbial network by overlapping the nodes and edges; the total network consisted of
2585 nodes and 125,772 edges after the removal of unconnected nodes (Figures 3 and 4). The
scale-free property (R2 = 0.132), the relationship between degree and strength (R2 = 0.934),
the network centrality parameter (R2 = 0.408), and independency (R2 = 0.106) suggest a non-
random co-occurrence pattern in this microbial network (Figure S4), which is consistent
with the result of a comparison between the empirical network and a random network.
Moreover, the total network exhibited high modularity, with 99.2% of the nodes occupied
by 15 of the 18 total modules, showing the same microbial composition as the original
microbial composition (Figure 4 and Figure S5). Vertices from water microbiomes in the
NRE, ARE, and ARC groups were present in different modular patterns (Figures 3 and 4b),
and the ARC group showed bad network properties (Table 1).

Circos plots were employed to illustrate the microbial composition and interspecies
relationships within each microbial community, referring to the corresponding groups. In
Figure 5, three representative networks are presented in order to identify combinations
of potential interactions in the water microbial communities. A minimum of five node
modules were targeted, while major modules with at least 10 nodes were visualized. It
can clearly be seen that the total network was inclined to co-exist rather than co-exclude,
with positive correlations accounting for 99.9% (125,709 edges) of the potential interactions
that were scanned (Figure 5). However, the negative interactions only existed in the water
microbiome of concrete substrate pits. Moreover, enhanced interaction of the microbial
network could be found in the water microbiome of earth pits; this was evidenced by a
significant increase in the number of edges and mainly positively correlated edges (Table 1).
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As with the total network structure, changes in the size of the modules and in the number
of inter-module connections with the introduction of the concrete substrate mainly reduced
the number of microbial community modules and the number of intra-module connections
(Figure 5; Table 1).

Table 1. Comparison of the roles of the natural water sources (NRE) network, artificially recharged
water from earthen pond substrate (ARE) network, and artificially recharged water from concrete
pond substrate (ARC) network.

Item

Empirical Network Random Network

Network
Size

(Node)

Network
Size

(Edge)

Average
Degree
(avgK)

Average
Clustering
Coefficient

(avgCC)

Average
Path

Distance
(GD)

Modularity
(No.
of

Modules)

Average
Clustering
Coefficient

(avgCC)

Average
Path

Distance
(GD)

Modularity

NRE 1532 67874 88.61 0.798 3.033 0.751 (15) 0.0579 ±
0.0002

1.9477 ±
0.0001

0.0489 ±
0.0013

ARE 1453 53127 73.13 0.734 3.144 0.720 (13) 0.0504 ±
0.0002

1.9735 ±
0.0002

0.0574 ±
0.0014

ARC 353 5195 29.43 0.969 1.024 0.720 (18) 0.0837 ±
0.0012

1.9943 ±
0.0014

0.1233 ±
0.0047
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Figure 3. Circos diagram of total microbial co-occurrence network. Circos diagram consists of
three parts: an outer layer of circles and dots, a middle layer of color blocks, and an inner layer of
connecting lines. The outer layer was visualized by taking the logarithm of the microbial abundance
of the total network; the middle layer presents the composition of microorganisms, with six layers
from the outermost phylum level to the inner species level; and the innermost layer presents the
interaction links between microbes, with positive correlations indicated with red lines and negative
correlations indicated with blue lines.
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3.4. Topological Roles

To evaluate the potential topology of the taxa in all three subnetworks, the nodes
were divided into four classes based primarily on the relationship between the degree and
closeness centrality (Figure 6). Meanwhile, the alpha diversity of the microbial network
showed a decreasing trend as the concrete substrate was introduced, and it became the
same as that of the original microbial composition. Moreover, the number of key nodes
(Hubs) in the microbial network of the water body tended to decrease with artificial
interventions (the artificial transportation of water and concrete substrates), as evidenced
by the few remaining peripherals in the ARC group. Furthermore, there were higher
modular connections found in the NRE and ARE groups, owing to more key nodes with a
higher degree. The NRE group contributed to the highest average connectivity, as shown
in Table 1, indicating the microbial community network that was the most complex. The
average path distance (GD) was higher for the NRE and ARE group networks than for the
ARC group network, coupled with an increase in the average degree (avgK) and a decrease
in the average clustering coefficient (avgCC).
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4. Discussion
4.1. Microbial Community Structure Characteristics of Water

The microbial community structure of water microbiomes not only directly affects the
transformation and composition of water microbiomes but is also one of the main factors
in maintaining and restoring the productivity of water bodies. The substrate of a water
resource plays a significant role in maintaining environmental stability in water bodies. The
evolution of microbiota (quantity and composition) is an important biological indicator of
changes in the quality of the water environment [28]. In this study, the bacterial diversity of
the water sources in the KNR was analyzed using high-throughput sequencing technology,
and the bacterial communities were found to be mainly composed of Proteobacteria,
Patescibacteria, Firmicutes, Bacteroidota, and Actinobacteriota. It was also found that
Proteobacteria was the most common microbial group in the water microbiome [29]. The
water sources from cement substrates contained almost no Patescibacteria, suggesting that
cement substrates reduced the abundance of bacterial communities in the water column,
while artificially transported water sources had no significant effect. Studies have shown
that a lower level of Patescibacteria means that carbon and nutrients are released, from
which other bacteria can benefit and survive. It has been reported that species diversity is
positively correlated with stability [30]. In our study, water from a concrete pond substrate
showed significantly reduced bacterial diversity. Community diversity reflects community
stability and functional diversity, and it can ultimately influence process rates and state
variables in an ecosystem [13]. This suggests that concrete substrates are not conducive to
the recovery of bacterial community diversity [20]. An analysis of the microbial diversity
of the water column and phylogenetic tree showed that the concrete substrate changed the
structural composition of the soil bacterial community [31], which was less diverse than the
mud-bottom water column, because bacteria are suited to nutrient-rich silt environments,
and higher fertility stimulates bacterial growth. A poor concrete substrate does not provide
sufficient nutrients for microbial growth, so concrete substrates have a negative impact on
the diversity of the microbial community in the water column.

4.2. Microbial Co-Occurrence Network Composition of Water

The total microbial network was scale-free, which implied that a high number of
connectors co-exist with many species that have a small edge number. It could be concluded
that complex interactions among microbiota play a critical role in community assembly
processes [32]. Due to the characteristics of small-world networks, it is possible that effects
on a few taxa are transmitted to any other member of the microbial community through
a few key vertices. The modularity of this microbial co-occurrence network varied with
the degree of artificial intervention changes. Previous studies have found the existence of
artificial-factor-driven modules, such as fasting stress [27] and dietary supplementation [11].
Moreover, the microbial patterns in the current modules may also indicate similarities in
microbial symbiosis patterns across habitats, given that modules in a microbial symbiosis
network may represent different ecological contexts. Within the current total microbial
symbiosis network, a similar distribution of modules was not found between the ARC
subnetwork and the other two subnetworks.

Dominant species might play an important role in the construction of microbial net-
works [12]. As described above, the total microbial co-occurrence network was constructed
based on three subnetworks. In each network, the dominant phyla were mainly Proteobac-
teria, Patescibacteria, Firmicutes, Bacteroidota, and Actinobacteriota, with Proteobacteria
and Bacteroidota dominating, and Patescibacteria in the ARC subnetwork presented in a
disordered form in the total co-occurrence network. Bacteroidota play an important role
in the conversion of complex molecules into simple compounds. A unique degradation
mechanism has been found to have evolved in Bacteroidota, and it mediates the degra-
dation of most polysaccharides [33]. It has been shown that Bacteroidota have a strong
correlation with high concentrations of dissolved organic carbon, suggesting that the high
activity of Bacteroidota at high concentrations of organic carbon and the lack of nutrient-
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rich substrates in concrete may be the reasons for this phylum being dominant [34]. At the
phylum level, we found a decrease in the relative abundance of the phylum Patescibacteria,
accompanied by fewer interconnections in the ARC group, which revealed that the earthen
pond storage still had an advantage.

4.3. Microbial Co-Occurrence Network Topological Roles of Water

Microorganisms prefer to co-exist by building complex ecological networks, as most
are unable to survive on their own [35]. Interspecies interactions determine the functional
properties or ecological niche occupancy of microbial communities and play an important
role in facilitating ecosystem processes [36]. It has been shown that interspecific linkages
play an important role in driving the beta diversity of nitrogen-fixing nutrient flora in
rice soils [31]. Biological factors were found to be more predictive of bacterial alpha and
beta diversity than environmental factors, suggesting that biological interactions have a
more important role in the diversity and structuring of bacterial communities in different
habitats. This observation was also confirmed by examining the primary role of biotic
factors in determining the distribution of specific taxa in the community [37]. Biological
mechanisms may be related to species associations, which are commonly used in ecology
and biogeography as a proxy for species interactions in communities. Species interactions,
such as competition and reciprocity, resulting from differences in fitness can lead to the
delineation of ecological niches among community members in response to environmental
heterogeneity [38]. For example, competition caused by limited nutrient sources and
antagonism between species limits species co-existence and thus affects the construction of
microbial communities. Metabolic interdependence between taxa can induce species co-
existence and lead to microbial aggregation. These studies therefore support our conclusion
that interactions between microbial taxa promote significant changes in community beta
diversity across habitats on a large scale.

The different profiles of topological roles along subnetworks suggest that unique
microbial patterns exist in each subnetwork. The key taxa represent highly connected
microorganisms that play an important role in the structure and function of the microbiota
and act as indicators of experimental treatment change. A microbial community is a
complex network generated by interspecies interactions within a microbial community
that maintains the stability of a complex microbial ecosystem [14]. In this study, we found
that the co-existence network of the microbial community in the earthen pond water
source was more complex and shared ecological niches that were more developed. It has
been found that a higher network connectivity may be related to the rapid response of
microorganisms to environmental disturbances; therefore, the higher network connectivity
of the microbial community of the earthen pond water source in this study indicates
that the surface microbial community is more susceptible to environmental disturbances,
which is the reason for which the microbial composition of the concrete pond water source
is more variable. It was found that microbial taxa co-occurred more frequently (to a
higher degree) in earthen pond water environments, possibly in part because the increased
nutrient enrichment of the earthen ponds stimulated increased biomass and provided more
opportunities for interactions between different species. In addition, negatively correlated
linkages appeared in the subnetwork of the concrete water sources, suggesting that concrete
may cause more antagonistic or competing biological interactions. This may be due to the
fact that the nutrient-poor concrete substrate is not conducive to biological growth, leading
to reduced community stability, increased competition between species, and reduced
resource transfer efficiency compared to those species colonizing more isolated spaces.
On this basis, we found that substrate species are an important abiotic factor influencing
bacterial community structure and species co-existence.

Interspecific interactions within microbial communities may occur as a result of various
species performing comparable or complementary roles or sharing ecological niches [35].
Most bacteria are natural auxobactoria. They are unable to synthesize many vital nutrients
because of the absence of crucial pathways or key genes [39]. As a result, auxotrophic
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bacteria’s survival is largely reliant on the community or host as a whole for the interchange
of carbon flows and by-products. Because it is more robust to population disturbances
under spatial constraints, synergism is expected to support a more stable co-existence.
Conversely, competitive interactions are prone to disruption and might lead to unstable
co-existence [40]. However, contrary views from previous studies have suggested that
ecological competition can contribute to the stability of microbial communities. A synergis-
tic effect dominates the microbial network of the water microbiome, as indicated by the
results of this experiment, which are consistent with those of previous studies in Procam-
barus clarkia [11,27]. Furthermore, there are also variations in the composition of microbial
networks. The majority of OTUs in microbial networks are peripheral nodes, although
a few act as linking nodes or modular hubs. Ecologically, peripheral nodes may behave
as specialists, whereas connecting nodes and modular hubs may act as generalists. The
functional key OTUs performed by generalists play a critical role in sustaining a network’s
identity [41]. In these networks, the majority of generalists are from dominant microbial
communities, indicating that dominant microbial communities play an important role in
the networks. The number of connectors and modular hubs suggests that the topology of
a microbial network varies between substrate sources and that the nature of the modules
varies significantly. The pattern of lower abundance and types of keystone species in
concrete substrate waters than in mud substrate waters suggests that concrete substrate
microbial communities may be more susceptible to fragmentation and more vulnerable
to overall community collapse if keystone species are lost to environmental influences.
Keystone species play an important role in maintaining communities and functions. Pro-
teobacteria act as both dominant and keystone species, suggesting that they are actively
involved in the function and processes of reservoir ecosystems. It was found that a reduc-
tion in peripheral nodes had no structural impact on microbial network properties, while
the network deteriorated when generalist nodes were reduced [42]. Consequently, the
results of our study suggest that the concrete substrate led to the deterioration of the entire
network, resulting in a dysfunctional microbial composition. However, the increase in the
number of modules in the co-occurrence network of the water microbiome in the case of
the earthen pond suggests that the muddy substrate is a contributor to microbial diversity
and the stability of the microecology of water bodies.

4.4. Microbial Co-Occurrence Network Modular Structures of Water

According to the results based on OTUs sensitive to water substrates, the three mod-
ules that make up the core cluster demonstrated strong demarcation to distinct habitats.
This is in line with the PCoA results revealed previously. However, the independent
co-occurrence network for each group reveals that the water microbiome on the concrete
substrate became more modular, diminishing the network’s complexity. It has been shown
that the higher the mean degree and mean clustering coefficient of a microbial community
network topology, the lower the mean path length and the more complex the interactions
between species. In addition, it has been demonstrated that water sources alter the compo-
sition of differential OTUs and their distribution in networks. Furthermore, by varying the
average degree (avgK), average clustering coefficient (avgCC), average path distance (GD),
and modularity coefficient after performing network modularity analysis separately for
each treatment, water sources were found to significantly influence the ecological network
structure of microbial communities. As is well known, modularity is one of the major
structural elements of networks, indicating how well the network is partitioned into well-
defined sub-modules [12]. The identification of sub-modules in a complex network does
not only show the building patterns among these networks into closely linked communities.
The link between this building pattern and its functionality and robustness is arguably
more crucial [43]. Each microbial community in this study has its own ecological network
with distinct sub-modules, and the dominant microbial community is the main component
of these networks, signaling that the dominant microbial community plays a critical role in
these networks. The results demonstrate that numerous OTUs in the sub-modules belong
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to the same group. OTUs of the same taxon are quite likely to have similar functions, given
that they share the same genes [44]. Furthermore, there is a positive correlation between net-
work complexity and average connectivity. Thus, water introduced from the concrete pond
reduced the complexity of the ecological network, implying that the microbial community
was impacted in the opposite way.

5. Conclusions

Future large-scale culture-based research may reveal the biological mechanism of
microbial interactions, deepening our understanding of how water microbiomes respond to
environmental stress. In this study, it was found that muddy substrates contributed to the
community structure of the water microbiome, which was correlated with the proportions of
the dominant phyla, and their strong inter-phylum connections co-existed in the microbial
network. As a means of water storage, concrete substrates can prevent water seepage in
arid areas, but natural water sources and artificially recharged water from earthen pond
substrates are of great significance in maintaining the health of water microecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14142188/s1, Figure S1: Microbial composition; Figure S2:
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Figure S4: The degree distribution of microbial co-occurrence network; Figure S5: The topological
roles of 15 modules of the microbial co-occurrence network.
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