A Preliminary Study on the Mechanisms of Growth and Physiological Changes in Response to Different Temperatures in Neopyropia yezoensis (Rhodophyta)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algae and Culture Conditions
2.2. Measurement of Growth Rate
2.3. Protoplast Isolation, Fluorescent Brightener 28 and Evans Blue Staining
2.4. DNA Extraction and Gene Cloning
2.5. Determination of Photosynthetic Pigments Content
2.6. Quantification of Gene Expression by RT-qPCR
2.7. Protein Extraction and Western Blot Analysis
2.8. Statistical Analysis
3. Results
3.1. The Increase in Temperature Had a Negative Effect on the Growth of N. yezoensis
3.1.1. The Increase in Temperature Reduced the Relative Growth Rate of the Thalli of N. yezoensis
3.1.2. The Increase in Temperature Changed the Contents of Phycobiliprotein and Photosynthetic Pigment
3.1.3. High Temperature Inhibited the Survival and Division of Protoplasts
3.2. Clone and Sequence Analysis of Cyclin B, CDKB
3.3. The Relative Expression Level of Cyclin B in N. yezoensis at Different Temperatures
3.4. The ERK Signaling Pathway Involved in the Response of N. yezoensis to Temperature Changes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, H.C.; Yan, X.H. Advances in Pyropia (formerly Porphyra) genetics and breeding. J. Fish. Sci. China 2019, 26, 592. [Google Scholar] [CrossRef]
- Cho, T.J.; Rhee, M.S. Health Functionality and Quality Control of Laver (Porphyra, Pyropia): Current Issues and Future Perspectives as an Edible Seaweed. Mar. Drugs 2019, 18, 14. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sasuga, K.; Yamanashi, T.; Nakayama, S.; Ono, S.; Mikami, K. Discolored red seaweed Pyropia yezoensis with low commercial value Is a novel resource for production of agar polysaccharides. Mar. Biotechnol. 2018, 20, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.C.; Tang, L.; Guan, X.W.; Chen, R.; Cao, M.; Mao, Y.X.; Wang, D.M. Thallus sectioning as an efficient monospore release method in Pyropia yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 2020, 32, 2195–2200. [Google Scholar] [CrossRef][Green Version]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Tseng, C.K.; Chang, T.J. Studies on PorphyraI. life history of Porphyra tenera kjellm. Bull. Bot. 1954, 3, 287–302. [Google Scholar]
- Gao, D.; Kong, F.; Sun, P.P.; Bi, G.Q.; Mao, Y.X. Transcriptome-Wide identification of optimal reference genes for expression analysis of Pyropia yezoensis responses to abiotic stress. BMC Genom. 2018, 19, 251. [Google Scholar] [CrossRef][Green Version]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Zhang, C.C.; Wei, H.; Song, G.S.; Xie, C. IPCC-CMIP5 based projection and analysis of future sea surface temperature changes in coastal seas east of China. J. Oceanol. Limnol. 2020, 51, 1288–1300. [Google Scholar]
- Tulandi, D.A.; Tumangkeng, J.V. Analysis of daily dynamics of thermal interaction of temperature and ocean flow in seaweed growth areas. J. Phys. Conf. Ser. 2021, 1968, 012035. [Google Scholar] [CrossRef]
- Le, B.; Nadeem, M.; Yang, S.-H.; Shin, J.-A.; Kang, M.-G.; Chung, G.; Sun, S.M. Effect of silicon in Pyropia yezoensis under temperature and irradiance stresses through antioxidant gene expression. J. Appl. Phycol. 2018, 31, 1297–1302. [Google Scholar] [CrossRef]
- Kakinuma, M.; Coury, D.A.; Nakamoto, C.; Sakaguchi, K.; Amano, H. Molecular analysis of physiological responses to changes in nitrogen in a marine macroalga, Porphyra yezoensis (Rhodophyta). Cell Biol. Toxicol. 2008, 24, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, J.F.; Ma, F.; Lu, Q.Q.; Shen, Z.G.; Zhu, J.Y. Study of photosynthetic characteristics of the Pyropia yezoensis thallus during the cultivation process. J. Appl. Phycol. 2014, 26, 859–865. [Google Scholar] [CrossRef]
- Wang, H.Z.; Yan, X.H.; Li, L. Isolation and characterization of high-temperature resistant strains of Porphyra yezoensis Ueda (Bangiales, Rhodophyta). J. Oceanol. Limnol. 2012, 43, 363–369. [Google Scholar]
- Wu, H.H.; Ding, H.C.; Yan, X.H. Selection and characterization of a high-temperature resistant strain by hybridization recombination in Pyropia yezoensis. J. Fish. China 2017, 41, 711–722. [Google Scholar]
- Shin, Y.J.; Min, S.R.; Kang, D.Y.; Lim, J.M.; Park, E.J.; Hwang, M.S.; Choi, D.W.; Ahn, J.W.; Park, Y.; Jeong, W.J.; et al. Characterization of high temperature-tolerant strains of Pyropia yezoensis. Plant Biotechnol. Rep. 2018, 12, 365–373. [Google Scholar] [CrossRef]
- Li, Y.F.; Liu, J.G.; Zhang, L.T.; Pang, T.; Qin, R.Y. Effects of temperature on the photosynthetic performance in mature thalli of the red alga Gelidium amansii (Gelidiaceae). Aquaculture 2019, 512, 734320. [Google Scholar] [CrossRef]
- Sekar, S.; Chandramohan, M. Phycobiliproteins as a commodity: Trends in applied research, patents and commercialization. J. Appl. Phycol. 2008, 20, 113–136. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, Z.G.; Xu, P.; Zhu, Z.Y.; Lu, Q.Q.; Shen, Y.; Wang, Y.; Yao, C.Y.; Li, J.F.; Wang, Y.X.; et al. Analysis of photosynthetic pigments and chlorophyll fluorescence characteristics of different strains of Porphyra yezoensis. J. Appl. Phycol. 2012, 24, 881–886. [Google Scholar] [CrossRef]
- Borlongan, I.A.; Suzuki, S.; Nishihara, G.N.; Kozono, J.; Terada, R. Effects of light quality and temperature on the photosynthesis and pigment content of a subtidal edible red alga Meristotheca papulosa (Solieriaceae, Gigartinales) from Japan. J. Appl. Phycol. 2020, 32, 1329–1340. [Google Scholar] [CrossRef]
- Markovic, S.M.; Zivancev, D.; Horvat, D.; Torbica, A.; Jovankic, J.; Djukic, N.H. Correlation of elongation factor 1A accumulation with photosynthetic pigment content and yield in winter wheat varieties under heat stress conditions. Plant Physiol. Biochem. 2021, 166, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Jodłowska, S.; Latała, A. Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium. Photosynthetica 2013, 51, 202–214. [Google Scholar] [CrossRef]
- Watanabe, Y.; Nishihara, G.N.; Tokunaga, S.; Terada, R. Effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (=Porphyra tenera), at the southern limit of distribution in Japan. Phycol. Res. 2014, 62, 187–196. [Google Scholar] [CrossRef]
- Takahashi, M.; Kumari, P.; Li, C.Z.; Mikami, K. Low temperature causes discoloration by repressing growth and nitrogen transporter gene expression in the edible red alga Pyropia yezoensis. Mar. Environ. Res. 2020, 159, 105004. [Google Scholar] [CrossRef]
- Vitova, M.; Bisova, K.; Hlavova, M.; Kawano, S.; Zachleder, V.; Cizkova, M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by temperature. Planta 2011, 234, 599–608. [Google Scholar] [CrossRef]
- Björklund, M. Cell size homeostasis: Metabolic control of growth and cell division. Biochim. Biophys. Acta—Mol. Cell Res. 2018, 1866, 409–417. [Google Scholar] [CrossRef]
- Oldenhof, H.; Zachleder, V.; van den Ende, H. Blue light delays commitment to cell division in Chlamydomonas reinhardtii. Plant Biol. 2004, 6, 689–695. [Google Scholar] [CrossRef]
- Zachleder, V.; Ivanov, I.; Vitova, M.; Bisova, K. Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. J. Exp. Bot. 2018, 70, 845–858. [Google Scholar] [CrossRef]
- Tobe, B.T.; Kitazono, A.A.; Garcia, J.S.; Gerber, R.A.; Bevis, B.J.; Choy, J.S.; Chasman, D.; Kron, S.J. Morphogenesis signaling components influence cell cycle regulation by cyclin dependent kinase. Cell Div. 2009, 4, 12. [Google Scholar] [CrossRef][Green Version]
- Čížková, M.; Pichová, A.; Vítová, M.; Pichová, M.; Pichová, J.; Umysová, D.; Gálová, E.; Seveovieva, A.; Zachleder, V.; Bisová, K. CDKA and CDKB kinases from Chlamydomonas reinhardtii are able to complement cdc28 temperature-sensitive mutants of Saccharomyces cerevisiae. Protoplasma 2008, 232, 183–191. [Google Scholar] [CrossRef]
- Zachleder, V.; Ivanov, I.; Vítová, M.; Bišová, K. Cell cycle arrest by supraoptimal temperature in the alga Chlamydomonas reinhardtii. Cells 2019, 8, 1237. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sasabe, M.; Machida, Y. Signaling Pathway that Controls Plant Cytokinesis. Enzymes 2014, 35, 145–165. [Google Scholar] [PubMed]
- Tulin, F.; Cross, F.R. A microbial avenue to cell cycle control in the plant superkingdom. Plant Cell 2014, 26, 4019–4038. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Atkins, K.C.; Cross, F.R. Interregulation of CDKA/CDK1 and the Plant-Specific Cyclin-Dependent Kinase CDKB in Control of the Chlamydomonas Cell Cycle. Plant Cell 2018, 30, 429–446. [Google Scholar] [CrossRef]
- Wang, Z.; Wan, Y.Y.; Meng, X.J.; Zhang, X.L.; Yao, M.N.; Miu, W.J.; Zhu, D.M.; Yuan, D.S.; Lu, K.; Li, J.N.; et al. Genome-Wide identification and analysis of MKK and MAPK gene families in Brassica Species and response to stress in Brassica napus. Int. J. Mol. Sci. 2021, 22, 544. [Google Scholar] [CrossRef] [PubMed]
- Chardin, C.; Schenk, S.T.; Hirt, H.; Colcombet, J.; Krapp, A. Review: Mitogen-Activated Protein Kinases in nutritional signaling in Arabidopsis. Plant Sci. 2017, 260, 101–108. [Google Scholar] [CrossRef][Green Version]
- Pitzschke, A.; Schikora, A.; Hirt, H. MAPK cascade signalling networks in plant defence. Curr. Opin. Plant Biol. 2009, 12, 421–426. [Google Scholar] [CrossRef]
- Kalapos, B.; Hlavova, M.; Nadai, T.V.; Galiba, G.; Bisova, K.; Doczi, R. Early evolution of the Mitogen-Activated Protein Kinase Family in the plant Kingdom. Sci. Rep. 2019, 9, 4094. [Google Scholar] [CrossRef][Green Version]
- Lavoie, J.N.; L’Allemain, G.L.; Brunet, A.; Muller, R.; Pouyssegur, J. Cyclin D1 Expression Is Regulated Positively by the p42/p44MAPK and Negatively by the p38/HOGMAPK Pathway. J. Biol. Chem. 1996, 271, 20608–20616. [Google Scholar] [CrossRef][Green Version]
- Jimenez, C.; Cossio, B.R.; Rivard, C.J.; Berl, T.; Capasso, J.M. Cell division in the unicellular microalga Dunaliella viridis depends on phosphorylation of extracellular signal-regulated kinases (ERKs). J. Exp. Bot. 2007, 58, 1001–1011. [Google Scholar] [CrossRef][Green Version]
- Ma, J.; Xu, T.P.; Bao, M.L.; Zhou, H.M.; Zhang, T.Z.; Li, Z.Z.; Gao, G.; Li, X.S.; Xu, J.T. Response of the red algae Pyropia yezoensis grown at different light intensities to CO2-induced seawater acidification at different life cycle stages. Algal Res. 2020, 49, 101950. [Google Scholar] [CrossRef]
- Zhang, B.L.; Yan, X.H.; Huang, L.B. Evaluation of an improved strain of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) with high-temperature tolerance. J. Appl. Phycol. 2011, 23, 841–847. [Google Scholar] [CrossRef]
- Ding, H.C.; Zhang, B.L.; Yan, X.H. Isolation and characterization of a heat-resistant strain with high yield of Pyropia yezoensis Ueda (Bangiales, Rhodophyta). Aquac. Fish. 2016, 1, 24–33. [Google Scholar] [CrossRef][Green Version]
- Hiraoka, M.; Oka, N. Tank cultivation of Ulva prolifera in deep seawater using a new “germling cluster” method. J. Appl. Phycol. 2007, 20, 97–102. [Google Scholar] [CrossRef]
- Dipakkore, S.; Reddy, C.R.K.; Jha, B. Production and seeding of protoplasts of Porphyra okhaensis (Bangiales, Rhodophyta) in laboratory culture. J. Appl. Phycol. 2005, 17, 331–337. [Google Scholar] [CrossRef]
- Dai, J.X.; Yang, Z.; Liu, W.S.; Bao, Z.M.; Han, B.Q.; Shen, S.S.; Zhou, L.R. Seedling production using enzymatically isolated thallus cells and its application in Porphyra cultivation. Hydrobiologia 2004, 512, 127–131. [Google Scholar] [CrossRef]
- Yang, J.J.; Yin, Y.; Yu, D.C.; He, L.H.; Shen, S.D. Activation of MAPK signaling in response to nitrogen deficiency in Ulva prolifera (Chlorophyta). Algal Res. 2021, 53, 102153. [Google Scholar] [CrossRef]
- Porra, R.J. The chequered history of the developmentand use of Simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2002, 73, 149–156. [Google Scholar] [CrossRef]
- Beer, S.; Eshel, A. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Mar. Freshw. Res. 1985, 36, 785–792. [Google Scholar] [CrossRef]
- Yamamoto, M.; Watanabe, Y.; Kinoshita, H. Effects of water temperature on the growth of red alga Porphyra yezoensis form. narawaensis (Nori) cultivated in an outdoor raceway tank. Bull. Jpn. Soc. Sci. Fish. 1991, 57, 2211–2217. [Google Scholar] [CrossRef][Green Version]
- Cano-Europa, E.; Ortiz-Butrón, R.; Gallardo-Casas, C.A.; Blas-Valdivia, V.; Pineda-Reynoso, M.; Olvera-Ramírez, R.; Franco-Colin, M. Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. J. Appl. Phycol. 2009, 22, 495–501. [Google Scholar] [CrossRef]
- Jang, S.J.; Shin, S.H.; Yee, S.T.; Hwang, B.; Im, K.H.; Park, K.Y. Effects of abiotic stresses on cell cycle progression in Tobacco BY-2 Cells. Mol. Cells 2005, 20, 136–141. [Google Scholar] [PubMed]
- Pogo, A.O.; Arce, A. Synchronization of cell division in Euglena gracilis by heat shock. Exp. Cell Res. 1964, 36, 390–397. [Google Scholar] [CrossRef]
- Sinha, A.K.; Jaggi, M.; Raghuram, B.; Tuteja, N. Mitogen-Activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav. 2011, 6, 196–203. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Agrawal, G.K.; Rakwal, R.; Iwahashi, H. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. Biophys. Res. Commun. 2002, 294, 1009–1016. [Google Scholar] [CrossRef]
- Li, C.; Kong, F.; Sun, P.P.; Bi, G.Q.; Li, N.; Mao, Y.X.; Sun, M.J. Genome-Wide identification and expression pattern analysis under abiotic stress of mitogen-activated protein kinase genes in Pyropia yezoensis. J. Appl. Phycol. 2018, 30, 2561–2572. [Google Scholar] [CrossRef]
- Parages, M.L.; Figueroa, F.L.; Conde-Álvarez, R.M.; Jiménez, C. Phosphorylation of MAPK-like proteins in three intertidal macroalgae under stress conditions. Aquat. Biol. 2014, 22, 213–226. [Google Scholar] [CrossRef][Green Version]
- Zhao, F.Y.; Hu, F.; Zhang, S.Y.; Wang, K.; Zhang, C.R.; Liu, T. MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ. Sci. Pollut. Res. 2013, 20, 5449–5460. [Google Scholar] [CrossRef]
Temperature | Survival Rates of Protoplasts | Division Rates of Protoplasts | ||||||
---|---|---|---|---|---|---|---|---|
2 Days | 4 Days | 6 Days | 8 Days | 10 Days | 2 Days | 4 Days | 6 Days | |
13 °C | 98% ± 2% | 80% ± 1% | 76% ± 1% | 69% ± 1% | 52% ± 2% | 12% ± 1% | 47% ± 1% | 67% ± 1% |
17 °C | 98% ± 1% | 76% ± 3% | 70% ± 1% | 63% ± 2% | 49% ± 1% | 9% ± 1% | 34% ± 1% | 51% ± 2% |
21 °C | 94% ± 2% | 69% ± 1% | 63% ± 1% | 56% ± 1% | 41% ± 1% | 7% | 23% ± 3% | 34% ± 1% |
25 °C | 44% ± 1% | 15% ± 1% | 6% ± 3% | 3% ± 1% | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Lu, A.; Che, T.; He, L.; Shen, S. A Preliminary Study on the Mechanisms of Growth and Physiological Changes in Response to Different Temperatures in Neopyropia yezoensis (Rhodophyta). Water 2022, 14, 2175. https://doi.org/10.3390/w14142175
Yin J, Lu A, Che T, He L, Shen S. A Preliminary Study on the Mechanisms of Growth and Physiological Changes in Response to Different Temperatures in Neopyropia yezoensis (Rhodophyta). Water. 2022; 14(14):2175. https://doi.org/10.3390/w14142175
Chicago/Turabian StyleYin, Jiao, Aiming Lu, Tuanjie Che, Lihong He, and Songdong Shen. 2022. "A Preliminary Study on the Mechanisms of Growth and Physiological Changes in Response to Different Temperatures in Neopyropia yezoensis (Rhodophyta)" Water 14, no. 14: 2175. https://doi.org/10.3390/w14142175