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Abstract: To address the problems of traditional hydrological and hydraulic methods of estimating
disasters in urban flood areas, such as small scale, poor timeliness, and difficulty of obtaining data,
an inversion method of estimating urban flood disaster area based on remote sensing spectroscopy is
proposed. In this paper, the spatial distribution of urban flood disasters is first inverted based on
large-scale multidimensional remote sensing spectral orthography. Then, spatial coupling inversion
of the remote sensing spectrum-urban economy-flood disaster is performed by simulating the urban
economic density through single spectral remote sensing at night. Finally, losses at the urban flood
area are estimated. The results show that (1) the heavy rain in Henan Province on 20 July is centered
in Zhengzhou, and the spatial distribution of urban flood disasters accords with Zipf’s law; (2) the
estimated damage to the urban flood area in Henan Province is 132,256 billion yuan, and Zhengzhou
has the most serious losses at 43,147 billion yuan, accounting for 32.6% of the entire province’s losses.
These results are consistent with the official data (accuracy ≥ 90%, R2 ≥ 0.95). This study can provide
a new approach for accurately and efficiently estimating urban flood damage at a large scale.

Keywords: urban flooding; disaster loss assessment; spatial distribution; remote sensing inversion;
rainfall index

1. Introduction

In recent years, climate change has exacerbated the frequency and severity of major
floods. Moreover, the extreme value of hydrometeorology has changed more and more.
These conditions have a significant impact on the intensity and frequency of urban flood
disasters and bring new challenges to urban flood control and disaster reduction [1,2].
Urban flood disasters caused by heavy rain have occurred frequently, such as the heavy
rain on 7 May 2018, in Xiamen, on 22 May 2020, in Guangzhou, and on 20 July 2021,
in Zhengzhou [2,3]. The flood disasters caused by heavy rains are fast, wide-ranging,
and destructive, causing serious losses to the urban economy and negatively impacting
people’s lives and safety [4]. Driven by anthropogenic activities, the occurrence of heavy
rain extreme weather will be more frequent in the future, and deep urbanization will lead
to a sharp expansion of impervious areas, changing the confluence mechanism of surface
production, and urban flooding impacts will become more serious [5]. To clarify the scope
of urban floods and strengthen the management of urban flood disasters, in-depth research
on the temporal and spatial distribution of urban flood disasters and estimation of disaster
damage are urgently needed [6].

At present, the calculation of urban flood damage mainly adopts hydrological and hy-
draulic methods such as the Info Works model, Storm Water Management Model (SWMM),
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and water damage loss function [7–9]. Sidek et al. [7] used Info Works models and
hydrological-hydraulic models of urban floods to simulate flood losses. Huang et al. [8]
constructed a coupled hydrological and hydrodynamic model based on the SWMM model
to assess urban damage. Chen et al. [9] and Li et al. [10] constructed a water damage
loss function to assess flood damage. However, hydrological and hydraulic estimation
methods are small in scale, have poor timeliness, and their data inputs are difficult to obtain
data [11]. Moreover, the urban scale is large, the land type is complex and diverse, and it is
not appropriate to build a large number of ground detection platforms therein [9,11]. With
the development of remote sensing technology, spatiotemporal resolution has been greatly
improved. The application of remote sensing technology in the field of urban flooding will
reduce the personnel costs, time, and costs compared to traditional submerged mapping
processes and effectively solve the problems of lagging ground data and the difficulty of
obtaining such data [12]. Some researchers have constructed different model methods
based on remote sensing spectra combined with flood disasters in their respective coun-
tries, contributing to the research on flood disasters and the estimation of losses. In the
agricultural field, crops are vulnerable to flood disasters. Therefore, researchers have com-
bined real-time dynamic meteorological data, such as weather forecasts, to estimate flood
damage and provide theoretical guidance for flood disaster management. Nghia et al. [13]
applied Google Earth engine to flood mapping and monitoring in lower Mekong provinces.
Karthikeyan et al. [14], based on MODIS 8-day reflectance data, used K-means clustering
and hot spot analysis methods to measure the spatiotemporal distribution of flood areas
and estimate flood disaster losses suffered by farmers. Auliagisni et al. [15] used the
community-based flood map to explain the flood disaster in northern New Zealand. Based
on satellite and precipitation data, Vecere et al. [16] divided index insurance thresholds
to achieve flood damage monitoring. In the field of urban flood disasters, Kim et al. [14]
used high-resolution digital terrain to improve urban flood disaster estimation [3,17,18].
Wang et al. [19] proposed a multiband water index algorithm based on Landsat 8 images,
which automatically extracted urban surface floods using K-means clustering methods and
analyzed the characteristics of flood disasters [20–22]. These studies have promoted the
in-depth study of urban flood disaster loss assessment methods but still focus on parameter
solutions using complex hydrological and hydraulic methods. Although these model
methods are optimized and improved, the problems of small scale, poor timeliness, and
difficulty in data acquisition have not yet been solved [23–26].

Remote sensing spectroscopy has the advantages of a large scale, high accuracy, and easy
data acquisition. At present, there are some applications of remote sensing in urban flood
disasters. However, there is no relevant research literature on the joint estimation of flood
damage in urban areas based on multidimensional remote sensing [27–29]. Therefore, this
study proposes a disaster loss inversion method for estimating urban flood areas based on
a multidimensional remote sensing spectrum. To this end, this study uses the 7.20 Henan
rainstorm event as a case study and proposes a disaster inversion method for urban flood areas
based on a multidimensional remote sensing spectrum. First, large-scale multidimensional
remote sensing spectral orthoimages are used to invert the spatial distribution of urban flood
disasters. Then, the urban economic density is simulated by remote sensing of night lights, and
the spatial coupling inversion of the remote sensing spectrum-urban economy-flood disaster
is carried out. Finally, the accuracy of the calculation results of the disaster loss in urban flood
areas and the applicability of the method are further discussed. The study effectively solves
the problems of low precision, slow speed, and small range of the traditional hydrological
and hydraulic disaster loss estimation method in urban flood areas. At the same time, the
study provides theoretical and technical support for the accurate and efficient estimation of
large-scale urban flood damage.
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2. Materials and Methods
2.1. The Study Area

Henan Province (Figure 1) is located in the central plains and the middle and lower
reaches of the Yellow River (longitude 110◦21′–116◦39′ E, latitude 31◦23′–36◦22′ N), gov-
erning important cities such as Zhengzhou, Luoyang, and Kaifeng, with high terrain in
the west and low terrain in the east and a total area of approximately 16.7 km2 [28,29].
Henan’s geographical location and environmental conditions are excellent. Moreover, the
water system and transportation network have been developed [30]. In recent years, Henan
Province has developed rapidly, its scale of urbanization has gradually increased, and
its total gross domestic product (GDP) ranks among the top five in China, making it an
important economic province in China [31]. The annual rainfall is concentrated in the
summer (between June and September), and due to the large population in the province,
the total asset value and population density per unit area of its major cities are increasing
each year, as is the risk of urban flood disasters [30,31].

Figure 1. Remote sensing images of the study area in Henan Province.

2.2. Access to Data and Materials

In this paper, based on multidimensional remote sensing spectroscopy inversion of
the urban rainfall and flood disaster distribution in Henan Province, a large amount of data
collection and processing is required to analyze the spatiotemporal variation characteristics
of historical rainfall probability, interpret the remote sensing image metadata, construct
a flood economic loss calculation model, and realize a disaster loss estimation. Data
acquisition information is shown in Table 1.

Table 1. Statistical table of data name and source.

Data Name Data Sources Website

meteorological data China National Meteorological Information Center http://data.cma.cn
accessed on 2 January 2022

Rainfall data China National Meteorological Information Center http://data.cma.cn
accessed on 2 January 2022

MODIS Remote Sensing LAADS and DAAC https://ladsweb.nascom.nasa.gov/search
accessed on 7 December 2021

digital elevation model, DEM China geospatial data cloud platform http://www.gscloud.cn
accessed on 7 December 2021

GDP of cities in Henan Province Statistical yearbook of Henan Province in 2020 https://tjj.henan.gov.cn/tjfw/tjcbw/tjnj/
accessed on 14 December 2021

Night light remote sensing National Oceanic and Atmospheric Administration https://ngdc.noaa.gov/eog/dmsp.html
accessed on 14 December 2021

http://data.cma.cn
http://data.cma.cn
https://ladsweb.nascom.nasa.gov/search
http://www.gscloud.cn
https://tjj.henan.gov.cn/tjfw/tjcbw/tjnj/
https://ngdc.noaa.gov/eog/dmsp.html
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2.3. Methods
2.3.1. Inversion Model of Rainfall Distribution

In this study, the ordinary kriging method is used to invert the rainfall distribution.
In the kriging method, there is an inherent stationary random field (under the isotropic
hypothesis), the mathematical expectation mu is unrelated to the location (s), and the co-
variance is a function of the distance between the point |h| only. In general, the covariance
function C of random fields is unknown, so the variogram is used as an approximation. In
this case, the variogram γ is related only to the distance between points [32,33]:

E[Y(s)] = µ (1)

var[Y(s)−Y(s + h)] = 2[C(0)− C(h)] = 2γ(|h|) (2)

By definition, {Y(s1), · · · , Y(sn)} are the corresponding values for n samples {s1, · · · , sn},
and the kriging variance can be represented by the following equation:

Ŷ(s0) =
n

∑
i=1

aiY(si) (3)

σ2
s0
= E

[
Ŷ(s0)−Y(s0)

]2
=

n

∑
i=1

n

∑
i=1

aiajC(si, sj)− 2
n

∑
i=1

aiC(si, s0) + C(0) (4)

In Equation (4) Ŷ(s0) is the estimate of Y at the position s0. C
(
si, sj

)
is the covariance

function between points si and sj. According to BLUP theory, kriging’s unbiased estimation
condition is satisfied when the sum of ownership weight coefficients is 1 (∑n

i=1 ai = 1).
Therefore, the Lagrange Multiplier Method is used to construct the following solving
functions and obtain the kriging problem equations [34]:

f (a1, · · · , an, λ) = σ2
s0
+ 2λ(

n

∑
i=1

ai − 1) (5)


n
∑

j=1
aj = 1

n
∑

j=1
aj
(
si, sj

)
− C(si, s0) + λ = 0; i = 1, · · · , n

(6)

The system consists of n + 1 equations to solve n weight coefficients. The kriging
system is written in matrix form and the matrix is inverted. The kriging weight is expressed
in matrix form after solving, as shown in Equation (7) [35,36]:

a =

[
C0 +

(
1− CT

0 C−11
)(

1TC−11
)−1

1
]T

C−1 (7)

In Equation (7), C is the covariance matrix, C0 is the column vector composed of
the covariance between the unknown point and the sample, and 1 is the column vector
composed of n ones. The unbiased estimator of ordinary kriging Ŷ(s0) can be obtained
by substituting the obtained weights into Equation (3) above, and the result is shown in
Equation (8).

Ŷ(s0) = CT
0 C−1Y +

(
1− CT

0 C−11
)(

1TC−11
)−1(

1TC−1Y
)

(8)

2.3.2. Economic Loss Calculation Model of Floods

The affected areas of different research subjects of flood disasters are divided into
categories. Then, according to the actual survey data of typical disasters in the region, the
relationship between the loss rate and inundation characteristics of each type of area is
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established. After that, combined with the statistics of the market value of the affected area,
the cumulative classified losses are calculated. Finally, the economic loss of flooding in the
overall submerged area is obtained:

LD = Cp + (1 + k)
m

∑
i=1

n

∑
j=1

βi,jVi,j (9)

In Equation (9), LD is the sum of flood loss; Cp is the cost of flood fighting and disaster
relief; k is the indirect loss coefficient; βi,j is the loss rate of the j risk area of the i type of
disaster area; and Vi,j is the value of the j risk area of the i disaster area.

Based on remote sensing inversion of the area of large-scale river basin victims, com-
bined with the comprehensive flood loss indicators per unit area, the total amount of
economic loss is determined. The calculation formula is:

LDp = (1 + k)× β× A + Cp (10)

A =
n

∑
i=1

fi (11)

β = a ∗ (1 + α)γβ′ (12)

In Equations (10) and (11), LDp is the comprehensive flood economic loss; k is the
indirect loss coefficient; β is the direct loss per unit area, calculated based on light remote
sensing and GDP; Cp is the cost of flood fighting and disaster relief; A is the area of
flood disaster; fi is the ith pixel of the remote sensing spectrum; and n is the number of
pixels. The size of each pixel can be calculated according to the resolution of the remote
sensing data. Multidimensional remote sensing spectra are introduced into the flood loss
calculation model. β′ is the loss per unit area in the level year of historical flood disaster, a
is the conversion coefficient, which is estimated according to the fitting of remote sensing
brightness value of light, α is the empirical coefficient of flood damage, generally taken as
0.04, γ is the degree of power, set by historical years. Next, the cell is used as the calculation
unit to effectively improve the solution accuracy of the submerged area (A) and the direct
economic loss per unit area (β).

2.4. Flow Chart

First, the distribution of urban rainstorm is studied. Then, the urban economic density
is simulated based on night light remote sensing and urban GDP. Next, using large-scale
and multi-dimensional remote sensing data, combined with relevant data and models,
the urban economic flood disaster assessment is completed. Finally, the distribution of
rainstorm and flood and the disaster damage estimation results are verified. The specific
process is shown in Figure 2.
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Figure 2. Flow chart of urban rainfall distribution inversion and flood remote sensing disaster loss
calculation.

3. Results
3.1. Rainfall Probability and Disaster Level

According to the national precipitation grading standard, the historical rainfall of
cities in Henan in the past 50 years (1 January 1970, to December 2021) was graded. Then,
through the analysis of long-term sequence rainfall data, the probability distribution model
was fitted, as shown in Table 2, and the probability distribution of rainfall levels in each
urban area of Henan Province was plotted, as shown in Figure 3.

Figure 3. Probability distribution of rainfall grades in cities of Henan Province.
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Table 2. Probability distribution table of different rainfall categories in major cities of Henan Province (1970–2021).

Region

Frquency Light Rain
%

Moderate Rain
%

Heavy Rain
%

Rainstorm
%

Heavy
Rainstorm

%

Extremely Heavy
Rainstorm

%

Probabilistically
Distributed Model

Imitative Effect
R2

Zhengzhou 76.47% 14.27% 6.84% 2.07% 0.33% 0.03% y = 4.30*e−1.50x R2 = 0.96
Luoyang 77.57% 14.31% 6.07% 1.84% 0.17% 0.02% y = 4.61*e−1.56x R2 = 0.98
Nanyang 77.23% 14.12% 5.68% 2.43% 0.52% 0.02% y = 3.95*e−1.46x R2 = 0.95
Xuchang 76.88% 13.92% 6.34% 2.32% 0.51% 0.02% y = 4.09*e−1.47x R2 = 0.95
Zhouko 75.54% 15.01% 6.67% 2.27% 0.46% 0.05% y = 3.44*e−1.39x R2 = 0.97
Xinxiang 78.58% 13.58% 5.35% 2.00% 0.44% 0.06% y = 2.97*e−1.36x R2 = 0.98
Shangqiu 74.92% 15.05% 6.86% 2.63% 0.48% 0.05% y = 3.35*e−1.37x R2 = 0.97

Zhumadian 73.02% 16.32% 7.09% 2.97% 0.55% 0.06% y = 3.22*e−1.33x R2 = 0.97
Xinyang 73.78% 15.86% 6.79% 2.84% 0.70% 0.03% y = 3.67*e−1.39x R2 = 0.94

Pingdingshan 76.02% 14.53% 6.12% 2.66% 0.58% 0.09% y = 2.63*e−1.27x R2 = 0.98
Kaifeng 76.02% 14.53% 6.12% 2.66% 0.58% 0.09% y = 2.80*e−1.31x R2 = 0.98
Anyang 77.31% 14.33% 5.57% 2.33% 0.31% 0.14% y = 2.35*e−1.25x R2 = 0.99
Jiaozuo 78.01% 14.18% 5.66% 1.73% 0.40% 0.03% y = 3.93*e−1.48x R2 = 0.97
Puyang 76.08% 14.66% 6.55% 2.05% 0.63% 0.03% y = 3.77*e−1.43x R2 = 0.95
Luohe 75.22% 15.06% 6.62% 2.54% 0.45% 0.11% y = 2.57*e−1.26x R2 = 0.99

Sanmenxia 78.68% 14.95% 5.40% 0.85% 0.10% 0.02% y = 4.73*e−1.638x R2 = 0.99
Hebi 77.13% 13.46% 6.27% 2.32% 0.74% 0.07% y = 2.61*e−1.27x R2 = 0.97

Jiyuan 76.49% 15.51% 5.99% 1.73% 0.26% 0.03% y = 4.41*e−1.53x R2 = 0.98
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Among the cities in Henan, light rain accounts for the highest proportion (73.02–78.68%),
accounting for 3/4 of the total historic rainfall frequency. Moderate rain (13.46–15.86%)
accounts for 3/20 and heavy rain (5.35–7.09%) accounts for 3/50 of the total. The cumulative
probability distribution of heavy rain, heavy rainstorms, and exceptionally heavy rainstorms
is less than 3.5%. Overall, the fitted curves of each rainfall type show an exponential dis-
tribution (0.94 ≤ R2 ≤0.99). The calculation results of rainfall probability distribution are
consistent with many previous studies, such as those of McFeeters et al. and Xu et al. [37,38].
Moreover, according to the previous relevant research of experts, the economic loss of flood
disaster is strongly positively correlated with the rainfall level [6,9]. The higher the rainfall
level is, the greater the losses caused by flood disasters, and when the rainfall level is lower
than that of general heavy rain, the economic losses to the city are negligible. According
to the “Henan Province Rainstorm Intensity Formula Compilation”, when the rainfall reaches
approximately 150 mm (that is, heavy rainfall and above), urban flood disasters occur. Based
on the measured data of the occurrence of events, the actual probability of historical rainfall
in each urban area is analyzed and the disaster level is categorized, as shown in Table 3. A
correspondence between multiple indicators of rainfall level, flood disaster level, rainfall
interval, and rainfall recurrence period is then constructed.

Table 3. Comparison table of grades of rainfall and flood disasters.

Rainfall Level Light Rain, Moderate
Rain, Heavy Rain Rainstorm Heavy Rainstorm Extremely Heavy

Rainstorm

Flood disaster level Ordinary (level IV) Larger (level III) Great (level II) Especially serious (level I)
Rainfall (mm/d) p < 50 50 ≤ p < 100 100 ≤ p <200 p ≥ 200

Rainfall return period (a) a ≤ 5 5 < a ≤ 20 20 < a ≤ 50 a > 50

3.2. Inversion of Precipitation Development and Distribution in Henan Province

Around 20 July 2021, heavy rains in Henan Province triggered large-scale flooding in
its cities. In the context of rapid urbanization, through analysis and study of meteorological
conditions such as rainfall distribution, rainfall, and rain intensity, the inherent dynamic
change pattern of urbanization, economic development, and flood disaster loss was first
analyzed. Then, based on the above study, the flood formation mechanism of extreme
rainstorms in the province was revealed. Finally, this study provides theoretical and
data support for the estimation of flood remote sensing losses in watersheds and at large
scales [39,40]. Using the processed longitude, latitude, longitude, and rainfall (p) data of
the national standard meteorological stations (116 position points), the distribution of daily
rainfall changes in Henan Province was plotted by the kriging regression algorithm, as
shown in Figure 4.

This heavy rainfall began on July 19 (Figure 4a), and the daily rainfall (p) in all regions
of Henan Province was 0–352 mm/d. Among these regions, the rainfall in central Henan
(Zhengzhou, Kaifeng, Xuchang, Pingdingshan, Luoyang, etc.) was significantly higher
than that in marginal areas (such as Sanmenxia, Xinyang, Anyang, Shangqiu, and other
cities). The peak rainfall was mainly concentrated in the red area in Figure 4a, in areas
such as southwest Zhengzhou, west Xuchang, southwest Pingdingshan, east Luoyang, and
north Nanyang. By 20 July, the scope of rainfall in Henan Province continued to expand.
The rainfall center shifted to Zhengzhou, Xinxiang, Kaifeng, Xuchang, Luohe, and other
areas. The maximum daily rainfall (p) reached 630 mm/d, 1.79 times greater than that of
the previous day. The maximum hourly rainfall (Figure 4b) occurred in Zhengzhou, Henan
Province, on 20 July, and the rainfall intensity reached 210 mm/h, which was a “once in a
thousand years” heavy rain event in Zhengzhou. Zhengzhou is adjacent to prefecture-level
cities and is also affected by heavy rainfall. For example, the daily rainfall in the city of
Kaifeng is approximately 292 mm, the maximum hourly rainfall reaches 103 mm/h, the
daily rainfall in Xinxiang is approximately 278 mm/d, and the daily rainfall in Jiaozuo and
Xuchang reaches 190 and 181 mm/d, respectively. By 21 July (Figure 4c), data calculations



Water 2022, 14, 2165 9 of 17

and rainfall development maps showed that the rainfall area continued to shift to the
north of Henan Province and the south of Shanxi Province. Daily rainfall ranged from
0 to 447 mm/d. Rainfall in most areas, such as the southern and central parts of Henan
Province, decreased significantly and shifted mainly to Hebi, Xinxiang, Anyang, and other
areas, affecting Hebi the most seriously. By 22 July (Figure 4d), the current round of heavy
rainfall in Henan Province slowly passed. Only some parts of the northern and western
parts of the province had rainfall, and the maximum daily rainfall was 159 mm/d, which
was significantly lower than the previous rainfall.

Figure 4. Inversion of rainfall development distribution in Henan Province from July 19 to July 22:
(a) Rainfall development and distribution on July 19 in Henan Province; (b) Rainfall development
and distribution on July 20 in Henan Province; (c) Rainfall development and distribution on July 21
in Henan Province; (d) Rainfall development and distribution on July 22 in Henan Province.

3.3. Inversion of Flood Disaster Zoning and Distribution Based on Remote Sensing Images

Based on MODIS (MOD09A1) remote sensing data, the normalized differential water
body index (NDWI) proposed by Mcfeeters was used to interpret flood disaster water body
images in Henan Province.

NDWI =
GREEN − NIR
GREEN + NIR

(13)

The parameters of this equation are detailed in the references [41,42]. The NDWI of
water bodies was calculated according to the model and was effectively distinguished
from soil, vegetation, and other categories. Using the ArcGIS software remote sensing
data processing platform, the pixel range of the flood water body was extracted. Then,
combined with the DEM, the spatial distribution of the rainstorms and flood disasters in
Henan Province was plotted, as shown in Figure 5a.
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Figure 5. Analysis of disaster distribution in urban flood areas retrieved by remote sensing:
(a) MODIS remote sensing inversion of flood disaster distribution map; (b) Regression model of flood
disaster area and maximum rainfall in Henan; (c) Extraction of flood disaster areas in the directly
administered areas of Henan Province from remote sensing images; (d) Zipf’s law map of urban
disaster area in Henan Province.

A mask map was constructed by using the water index threshold to construct the
area of interest (flood water pixel). With the SHP vector boundary of Henan Province, the
flood disaster area in the administrative region was calculated by pixel extraction, which is
shown in Figure 5c. Through the high-precision SHP vector boundary of its cities, the main
economically developed urban areas of the Henan urban agglomeration were extracted,
and the area statistics of the disaster remote sensing images in each municipality under
this jurisdiction were calculated. Then, field visits were used to investigate the scope of
disasters in different regions. Next, in combination with the relevant documents of the local
government bureau of statistics, the disaster scope information was excavated and verified
by NDWI interpretation of the scope of flood water bodies. The remote sensing inversion
disaster pixels of the July 20 Henan rainstorm were mainly distributed in heavy rainfall
areas (Figure 5b, R2 = 0.75, F = 47.50, p < 0.05), such as Zhengzhou, Luoyang, Kaifeng, and
other cities. The urban economic scale (GDP) was classified into four grades. Based on the
analysis of the spatial distribution of rainstorms and flood disasters in Henan Province
(Figure 5a), using Zhengzhou as the center, flood disasters spread to surrounding areas.
According to the ranking order of urban GDP, the urban economic grade was divided.
The urban economy is ranked by GDP. Then, take the economic grade (urban GDP value)
divided by cities as the abscissa. The disaster area extracted from remote sensing of the
corresponding city is the vertical coordinate. The change of flood area and corresponding
economic scale of each city conforms to Zipf’s law, as shown in Figure 5d. The area of urban
flood disasters increased with the trend of economic development (the affected area was
fitted with a GDP regression, R2 = 0.95). The results show that remote sensing inversion
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of flood disaster distribution is intuitive, accurate, and has the advantage of a large scale
compared with traditional related methods.

3.4. Establishing a Spatial Coupling Model of Remote Sensing—Urban Economy-Flood Disaster
3.4.1. Plane Feature Mining Based on Night Light and Urban GDP

First, the GDP was selected as a measure of urban economic development. Then, the
GDP data and remote sensing pixels were extracted and analyzed by fitting the total GDP
of each city (top 100 cities and provincial capitals in terms of GDP, unit: RMB 100 million)
with the national night light remote sensing image (Figure 6a). Finally, the accuracy of the
regression model was verified (Figure 6b) (R2 = 0.93, F = 1667.85, p < 0.05).

Figure 6. (a) Night light remote sensing image of China; (b) Regression model of DMSP/OLS and
Gross Domestic Product of Chinese cities.

The data show that the distribution of DMSP/OLS remote sensing data was highly
positively correlated with the development of the urban economy. With the increase in the
DN value, the total urban economy and the scale of development showed an upwards trend.
The results of the light remote sensing and the two-dimensional distribution of GDP were
consistent with the development of China’s urban economic belt. Figure 6a shows that there
are many lights in Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta
of China, which are adjacent areas. In the northeast part of the province, the brightness of
the cities of Harbin, Changchun, and Shenyang is obvious. In the central region, large cities
such as Zhengzhou in Henan, Xi’an in Shaanxi, Wuhan in Hubei, Chengdu in Sichuan,
Chongqing in Henan, and their surrounding urban agglomerations present point and
network distributions. There are fewer lights in Northwest China, and only a few cities,
such as Lhasa, have a higher lighting intensity. In conclusion, the scientific method of
describing the urbanization scale and economic development level from a two-dimensional
space angle by using the lamp DN value is consistent with actual observations.

3.4.2. Analysis of the Relationship between Urban Night Light, GDP, and Flood Distribution

Based on light remote sensing images and urban flood distribution maps of Henan
Province, a comparison map of light DN values and flood distributions in each municipality
directly under the jurisdiction of Henan Province was drawn. The data show that the
distribution of DMSP/OL remote sensing in Henan cities basically coincides with the
affected area, as shown in Figure 7.
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Figure 7. Regional comparison and regression model map of lighting DN value, GDP, and flood dis-
tribution in Henan Province: (a) Comparison map of regional lamp DN value and flood distribution
area in Henan Province; (b) Establishment of regression model for corresponding remote sensing
lighting pixels and urban disaster-stricken area in Henan Province; (c) Remote sensing lamp pixel
(DMSP/OL, DN value) and regression model of urban disaster area and urban GDP.

First, the DMSP/OL remote sensing DN values and disaster pixels of Henan munici-
palities were extracted based on the SHP data of city boundaries. Then, the actual disaster
area was calculated by disaster pixels (as shown in Figure 7a, the disaster remote sensing
image area of each city directly under the jurisdiction of Henan Province was extracted and
counted). On this basis, the regression model of the DN value of light intensity and the
disaster area in Henan Province and its accuracy verification was established (Figure 7b)
(R2 = 0.72, F = 34.98, p < 0.05). Finally, a regression analysis and an accuracy verification
were performed on the affected areas and GDP of the Henan municipalities directly under
the jurisdiction of Henan Province (Figure 7c) (R2 = 0.75, F = 33.70, p < 0.05). The result
shows that the light brightness remote sensing image effectively simulated the total urban
economy and the scale of development. The higher the ND value of light intensity and
the GDP were, the worse the disaster. Through image analysis, the central and northern
areas of Henan Province, such as Zhengzhou City, Jiaozuo City, Hebi City, and other cities,
were seriously affected. The calculation results were highly consistent with the actual
disaster observations. In summary, based on the DMSP/OL distribution and urban GDP,
a three-way correlation model of city size, light range, and total economic volume was
established to realize a two-dimensional planar regionalization simulation of the economic
scale and provide an intuitive visual expression of the urban economy.

3.5. Economic Loss Assessment of Flood Disasters

In this study, first, remote sensing images were used to retrieve the disaster areas
of Henan cities, extract the disaster pixels, and interpret the flood disaster area. Then,
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an economic loss assessment of the 20 July Henan rainstorms and flood disasters was
carried out by using a calculation model of flood-related economic losses. Finally, the
flood inundation area of prefecture-level cities in Henan Province was calculated, and the
direct economic loss (RMB 100 million), indirect economic loss (CNY 100 million), and
direct loss per unit area (CNY 100 million/km2) of urban flood disasters were estimated.
Comprehensive flood losses (CNY 100 million) and urban losses as a percentage of the
GDP are shown in Table 4.

Table 4. Loss assessment for flood disasters in cities and counties of Henan Province.

Regions

Items

DMSP/OL
DN Value

GDP
(CNY

100 million)

Direct Loss
per Unit

Area
(CNY

100 million/km2)

Inundation
Area

A (km2)

Direct
Economic

Loss
(CNY

100 million)

Indirect
Economic

Loss
(CNY

100 million)

Comprehensive
Flood
Losses
(CNY

100 million)

Loss as a
Percentage
of GDP %

Zhengzhou 21,420 12,003.00 0.52 829.82 431.79 86.36 518.15 0.05
Luoyang 5355 5128.40 0.24 459.18 111.37 22.27 133.64 0.03
Nanyang 4335 3925.90 0.19 437.96 81.31 16.26 97.58 0.02
Xuchang 2805 3449.20 0.16 432.60 70.57 14.11 84.68 0.02
Zhouko 2550 3267.20 0.15 382.01 59.02 11.80 70.83 0.02
Xinxiang 4080 3014.50 0.14 334.84 47.74 9.55 57.28 0.02
Shangqiu 4335 2925.30 0.14 312.55 43.24 8.65 51.89 0.02

Zhumadian 3570 2859.30 0.14 308.91 41.77 8.35 50.13 0.02
Xinyang 2040 2805.70 0.13 303.55 40.28 8.06 48.33 0.02

Pingdingshan 4590 2455.80 0.12 268.18 31.15 6.23 37.38 0.02
Kaifeng 2550 2371.80 0.11 266.03 29.84 5.97 35.81 0.02
Anyang 2805 2300.50 0.11 262.39 28.55 5.71 34.26 0.01
Jiaozuo 2805 2123.60 0.10 257.03 25.81 5.16 30.98 0.01
Puyang 2295 1650.00 0.08 241.59 18.85 3.77 22.62 0.01
Luohe 1530 1573.90 0.07 231.52 17.23 3.45 20.68 0.01

Sanmenxia 1785 1450.70 0.07 182.21 12.50 2.50 15.00 0.01
Hebi 1020 981.00 0.05 145.56 6.75 1.35 8.10 0.01

Jiyuan 765 703.20 0.05 126.91 4.23 1.01 5.24 0.01

Total: Direct economic loss was 110.2 billion yuan; indirect economic losses were 22.056 billion yuan; comprehen-
sive flood loss was 132.256 billion yuan.

On the whole, the 20 July rainstorm in Henan Province caused the urban agglomeration
of Henan Province to suffer flood disaster losses to varying degrees, and the comprehensive
economic loss was calculated as 132.256 billion yuan. Among them, Zhengzhou suffered
the most serious flood losses, with direct economic losses of 43.147 billion yuan, accounting
for 32.6% of those of the province and 0.04% of the city’s GDP (according to the official data
released, the direct economic loss of Henan Province was 120.06 billion yuan and that of
Zhengzhou was 40.9 billion yuan, accounting for 34.1% of that of the province). The direct
economic losses of Luoyang, Nanyang, Xuchang, and Zhoukou were 11.137 billion yuan,
8.131 billion yuan, 7.057 billion yuan, and 5.902 billion yuan, respectively, and the severity
of the losses ranked in the top five according to the calculated data. Through the analysis
and verification with the survey report of the “7.20 rainstorm disaster in Zhengzhou, Henan
Province”, the accuracy of the inversion result is more than 90%, and the linear regression
result is good (R2 ≥ 0.95).

4. Discussion

In this study, first, using the typical rainstorm event in Henan Province on 20 July
as an example, the rainstorm event process was analyzed and a rainfall distribution map
was drawn based on the kriging method. Second, the spatial distribution of urban flood
disasters in Henan Province was retrieved based on a multidimensional remote sensing
spectrum. Then, the urban economic density was simulated by the night remote sensing
single spectrum to realize the spatial coupling inversion of the remote sensing spectrum,
urban economy, and flood disaster. Finally, the disaster loss estimation method in urban
flood areas was proposed to determine the disaster loss in urban flood areas.

According to the distribution map of daily rainfall variation in Henan Province
(Figure 4), at a time scale, the rainfall, rainfall intensity, and rainfall duration in the ur-
ban flood areas were consistent with the actual situation (Linear Regression Test Result
R2 = 0.94). At a spatial scale, the simulation results of the location and area of the rainfall
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center in each urban flood area were consistent with those published by the National
Meteorological Bureau. Generally, this extraordinary rainstorm seriously affected most
areas of Henan Province, resulting in record-breaking extreme rainfall values at 10 national
meteorological observation stations in Zhengzhou, Xinxiang, Kaifeng, Zhoukou, and Lu-
oyang. As shown in Figure 8, (19 July–22 July), the most rainfall was in Zhengzhou (777
mm), followed by Anyang (539 mm), Jiaozuo (480 mm), Crane Wall (478 mm), Xinxiang
(451 mm), and Kaifeng (370 mm). Combined with the ratio analysis of maximum hourly
rainfall to total rainfall (shown in Figure 9), the highest ratio was in Puyang (accounting
for approximately 50%) and the lowest was in Jiyuan (accounting for approximately 6%).
The maximum hourly rainfall in Zhengzhou accounted for approximately 26% of the to-
tal rainfall in the province. However, the intensity of rainfall there was the highest (202
mm/h) due to the large amount of total rainfall. Rainstorms and floods caused traffic jams,
casualties, and property losses in many regions of the province [32,33].

Figure 8. Inversion of rainfall development distribution in Henan Province from 19 July to 22 July:
(a) Statistical distribution of total rainfall; (b) Statistical distribution of hourly maximum rainfall.

It is difficult to spatially combine remote sensing data with economic data from
different regions. Urban economic development conditions are multielement, multiscale,
and multichannel comprehensive effects. The GDP is an important indicator of a country’s
economic condition and level of development. Therefore, this study uses DMSP/OLS
remote sensing and GDP to establish a spatial coupling model of urban economic flood
disaster (shown in Figures 6 and 7). The more developed the urban economy and the larger
the urbanization scale are, the more frequent the city activities at night, the more night light
remote sensing pixels (DMSP/OL remote sensing DN value) in the urban area, and the
higher the DMSP/OL remote sensing DN value [43].

According to the analysis of direct loss per unit area (shown in Table 4), Zhengzhou,
the provincial capital, has a concentrated distribution of economic value, resources, and
population. The loss per unit area caused by floods and waterlogging is approximately
2.38 times higher than that of Luoyang, which has the second highest GDP. The higher the
degree of urbanization is, the more developed the regional economy, which results in a large
population density and a high asset value per unit area in the urban center [7,18]. Therefore,
under this condition, the sensitivity to urban flood disaster losses increases, resulting in
a great need for flood control and waterlogging removal standards and a great risk of
suffering from flood disasters [22]. Moreover, the flood disaster is sudden. Secondly, the
scope of disasters is very wide. The traditional flood loss estimation method has difficulty
accurately calculating the flood loss. Based on multi-dimensional remote sensing, this paper
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has great advantages in timeliness and scale. It can help different urban areas to quickly
and accurately calculate the level and severity of flood disasters and carry out flood disaster
assessment. Especially for disaster and emergency departments, the model method in this
paper provides data and theoretical support for personnel evacuation and subregional
flood control and disaster relief according to the severity of flood disaster [1,13,15]. It
provides a theoretical method and calculation basis for the government’s post-disaster
reconstruction and the compilation of flood loss reports in various cities. In summary, the
urban flood damage estimation model based on remote sensing and GDP has a large scale,
strong applicability, and high accuracy. However, two areas of caution and future work
remain. First, there are some problems in spectral remote sensing such as cloud cover,
and more accurate extraction model of disaster information needs to be further improved.
Second, the disaster loss inversion result of “7.20 Rainstorm disaster in Zhengzhou, Henan
Province” was verified by official document data, without comparative analysis with other
models. This should be explored as a future enhancement to work.

Figure 9. Proportion of hourly maximum rainfall of the 20 July rainstorm event in Henan.

5. Conclusions

The main conclusions are as follows:

(1) According to data from research on historical rainfall, the rainfall probability is
analyzed and the rainfall probability distribution model is constructed (R2 ≥ 0.95).
The disaster grade is categorized from high to low (grades I, II, III, and IV), and the
corresponding relationship between flood disaster grade and rainfall grade, rainfall
interval, and rainfall return period is constructed.

(2) The daily rainfall development distribution of the 20 July rainstorm in Henan Province
is retrieved by the kriging regression algorithm. According to the analysis of the
inversion results, the daily maximum rainfall in Henan Province from 19 July to 22
July is 352 mm/d, 630 mm/d, 447 mm/d, and 159 mm/d, respectively. The maximum
hourly rainfall occurs in Zhengzhou on 20 July (210 mm/h). On 21 July, the rainfall
distribution shifts from southwestern Zhengzhou and western Xuchang to northern
Henan Province, and the rainfall in most parts of Henan Province gradually decreases.
On 22 July, only the northern and western parts of the province have rainfall.

(3) The disaster distribution in the Henan urban flood area retrieved by the multidimen-
sional remote sensing spectrum is consistent with the rainfall distribution (R2 = 0.75,
F = 47.50, p < 0.05). The spatial distribution of urban flood disasters (centered on
Zhengzhou) conforms to Zipf’s law. The urban economic spatial distribution is char-
acterized by night light remote sensing (R2 = 0.93, F = 1667.85, p < 0.05), the spatial
coupling inversion of the remote sensing spectrum-urban economy-flood disaster
is realized, and a disaster loss estimation method for urban flood areas is proposed
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(in comparing the disaster loss calculation results with official data, the accuracy is
greater than 90%, R2 ≥ 0.95). Therefore, this study can provide technical support for
accurate and efficient estimation of large-scale urban flood disaster. At the same time,
this study provides data and theoretical support for the implementation of personnel
evacuation by disaster and emergency departments and subregional flood control
and disaster relief. It also provides a theoretical method and calculation basis for the
government’s post-disaster reconstruction and the compilation of flood loss reports in
various cities.
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