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Abstract: Settlement prediction is of great importance for safety control of concrete-face rockfill dams
(CFRDs) during the operation stage. However, the prediction accuracy achieved by the commonly
used hydrostatic–seasonal–time (HST) methods, without the consideration of the previous conditions
of influencing factors, is not competitive. Moreover, in most methods, settlement data at each
monitoring point are modeled individually; the correlation relationships between settlements are
neglected. In this paper, a method based on an optimized long short-term memory (LSTM) model is
proposed to predict the settlement of CFRDs, modeling multiple monitoring data series with strong
correlation relationships simultaneously. In the method, settlement data series are classified into
several categories, firstly according to a global relevance measure. Then, the cuckoo search (CS)
algorithm is applied to optimize the hyper-parameters in the neural network structure of LSTM.
Ultimately, the LSTM model is utilized to predict the multiple settlement data series classified in
the same category. Results indicate that the proposed method has a better prediction performance
compared with the LSTM model, the back propagation neural network (BPNN) model, and the HST
with single monitoring point.

Keywords: settlement prediction model; concrete-face rockfill dam; long short-term memory; cuckoo
search algorithm; multiple monitoring point model

1. Introduction

The concrete-face rockfill dam (CFRD) has been extensively adopted in current dam
construction because of its strong adaptability to geological and economical construction tech-
nology [1,2]. To ensure the long-term safe operation of the CFRD, multiple instruments are
installed to monitor its structural response to environmental load changes [3,4]. Deformation
and seepage are two critical monitoring quantities that can reflect the operation status of CFRD,
in which a large or uneven deformation may cause cracks to the concrete panel and even imply a
failure of the structure [5,6]. Therefore, the prediction of settlement is one of the most important
issues in structural health monitoring of CFRD.

The statistical model [7,8] and hybrid model [9,10] are the most adopted methods
to predict the settlement of CFRDs. Sun et al. [11] proposed a method combining an
improved back propagation neural network (BPNN) and finite element method (FEM) to
inverse the material parameters of the CFRD. The hybrid model can be used to achieve
comprehensive analysis for the settlement of the CFRD. However, it is time consuming and
requires sufficient topographic and geological data of the engineering project, which may
not be satisfied in small-scale civil engineering.
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The statistical model adopted mathematical methods to construct the relationship
between the settlement of the CFRD and its explanatory variables. The HST model is one of
the most acknowledged statistical models, which describes the settlement as a combination
of hydro-statistic components, temperature components, and aging components. With the
development of computer science, plenty of machine learning-based methods have been
applied to predict the settlement of CFRDs [12,13]. Owing to the strong ability to map the
nonlinear relationship between the settlement and its explanatory variables, the machine
learning techniques improve the performance of the prediction model intensely. For
instance, a novel prediction model based on the wavelet support vector machine was
proposed to model the settlement of the dam and the prediction accuracy was improved
significantly [14]. A method combining the artificial neural network and support vector
regression was implemented to predict the settlement of the dam with the consideration of
long-term thermal behavior [15]. However, in most models, previous values of influencing
factors and settlement are not considered sufficiently. In fact, the influence from influencing
factors and settlement conditions both have a lag effect on the current settlement. Therefore,
it is essential to establish a previously memorable prediction model which can utilize the
relationships between previous times of settlement to analyze the settlement of the CFRD.

With the increase of monitoring points installed in the dam, monitoring data become
abundant. Based on that, researchers started to study the correlation relationship among
monitoring data series [16]; the modeling method is transferring from a single monitoring
point (SMP) model to a multiple monitoring points (MMP) model. Wang et al. [17] proposed
a spatial association-coupled support vector machine model to predict the displacement of
arch dams. Hu et al. [18] proposed a multiple monitoring point prediction method using a
random coefficient model and GMM-ISODATA cluster algorithm. In many cases for the
prediction of radial displacement for arch dams, the stability of the MMP model has been
verified. In this work, we introduce the idea of integrating data of multiple monitoring
points in the prediction model for the settlement of the CFRD.

We herein establish a previously memorable MMP prediction model for the settlement
of CFRD. In the MMP model, the first step is to determine the correlation relationship
between monitoring data series, and then classify the data series according to the cor-
relation coefficient. Next, the MMP model calculates the data series of high correlation
simultaneously; in this way, the correlation relationship among the data series can be
considered. Here, the clustering index adopts the Pearson coefficient, which can reflect the
linear correlation characteristics of the data series. The classification method applied in this
research is an improved K-means algorithm [19,20].

To establish a previously memorable model, long short-term memory (LSTM), an improved
recurrent neural network (RNN), is adopted in this work. LSTM was proposed by Hochreiter
and Schmidhuber [21] and has been successfully applied in multiple fields [22,23]. Owing
to the memorability of NN structures [24,25], LSTM is qualified to model the settlement of
CFRD, which considers the historical process of the settlement condition and influencing factors.
The cuckoo search (CS) algorithm [26,27] is an extensively utilized optimization algorithm
because of its advantages of fewer parameters, a random search path, and strong optimization
ability. To improve the performance of LSTM, we employ the CS algorithm to search the optimal
parameters, i.e., hidden layers, hidden nodes, and learning rate in the neural network structures.

The objective of this work is to present a prediction method for the settlement of the
CFRD, which is based on the LSTM model, on groups of datasets with similar regular
variation. We primarily interpret the settlement of CFRD during the operation stage,
determining the explanatory variables used in the following LSTM training framework.
The settlement data series are clustered into several categories by an improved K-means
clustering approach. The CS algorithm is utilized to optimize the learning rates and neural
network structures, so as to enhance the performance of the LSTM model. Ultimately,
LSTM is applied to model the multiple monitoring settlement data series in the same
category simultaneously.
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This article is organized as follows. Section 2 presents the interpretation model for
the settlement of CFRD. Section 3 illustrates the framework of the proposed optimized
M-LSTM method; we first introduce the clustering process and then the optimization for
the LSTM model with CS algorithm. Section 4 exhibits the engineering project and the
settlement dataset. Training and predicting results are exhibited and discussed in Section 5.
Concluding remarks complete the paper in Section 6.

2. The Interpretation Model for the Settlement of CFRD

Settlement of CFRD refers to the vertical-direction displacement under load, which
can be mainly divided into initial settlement, consolidation settlement, and secondary con-
solidation settlement. In this work, we put emphasis on the settlement of the CFRD during
the operation period. At this stage, the initial settlement and consolidation settlement of
the soil are basically completed; the secondary consolidation process during the operation
stage is therefore the core component to be analyzed in the following. Figure 1 exhibits the
sketch of the CFRD and the main components of the settlement.

Figure 1. Schematic diagram of the CFRD and the main components of the settlements: (a) sketch of
the CFRD, (b) structure of the main body of the CFRD, (c) creep deformation component, (d) consoli-
dation of soil particles, (e) hydrostatic load component, (f) frost heave of soil particles.

In the process of the secondary consolidation of the soil, effective stress on the soil
particles remains almost unchanged, but the volume of the soil still grows with time.
The deformation produced in the above-mentioned second consolidation can be called
creep deformation. A number of indoor tests and on-site measurements have been applied
to the soil; results imply that the creep deformation of the secondary consolidation is
related to the time. In previous work, multiple empirical calculation methods for the creep
settlement δθ of different kinds of soil have been proposed, and the expression widely used
in the engineering is presented as follows [28–31]:

δθ =


C1θ + C2lnθ

θ

C1θ + C2

C1e
C2
θ

(1)

where t is the time, θ = t
100 , and C1 and C2 are pending coefficients.
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We will adopt the suitable forms from above optional equations as explanatory vari-
ables when analyzing the creep deformation of the CFRD during the operation period.

Except for the settlement induced by the secondary consolidation, soil settlement occurs
when the soil bears external loads. During the operation stage of the CFRD, the main external
load comes from the upstream water head. The hydrostatic-related deformation has a rela-
tionship with the stress–strain level of the material, which is related to the historical external
load put on the CFRD. Therefore, the settlement of the CFRD during the operation period is
related to the current and the historical stress state, simultaneously. Based on the analysis above,
the settlement induced by the hydrostatic load is concluded as:

δH = f (H, H) (2)

Specifically, it can be expanded as:

δH =
3

∑
i=0

a1i Hi +
m1

∑
i=0

a2i H
i (3)

where H is the upstream water level, H is the average value of upstream water levels in the
early stage, and m1 represents the dates considered as the previous stage.

In addition to hydrostatic load, temperature loads may induce settlement in certain
conditions. Theoretically, the linear expansion of the soil caused by temperature changes
has little effect on the settlement of the CFRD. However, in some extremely cold zones,
where the temperature usually falls below zero, the soil will have a relatively significant
frost heave settlement. Since the emergence and duration of the freezing period almost
has an annual change cycle, we can apply a periodic function to express the relationship
between the temperature and the temperature-related settlement. In summary, for the
interpretation of the settlement for CFRD, we can ignore the influence from the temperature
load generally, but for the CFRD in extremely cold zones, the temperature-related settlement
can be expressed by the following periodic function:

δT =
m2

∑
i=1

(b1i sin
2πit
365

+ b2i cos
2πit
365

) (4)

where m2 is selected as 1 for CFRD, b1i, b2i are pending coefficients, and t denotes the time.
Based on the above analysis, the interpretation model of the settlement for CFRD has

three main components, including the creep deformation component δθ , the hydrostatic
load component δH , and the temperature load component δT (for CFRDs in extremely cold
zones), and the expression of the settlement for CFRD δ can be expressed as:

δ = δθ + δH + δT + cons (5)

where cons is the constant term.

3. LSTM-CS MMP Prediction Model for the Settlement of CFRD

In this section, we will construct the MMP prediction model based on the LSTM neural
network of the settlement of the CFRD.

3.1. Data Clustering Based on K-Means++ Algorithm

To recognize the monitoring data with similar variation, we select the Pearson corre-
lation coefficient to measure the correlation relationship between the monitoring points.
The expression of the Pearson correlation coefficient is:

ρij =
∑T

t=1(δit − δ̄i)(δjt − δ̄j)√
∑T

t=1(δit − δ̄i)2 ∑t(δjt − δ̄j)2
(6)
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where δit and δjt denote the data series of monitoring point i and j, respectively, and δ̄i and
δ̄j denote the mean value of the two monitoring data series.

Then, ωi is calculated to represent a global relevance measure of a certain monitoring
point, which includes the attributes of the correlation relationship between the monitoring
data series δi and all other monitoring data series. The expression of ωi is

ωi = [ρi1, ρi2, · · · , ρij, · · · , ρiN ]
T (7)

where N is the number of monitoring points.
Based on the global relevance measure ωi, we adopt the K-means++ algorithm to clas-

sify monitoring data. Suppose there are N monitoring data samples Ω = {ω1, ω2, · · · , ωN}
in total; our goal is to classify N samples into K clusters C = {C1, C2, · · · , CK}. The cluster-
ing process implemented by the K-means++ algorithm is presented as follows.

Step 1: Select K initial cluster centers µ
(1)
pj (1 ≤ p ≤ K, 1 ≤ j ≤ N). The improved

algorithm selects the initial cluster centers by two calculation procedures: the first procedure
is to select one sample from the dataset indiscriminately as one initial cluster center;
the second procedure is to determine the shortest distance between each sample and the
existing cluster centers. Then, the roulette method is applied to determine the next cluster
center, and the probability that each sample could be selected as the next cluster center Pi is
expressed as:

Pi =
minD(ωi, µ

(1)
pj )

2

∑N
i=1 minD(ωi, µ

(1)
pj )

(8)

where D(ωi, µ
(1)
pj ) denotes the Euclidean distance between ωi and µ

(1)
pj . The expression of

D(ωi, µ
(1)
pj ) is exhibited below.

D(ωi, µ
(1)
pj ) =

√√√√ N

∑
j=1

(ωij − µ
(1)
pj )

2 (9)

Calculate Equations (8) and (9) cyclically until all initial cluster centers are decided.
Step 2: Calculate the Euclidean distance between ωi (1 ≤ i ≤ N, N denotes the number

of samples) and µ
(n)
pj in the n-th iteration.

Step 3: Classify ωi into the cluster according to the smallest distance D(ωi, µ
(n)
pj ).

Step 4: Update the cluster centers. The updated cluster center is the mean vector of all
samples in a certain cluster, and the expression is:

µ
(n+1)
pj =

1
Np

∑
ωi∈Cn

p

ωi (10)

where µ
(n+1)
pj represents the pth cluster center in the (n+1)-th iteration, Np represents the

number of samples in the pth cluster, and ωi ∈ Cn
p represents all ωi that belong to the pth

cluster in the n-th iteration.
Step 5: Calculate the square error En of all samples.

En =
K

∑
p=1

∑
ωi∈Cn

p

||ωi − µn
p||2 (11)

where µn
p represents the pth cluster center in the n-th iteration.

If |En < En−1| < α, the program will terminate; otherwise, repeat Step 2 to Step 5.
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3.2. CS Algorithm Optimized LSTM

LSTM, an improved type of recurrent neural network (RNN), is capable of recognizing
long-term dependence experience. LSTM is utilized to model the monitoring settlement
data and predict the unknown settlement of the CFRD in this work.

3.2.1. Long Short-Term Memory Structure

LSTM is conducted by a combination of neural network (NN) modules, as presented
in Figure 2. Each NN module consists of a memory cell and three gates (input gate, forget
gate, and output gate).

ℎ ℎ

= [ , , … , ]

ℎ ℎ ℎ ℎ

= [ , , … , ]

…

Figure 2. Structure of long short-term memory model.

The forget gate controls the ratio of the information flow from the output of the previ-
ous time step to be retained and to be discarded. The input gate decides the information
flow from the previous step to be transferred into the memory cell. The output gate controls
the information flow to be output, which is relative to vectors of cell memory output,
previous output, and current input. The corresponding functions of each gate structure are
as follows.

ft = σ(W f 1xt + W f 2yt−1 + b f ) (12)

It = σ(Wi1xt + Wi2yt−1 + bi) (13)

Ot = σ(Wo1xt + Wo2yt−1 + bo) (14)

where ft, It, and Ot represent the vector of the forget gate, input gate, and output gate of a
cell of LSTM neutral network at t-th time, separately; σ represents the sigmoid activation
function, mapping the real number to [0,1]; b f , bi, and bo represent the bias weights for the
forget gate, input gate, and output gate, respectively; xt represents the input (explanatory
variable of settlement) at t-th step time; yt−1 represents the output (settlement) at (t–1)-th
step time; W f 1 , W f 2, Wi1, Wi2, Wo1, and Wo2 represent the connection weight between the
input nodes and the hidden nodes, and between the hidden nodes and the output nodes,
of the forget gate, input gate, and output gate, respectively.
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ht represents the output of the hidden layer at t-th step time, and the expression is:

ht = Ot tan h(Ct) (15)

where Ct represents the vector of memory cell at t-th step time, which is obtained according
to Equations (16) and (17), and tan h represents a hyperbolic tangent function, mapping the
real number to [−1, 1].

C̃t = tan h(Wc1xt + Wc2yt−1 + bc) (16)

Ct = ftCt−1 + ItC̃t (17)

where Wc1 and Wc2 represent the connection weights between the input nodes and the
hidden nodes and between the hidden nodes and the output nodes of the memory cell,
and bc represents the bias weights for the memory cell. yt−1 represents the output at the
(t–1)-th time step. ft and It are exhibited in Equations (12) and (13).

Ultimately, output (settlement) at t-th time step yt can be obtained by the expression:

yt = Whyht + by (18)

where Why represents the connection weight between the hidden nodes and the output
vectors, by represents the bias weights of Why, and ht is represented as Equation (15).

3.2.2. Cuckoo Search Algorithm

The CS algorithm is an optimization algorithm that models brood parasitism of cuckoo
birds. The algorithm imitates cuckoos’ behavior by Lévy flights, which has a good global
search. The CS algorithm is applied to optimize the parameters of the LSTM neural network.
Compared with isotropic random movement, Lévy flight has the possibility of long-distance
movement. Figure 3 exhibits the searching path of Lévy flight and isotropic random walk
in 2000 iterations; it can be noted that the step length of Lévy flight varies alternately, and
the frequency of large strides occurring in Lévy flight is higher than isotropic random walk.
The efficiency for global optimum searching of Lévy flight benefits from this combination
of long and short steps.

Levy flight

Random walk

End point of Levy flight

End point of Random walk

Start point

50

0

-50

-100

-100 -50 0 50 100

Figure 3. Schematics for typical searching process of Lévy flights and random walk in 2000 iterations.

The CS algorithm is applied in this work to search the best hyper−parameters in the
LSTM network. The search procedure can be summarized as the following:
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Step 1: Establish the objective function f .

f =

√
∑N

i=1(δ̂i − δi)2

N
(19)

where δ̂i denotes the modeled settlement data, δi denotes the monitoring settlement data,
and N denotes the number of the data in the datasets.

Step 2: Generate the initial generation of cuckoos X1, X2, ..., XN randomly. Each cuckoo
Xi = (Nli, Nni, LRi) represents a set of solutions of the hyper−parameters. The number of
hidden layers is Nli, the number of hidden nodes is Nni, and the learning rate is LRi, which
is expressed as follows:

X =


X1
X2
· · ·
XN

∣∣∣∣∣∣∣∣
F(Nl1, Nn1, LR1)
F(Nl2, Nn2, LR2)

· · ·
F(NlN , NnN , LRN)

 (20)

where N is the number of cuckoos. According to Equation (19), the values of the objective
function for each cuckoo are calculated, and the best cuckoo xt

b can be determined.
Step 3: Update solutions through a Lévy flight. The expression is:

Xt+1
i = Xt

i + α⊕ Levy(s, λ)(i = 1, 2, · · · , N) (21)

where α is the scaling factor of step size related to the scale of the problem, ⊕ denotes the
entry−wise multiplications, and Xt

i and Xt+1
i are the nest locations of t-th and (t+1)-th

generation of cuckoos, respectively. Levy(s, λ) is a random searching vector obeying a Lévy
distribution, which is expressed as

Levy(s, λ) =
λΓ(λ)sin(πλ/2)

π

1
s1+λ

(s >> s0 > 0) (22)

where Γ is the Gamma function; s is the step size of Lévy flight which could be generated
by Mantegna algorithm; s0 is the minimum step size.

s =
u

|v|1/β
(23)

where u and v are random numbers following a Gaussian distribution, β is the parameter

of Lévy flight, u ∼ N
(
0, σ2

u
)
, and v ∼ N

(
0, σ2

v
)
, in which, σu =

{
Γ(1+β)sin

(
β
2

)
Γ
[

1+β
2 β×2(β+1)/2

]
}1/β

;

σv = 1.
Step 4: Throw out the alien eggs with a probability Pa ∈ [0, 1]. This process is simulated

by the following equation:

Xt+1
i =

{
Xt

i + r ·
(
Xt

r1
− Xt

r2

)
, i f r < Pa

Xt
i , otherwise

(24)

where Xt
r1

and Xt
r2

are two random nest locations in the t-th generation; r is a random
number between 0 and 1.

Step 5: Calculate the value of the objective function of renewal nest locations. The opti-
mal cuckoo of (t+1)-th generation Xt+1

b is obtained. After comparing the objective function
value of Xt+1

b and Xt
b, the smaller function value can be kept as the (t+1)-th optimal cuckoo.

Step 6: Proceed with step 3 to step 4 recursively. The process ends when the termination
criteria is satisfied.

Figure 4 exhibits the framework of the proposed method for predicting monitoring
settlement of CFRD.
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Monitoring displacement of CFRD

Calculate global relevance measure 

Obtain cluster results based on K-means++ algorithm

Cluster 1 Cluster 2 Cluster n

Input

Construct the neural network

Obtain the fi"ng results 

of displacement

Update the 

external 

parameters 

by CS 

algorithm 

Step1

Step2

Step3
Itera#ons i>30

NO

YES

Op#mized external parametersStep4

Input ini#al external parameters of NN

Data clustering

LSTM-CS neural 

network predic#on

model

Figure 4. Flowchart of the proposed method for predicting the settlement of CFRD.

4. Project Overview

Langyashan pumped−storage power station (PSPS) is located in Chuzhou, Anhui
Province. The power station is composed of main structures such as the CFRD of the
upper reservoir, concrete dam of the lower reservoir, channel systems, etc. Figure 5a
exhibits the location of the CFRD to be analyzed in this study. As shown in Figure 5a,
the pumped−storage power station (PSPS) contains an upper reservoir and a lower reser-
voir; it stores energy in the form of gravitational potential energy of water. Excess power
from the electrical grid is utilized to pump water from the lower reservoir, and the water
stored in the upper reservoir can be utilized to generate electricity back to the grid as
necessary. The upstream reservoir of Langyashan PSPS has a total storage capacity of 18.04
million m3, a regulation storage of 12.38 million m3, a normal storage level of 171.8 m, and
a design flood level of 172.40 m.

Figure 5. Schematic of: (a) location, (b) structure, (c) distribution of monitoring points of settlement,
of the CFRD for Langyashan PSPS.

Langyashan CFRD consists of a concrete slab, cushion area, transition area, upstream
blanket, upstream rockfill area, and downstream rockfill area, as exhibited in Figure 5b.
The construction of Langyashan CFRD started in July 2002, and the main body was com-
pleted in March 2005. In order to measure the settlement of the CFRD, a total of 37 moni-
toring instruments were installed on the surface of a downstream dam slope, parallel to
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the structural axis of the CFRD with different elevations (as shown in Figure 5c). Consid-
ering the failure of some instruments, we ultimately selected a monitoring data series of
16 settlement gauges for analysis.

In this study, we selected the settlement data (the vertical down is positive, the vertical
up is negative) of all 16 monitoring points from 17 April 2005 to 28 October 2018 for
analysis. After the pre−process of settlement data, i.e., removing the outliers, interpolating,
compensating, etc., we obtained one settlement data point per week, a total of 700 data
points in every monitoring dataset, as shown in Figure 6. Figure 7 presents the upstream
water level and the environmental temperature in Langyashan CFRD. It is noted that the
vertical settlement of all monitoring points have similar variation rules with time, increase
slowly, and tend to converge, without obvious periodic variations.

S
et

tl
em

en
t 

[m
m

]

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

Figure 6. Settlement data series of selected monitoring points.

Figure 7. Ambient data series of Langyashan dam: (a) upstream water level, (b) environmental
temperature.

5. Results and Discussion
5.1. Clustering Results of Monitoring Data Series

According to the equations proposed in Section 3.1, we calculate the correlation coeffi-
cients ρij between every two training datasets, δi and δj, of monitoring points; the results are
exhibited in Figure 8. We set the variation range of the axis to 0.6–1.0, and the corresponding
color varies from dark red to white to dark blue. The lower the correlation coefficient, the
closer the color will be to dark red, and conversely, the higher the correlation coefficient,
the closer the color will be to dark blue. Results illustrate that the correlation coefficients
are all greater than 0.6, which indicates that the correlation relationships between the
settlement datasets of monitoring points are relatively high. This result is consistent with
the characteristics in the settlement process lines shown in Figure 6. Among all sixteen
monitoring points, LD3-5 has the smallest average value of the correlation coefficient (0.728)
compared with other monitoring points, and LD3-3 has the largest average value of the
correlation coefficient (0.890).
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0.75

0.70

0.65
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Figure 8. Results of correlation coefficients of the monitoring settlement data.

Then, we construct the global correlation measure ωi and classify the monitoring
data series by the K-means++ algorithm. The number of clusters is set as 4. The results
of clustering are presented in Figure 9. The monitoring points LD1-2 and LD3-5 are
categorized in Cluster 1. LD2-2, LD3-3, LD5-4 and LD5-4 are categorized in Cluster 2. LD2-
3, LD3-4, LD5-5, and LD6-4 are classified to Cluster 3. LD3-2, LD4-2, LD4-3, LD5-2, LD5-3,
and LD6-2 are classified to Cluster 4. It is noted that the classification is roughly related to
the spatial locations; monitoring points located at the boundary (i.e., LD1-2, LD3-5, LD2-3,
LD5-5, and LD6-4) are categorized in Cluster 1 and Cluster 3 and are separated apart with
other inner monitoring points.

Figure 9. Monitoring points distribution indicated clustering results.

5.2. Optimization of Parameters in LSTM

In this work, we adopt the CS algorithm to optimize the parameters (including the
number of hidden layers and hidden nodes and the learning rate) of the neural network in
the LSTM model.

In the CS algorithm, we set population size as 20, β as 1.5, and number of iterations
as 30. Figure 10 exhibits the objective function value of the best nest at each iteration step,
and the algorithm finds the best objective function value as 4.333 at the 13th iteration step.
The set of upper bound and lower bound of the search area for the three parameters are
presented in Table 1. After calculation, we obtain the results of the optimized parameters
as presented in Table 1.



Water 2022, 14, 2157 12 of 19

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

1 4 7 10 13 16 19 22 25 28

O
b

je
ct

iv
e 

fu
n

ct
io

n
 v

al
u

e 
[m

m
]

（13,4.333）

Figure 10. Plot of the objective function values versus the number of iterations.

Table 1. Upper bound and lower bound of the parameters set in the CS algorithm, and the results of
optimized parameters of the NN structure in LSTM model.

Hidden Layers Hidden Nodes Learning Rate

Upper bound 10 20 1× 10−1

Lower bound 1 1 1× 10−5

Optimized
parameters 2 7 3× 10−2

5.3. Fitting and Prediction Results
5.3.1. Selection of the Input Variables in the Model

In the interpretation model for the settlement of CFRDs, environmental temperature
commonly has a weak impact on the deformation of the CFRD, and a significant settlement
variation occurred only when frost heaving happened. Hereby, the expressions of settlement
model of the PSPS considering different temperature conditions are exhibited as follows.

(1) When the lowest temperature is below zero, then

δ =
3

∑
i=0

a1i Hi +
m1

∑
i=0

a2i H
i
+

m2

∑
i=1

b1Ti+
m3

∑
i=1

(b1i sin
2πit
365

+ b2i cos
2πit
365

) + C1θ + C2 ln θ

+
θ

C3θ + C4
+ C5e

C6
θ + cons

(25)

(2) When the lowest temperature is above zero, then

δ =
3

∑
i=0

a1i Hi +
m1

∑
i=0

a2i H
i
+ C1θ + C2 ln θ +

θ

C3θ + C4
+ C5e

C6
θ + cons (26)

The variables in Equations (25) and (26) have the same meaning as the variables
in Equations (1)–(5). Owing to the lowest temperature being above zero at the region
of Langyashan PSPS according to the ambient data, we adopt variables in the second
expression above as the input variables in the training models.

In Equation (26), the average values of the previous upstream water level is adopted
to describe the previous conditions, which will act as input variables, and the expression is:

Hpre(∆d) =
∑d−1

i=0 H(t− i)
∆d

(27)
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where Hpre(∆d) denotes the average value of the upstream water level of d days before the
monitoring date and t denotes the current date. In this case, we apply Hpre(∆7), Hpre(∆28),
Hpre(∆84), and Hpre(∆168) as the input variables in the models.

5.3.2. Fitting and Prediction Performance of M–LSTM Model

We apply the CS–LSTM model for establishing the settlement prediction model of
multiple monitoring points in this section. Based on the clustering results, we select
monitoring data series belonging to the same cluster as output variables to the proposed
model for calculation. Monitoring data series are divided into a training dataset (80% of the
data) and testing dataset (20% of the data). We fit the settlement data from 17 April 2005 to
10 January 2016 to develop the prediction model. Then, we test the proposed model using
data from 17 January 2016 to 16 September 2018. Figure 11 exhibits the fitting and prediction
results of four monitoring points: PL1-2 in Cluster 1 (lines in purple), PL2-2 in Cluster
2 (lines in green), PL3-4 in Cluster 3 (lines in blue), and PL3-2 in Cluster 4 (lines in red).
The training datasets are exhibited in the white area, and the testing datasets are located in
the gray area. Even though the monitoring settlement data fluctuates intensely, the results
of the proposed model are close to the monitoring data, and the fitting and prediction
results of all monitoring points are fairly good. In addition, the fitting and prediction results
of the proposed model of the rest of the 12 monitoring points are illustrated in Appendix A
(Figures A1–A4).

S
et

tl
em

en
t

Monitoring settlement

Modelled settlement

LD1-2

LD2-2

LD3-4

LD3-2

Testing dataset

Figure 11. Fitting and prediction results of PL1-2, PL2-2, PL3-2, and PL3-4.

Furthermore, to quantify the fitting and prediction performance of the proposed
model, we adopt the coefficient of determination (R2) of the training dataset and the root
mean square error (RMSE) of the testing dataset for evaluation. The expressions of the two
indicators are as follows:

R2 =
∑N

i=1(δ̂i − δ)

∑N
i=1(δi − δ)

(28)

RMSE =

√√√√ 1
M

M

∑
j=1

(δj − δ̂j)2 (29)

where δi denotes the monitoring settlement of the training dataset, δ denotes the average of
the monitoring settlement of the training dataset, δ̂i denotes the modeled settlement of the
training dataset, δj denotes the monitoring settlement of the testing dataset, δ̂j denotes the
modeled settlement of the testing dataset, and N and M denote the number of data in the
training and testing dataset, respectively.

Figure 12 shows the R2 and RMSE of each monitoring point. The blue dots and green
bars represent the results of R2 and RMSE, respectively. The results of R2 and RMSE vary
from 0.800 to 0.995 and from 1.439 to 2.702, respectively, and the average of R2 and RMSE
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are 0.945 and 2.055. R2 of all monitoring points are above 0.8 (as shown in the red area),
which indicates that the proposed model has a high fitting precision.
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Figure 12. Coefficient of determination and RMSE of the proposed model.

5.3.3. Comparison between Different Models

In order to verify the superiority of the proposed model in fitting and forecasting,
we compare our model with three widely used single monitoring point statistical models.
Similarly, we apply 80% of the data as the training dataset, using LSTM, back propaga-
tion neural network (BPNN), and hydrostatic–seasonal–time (HST), to fit the monitoring
settlement and predict the remaining 20% of the data. Figure 13 exhibits the fitting and
prediction results of four models for one monitoring point (LD3-3). In the figure, fitting
curves of all four models can fit the monitoring settlement reasonably well, and they can
reach most monitoring data closely. In settlement monitoring data, there exists noisy data
which fluctuates in several time periods, and these data are not overfitted in all four models.
Compared with the other three models, the proposed model has the highest R2 (0.991) and
the lowest RMSE (1.763), demonstrating the proposed model has good fitting ability and
prediction performance among these four models.

Training Dataset Testing Dataset

LD3-3

M-LSTM

LSTM

BPNN

HST

R = 0.991, RMSE = 1.763

R = 0.930, RMSE = 2.367

R = 0.905, RMSE = 4.667

R = 0.937, RMSE = 5.637

Figure 13. Fitting and prediction results of four models for LD3-3.

We establish the four models on the training dataset of each monitoring point. Table 2
lists the results of R2 calculated for each monitoring point. R2 of M–LSTM, LSTM, BPNN,
and HST varies from 0.995 to 0.800, from 0.991 to 0.741, from 0.994 to 0.753, and from
0.962 to 0.409, respectively. For all sixteen monitoring points, the averages of R2 are 0.945
(M–LSTM), 0.910 (LSTM), 0.895 (BPNN), and 0.807 (HST). Results indicate that all four
models can fit the training dataset of these 16 monitoring points well.
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Table 2. R2 of M–LSTM, LSTM, BPNN, and HST models.

Monitoring
Point M–LSTM LSTM BPNN HST

LD1-2 0.843 0.985 0.754 0.576
LD2-2 0.987 0.807 0.971 0.918
LD2-3 0.907 0.989 0.873 0.665
LD3-2 0.995 0.926 0.991 0.951
LD3-3 0.991 0.93 0.905 0.937
LD3-4 0.919 0.541 0.829 0.745
LD3-5 0.799 0.991 0.753 0.409
LD4-2 0.995 0.983 0.994 0.962
LD4-3 0.994 0.991 0.99 0.96
LD5-2 0.995 0.985 0.987 0.961
LD5-3 0.993 0.95 0.761 0.946
LD5-4 0.974 0.781 0.947 0.87
LD5-5 0.88 0.99 0.867 0.635
LD6-2 0.993 0.974 0.988 0.941
LD6-3 0.981 0.779 0.917 0.865
LD6-4 0.87 0.754 0.793 0.579

We then calculate the RMSE of each testing dataset of the monitoring point, and the
results are exhibited in Figure 14. In terms of the prediction performance, the RMSE of
M–LSTM, LSTM, BPNN, and HST model varies from 1.431 to 2.683, from 1.853 to 3.185, and
from 1.759 to 7.370, respectively. Among all 16 monitoring points, the proposed model has
the smallest RMSE in 14 monitoring points, which means the proposed method has the best
prediction performance. With the consideration of previous monitoring data, the prediction
accuracy of the model could be increased.
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Figure 14. RMSE of each monitoring point based on M–LSTM, LSTM, BPNN, and HST.

In the following, we verify the prediction performance of each model with 70% of
data as the training dataset, and 20%, 25%, and 30% of the data as the testing dataset,
respectively. In order to reflect the predictive ability of the model comprehensively, we
propose the average of MSE, SMAPE, and MAPE for all monitoring points as the evaluation
indicators for prediction. The expressions are exhibited as follows:

AMSE =
1

N ×M

N

∑
i=1

M

∑
j=1

(δij − δ̂ij)
2 (30)

ASMAPE =
100%

N ×M

N

∑
i=1

M

∑
j=1

|δ̂ij − δij|
(|δ̂ij|+ |δij|)/2

(31)
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AMAPE =
100%

N ×M

N

∑
i=1

M

∑
j=1

|δ̂ij − δij|
|δij|

(32)

where AMSE denotes the average of mean square error, ASMAPE denotes the average
of symmetric mean absolute percentage error, and AMAPE denotes the average of mean
absolute percentage error; other variables in the Equations (30)–(32) denote the same
meaning as the variables in Equations (28) and (29).

Figure 15a–c illustrate the results of prediction evaluation indicators (AMSE, ASMAPE,
and AMAPE) of the four models under different prediction testing datasets (20%, 25%,
and 30% of the data) after modeling the sixteen monitoring points in the example.

(a) (b) (c)
20% 25% 30% 20% 25% 30% 20% 25% 30%

A
M
S
E

A
S
M
A
P
E

A
M
A
P
E

Figure 15. Results of: (a) AMSE of M–LSTM, LSTM, BPNN, and HST models under different predic-
tion lengths, (b) ASMAPE of M–LSTM, LSTM, BPNN, and HST models under different prediction
lengths, (c) AMAPE of M–LSTM, LSTM, BPNN, and HST models under different prediction lengths.

With the increase of the length of the testing dataset, the values of AMSE, ASMAPE,
and AMAPE grow, which indicates that the prediction performance of the four models
will become weaker with the extension of the prediction length. Specifically, for AMSE and
ASMAPE, with increasing prediction length (from 20% to 30%), the results of M–LSTM
are 9.10, 20.00, and 38.96 and 0.15, 0.20, and 0.34, respectively; the results of HST are 48.77,
57.48, and 88.51 and 0.24, 0.25, and 0.67, respectively. The results of other models are
located between the results of M–LSTM and HST. For AMAPE under different prediction
lengths, the minimum values in the four models are the results of M–LSTM, which are 0.08,
0.12, and 0.30, respectively, and the maximum values are 0.20 (20%) of HST, 0.25 (25%) of
BPNN, and 0.60 (30%) of HST.

The M–LSTM model obtains a more accurate result than LSTM, BPNN, and HST
models with a single monitoring point with the expansion of prediction lengths. Different
from conventional neural networks, the nodes of hidden layers in LSTM models are related
to others at the previous time step. The links make the hidden layer contain history of the
input information, which means the LSTM model can utilize the previous information fully.
On the other hand, the LSTM model with multiple correlated settlement data is less prone
to overfitting local noisy data. Vulnerability to noisy data is a common issue in the single
monitoring model. M–LSTM utilize settlement data series with a correlated relationship
simultaneously; the influence from local noisy data in certain settlement data series will be
weakened by most correct data samples when modeling, therefore the M–LSTM model can
be more robust.

6. Conclusions

Accurate prediction results of settlement is significant to the evaluation of the struc-
tural health status of CFRDs during operation. In this research, a method based on the
LSTM model is proposed to predict the settlement of the CFRD. Firstly, we classified the
settlement points into several categories according to the correlation relationship among
the data series. Then, the LSTM model was utilized to train all monitoring settlement
datasets in the same category simultaneously; in this way, the lag effect from input vari-
ables, settlement condition, and the correlation relationship among monitoring data series
can be considered. In addition, the CS algorithm was adopted to optimize the parameters
of the neural network structure in LSTM models in advance.
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We used the monitoring settlement data series of CFRD at Langyashan PSPS to validate
the proposed model. The coefficients of determination R2 of the proposed model are above
0.85 for the training dataset of all monitoring points. Compared with the LSTM, BPNN,
and HST models of a single monitoring point, the proposed model has the most precise
prediction results, which has the smallest RMSE in most (14 out of 16) monitoring points.
Furthermore, the proposed model can provide the most stable and accurate results with
the expansion of the prediction length. In future research, emphasis will be given on the
exploration of an optimized LSTM model which is capable of obtaining a higher prediction
accuracy, and the proposed method will have promising applications in the prediction of
data series for other types of civil structures.
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Appendix A. Fitting and Predicting Results

Monitoring settlement

Modelled settlement

Testing dataset

Figure A1. Fitting and prediction results of M–LSTM model based on the training datasets in Cluster
1 (LD1-2 in red lines and LD3-5 in green lines).

Monitoring settlement

Modelled settlement

Testing dataset

Figure A2. Fitting and prediction results of M–LSTM model based on the training datasets in Cluster
2 (LD2-2 in red, LD3-3 in green, LD5-4 in blue, and LD6-3 in purple lines, respectively).
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Monitoring settlement

Modelled settlement

Testing dataset

Figure A3. Fitting and prediction results of M–LSTM model based on the training datasets in Cluster
3 (LD2-3 in red, LD3-4 in green, LD5-5 in blue, and LD6-4 in purple lines, respectively).

Monitoring settlement

Modelled settlement

Testing dataset

LD4-2

LD5-2

LD4-3

LD5-3 LD5-2

LD3-2

Figure A4. Fitting and prediction results of M–LSTM model based on the training datasets in Cluster
4 (LD3-2, LD4-2, LD4-3, LD5-2, LD5-3, and LD6-2).
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