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Abstract: Mine water inrush disaster seriously threatens the production of coal mine. Rapid and
accurate identification of mine water inrush sources is a key premise for mine water disaster pre-
vention. The conventional research on the identification of water inrush source has focused on a
single source, and the identification of mixed water samples from multi-source aquifers in deep coal
mining environment is not yet fully explored. In this study, absorption spectrum technology was
introduced into the identification of water inrush sources. The absorption spectra of the water sam-
ples with different mixing ratios were prepared using the ultraviolet and visible spectrophotometry
(UV-Vis) spectrophotometer. In addition, spectral data preprocessing such as scattering correction,
baseline correction, smoothing and denoising, and data enhancement were conducted to reduce the
influence of experimental error, environment, radiation, molecular interaction, and other factors on
the spectral data. Furthermore, a genetic algorithm (GA) was used to improve the seven parameters
of the extreme gradient boosting (XGBoost) algorithm, such as learning rate, base model selection,
tree parameters, regularization parameters, and iteration times. The deep-learning classifier of mine
mixed water sources based on GA-XGBoost was established and used to identify 66 groups of mixed
water sources in the Huangyuchuan Mine. The simulation results show that spectral preprocessing
and normalization enhancement effectively improved the accuracy of the discriminant model. After
100 cross-validations, the average recognition accuracy of the GA-XGBoost model was 94%, and the
results were accurate and reliable. This study provides a new direction and method for the identi-
fication of water inrush sources, particularly for mixed water inrush sources. It may also serve as a
technical reference for decision-makers to formulate effective coal mine water inrush prevention
and control programs and for mine water disaster prevention in similar coalfields in North China.
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1. Introduction

China is poor in oil and gas resources, but it has rich coal resources that have become
the cornerstone of its national economic development, and its dominant position in
China’s energy industry will be difficult to change in the near future [1]. However, with
the deepening expansion of mining depths and scope, hydrogeological conditions in
mines grow more complex and complicated, and the difficulties such as the surrounding
rock stress and groundwater erosion caused by local exploitation increase in severity [2,3].
Sun et al. [4] showed that 1162 coal mine water accidents occurred in China from 2000 to
2015, resulting in 4676 deaths. Water disasters in coal mine accidents have become the
second largest natural disaster after coal mine gas disaster, and they endanger human life
as well as the coal mine and equipment [5-7].

Water 2022, 14, 2150. https://doi.org/10.3390/w14142150

www.mdpi.com/journal/water



Water 2022, 14, 2150

2 of 17

Accurately locating the water sources during a water inrush crisis requires rapid,
timely measurements to mitigate the disaster and ensure the safety of personnel and prop-
erty [4,6,8]. At present, there are many significant research efforts focused on the identifi-
cation of mine water inrush source, and the applied methods can be roughly categorized
as hydrological analysis methods, mathematical theoretical analysis methods, and the ar-
tificial intelligence analysis method, among others [8-20]. By combining data from water
chemical characteristics and physical characteristics, such as temperature and water level,
researchers have been able to determine the water sources in mine water inrush disasters
[21-27]. In recent years, more inroads have been made for increasing the speed and accu-
racy when identifying these sources by using a variety of mathematical model calculation
methods based on the characteristics of water chemical physics, as well as other factors
[28-32]. Based on hydrochemical data and self-organizing feature maps (SOM), Zhao et
al. [28] analyzed the water inrush source of Ningtiao mine. Fisher discriminant analysis,
water temperature, and traditional hydrogeochemical discrimination methods were em-
ployed as auxiliary indicators to verify and analyze the results of the SOM, and the source
of all water samples was confirmed to be surface water. Based on the hydrochemical data
of 56 water sampling points, Panagopoulos et al. [29] used unsupervised and supervised
statistical methods to group groundwater samples so as to identify the source of unknown
water samples, which provided a simple multivariate statistical method for the identifica-
tion of groundwater aquifer sources. Based on the measured water hydrochemical data,
Lin et al. [11] identified the water inrush source of Zhaogezhuang mine through the cou-
pling model of the improved genetic algorithm and extreme learning machine, and solved
the complex non-linear problem encountered in identifying the water source. The research
results have been conclusive and provide a scientific basis to formulate effective control
measures after an inrush disaster has occurred.

However, hydrochemical methods require sampling experiments to determine the
various concentrations of ions and molecules in the solution and eliminate any interfer-
ence that could affect the rapid identification of water sources [33]. At the same time, many
water inrush disasters have shown that the water inrush mode and the inrush points may
involve various water sources [34]. Their ion content after merging may change signifi-
cantly due to chemical and physical reactions, and this can impact the accurate determi-
nation of the water sources. For the identification of mixed water sources, there is a pau-
city of research. A high degree of groundwater mixing has become a difficult challenge to
overcome, and mapping the relationship between the evaluation system and the category
of the water source for identification purposes is uncertain. The accurate and rapid iden-
tification of multiple water sources in coal mine disasters could be an effective means of
disaster prevention and control, but most studies have focused on only single water
source identification. Without research studying its practical application, its effectiveness
remains theoretical.

As a hybrid discipline of chemistry and physics, spectroscopy provides streamlined,
rapid water source identification. Since the beginning of the 21st century, hyperspectral
imaging has developed rapidly due to its multi-band characteristics and high resolution.
Different substances absorb different spectral band energies and reflect the various inter-
nal elements in water samples on physical, chemical, and geometric scales. As compared
to the traditional multispectral sensor, it can obtain more detailed, accurate spectral infor-
mation. Through the analysis and calculation of spectral characteristics, it can achieve the
identification of aquifer composition characteristics so as to achieve the purpose of iden-
tifying water sources. As compared to traditional methods, spectral identification of water
sources does not require a complex laboratory and in situ analyses such as ion detection
and water temperature/level monitoring, which improves its efficiency.

This study comprehensively considered the requirements of rapid identification and
water inrush source mixing ratios and introduced spectral technology to identify water
sources. By analyzing the characteristics of the spectral curves obtained by mixing differ-
ent water sources of different proportions, the adaptability of deep-learning classifier
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based on the genetic algorithm (GA) and extreme gradient boosting (XGBoost) algorithm
to a variety of mixed mine water sources was established. The innovations of this study
included the following:

(1) The application of the absorption spectrum in water source identification. Without
single ion detection, the laboratory measurement stage could be simplified, and the
spectral value was directly trained and greatly improved the efficiency of water
source identification.

(2) The GA was used to optimize the parameters of XGBoost, and the XGBoost set algo-
rithm was applied for water source analysis. This classifier reduced the shortcomings
of the single tree model and traversed the segmentation points to achieve an optimal
solution. GA simulates the principle of natural selection and optimizes the parame-
ters while avoiding local optimal solutions, thereby obtaining the relative optimal
parameters. The combination of the two could determine the proportion of water
sources.

(3) The normalization algorithm and evaluation index were changed. To obtain the pro-
portion of mixed water samples, the normalization and evaluation indexes were im-
proved to evaluate the quality of the model.

2. Study Area and Data
2.1. Study Area

Huangyuchuan coal mine is located in the midwest of Zhungeer coalfield (Figure 1).
The administrative division is under the jurisdiction of Changtan and Xuejiawan in Zhun-
geer. The coal mine is 20 km north of Xuejiawan, approximately 120 km from Hohhot, and
approximately 150 km west of Ordos. The east of the coal mine is adjacent to Shiyangou
and Qingchunta coal mines, the north is adjacent to Suancigou coal mine, the south is
adjacent to Changtan coal mine, and the west is bounded by the southern detailed inves-
tigation area. The terrain is high in the northwest and low in the southeast. The elevation
of the upper reaches of the Tahara River in the northwest is 1366 m, and the elevation of
the southern Haomigetuo is 870 m, with a maximum elevation difference of 496 m. The
elevation is generally between 1050 m and 1250 m. The Yellow River flows from north to
south through the eastern part of the coalfield, and the flow of major valleys in the coal-
field finally reach the Yellow River. The larger valleys, from north to south, include
Kongduigou, Longwanggou, Heidaigou, Haerwusugou, Guanzigou, and Shilichang-
chuan, and the extension direction is oblique or vertical to the strata. The branch ditches
are mostly distributed in branches, and the source erosion is the main. The cross-section
is mostly a V-type, belonging to the erosive loess plateau landform. Most of the upper
reaches of the major valleys have springs that form streams in the middle and lower
reaches. Mountain floods erupt in the rainy season with large flows and short duration.
The major valleys are also the main channel to discharge atmospheric precipitation and
groundwater in the coalfield. Huangyuchuan mine aquifer can be divided into three cat-
egories: loose-layer pore phreatic aquifer, clastic-rock-pore fissure aquifer, and limestone
karst fissure aquifer.
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Figure 1. Study Area.

The water-filling sources in the mining area are mainly atmospheric precipitation
and surface water, coal-bearing sandstone fissure water, Ordovician limestone water, and
aged goaf water.

Atmospheric precipitation and surface water: there is no large surface water in the
mining area except Shilichangchuan in Sanpan District, and there are some ponds scat-
tered throughout the valley. Mine wellhead elevation is higher than the local flood level;
during the rainy season, it is not threatened by surface water. Overall, atmospheric pre-
cipitation and surface water in mine water filling is limited.

Coal-measure-sandstone fissure water: Coal-measure-sandstone aquifer is water-
rich with poor uniformity. In addition, the local fold-and-fault structures in the mining
area are more developed, and when the water gathers at low depressions, there can be
static reserves. In the actual underground production process, the bedrock fissure aquifer
of coal-measure strata and the overlying quaternary loose-pore aquifer are weak water-
rich aquifers with limited supply and have little influence on coal mining as they are easily
drained with underground drainage. The roof of each working face showed no significant
water leaching.

Ordovician limestone water: Ordovician limestone in coal-measure basements lacks
peak—peak groups within the scope of the mine field. The karst development in the geo-
logical strata in the first and second panel areas is uneven with corrosion cracks and small
dissolved pores. The two groups of corrosion cracks developed vertically, and the water
content varies by location. It is separated from the Taiyuan Formation coal-measure strata
by the Benxi Formation clay rock and mudstone aquifer. Under normal circumstances, the
Ordovician karst water does not easily recharge the coal-measure strata. However, faults
and collapsed columns are well developed in the field. Suspected karst collapse columns
have been circled through three-dimensional earthquakes in the northern part of the first
and second panels. When the Ordovician limestone water level is higher than the coal
seam floor, there is a risk that Ordovician limestone water could enter the mine along the
water-conducting fault, fracture zone, or collapsed column.

Aged empty water: According to the current exploration and production data, there
are no aged kiln and production mines around and in the mine field and no aged kiln
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water. The goaf water formed by mining the upper 4# coal seam in this mine could have
affected the normal production of the lower 6# coal seam. According to the mining and
excavation succession plan of the mine during the last three years, the influence areas of
goaf water on mine safety production were 216 upper 05, 226 upper 01, and 226 upper 02
working faces. Therefore, the water in the goaf has been discharged in the detection and
production process with little effect on water filling.

Overall, coal-measures sandstone fissure water and Ordovician limestone water are
the greatest threats to mining production in the experimental area.

2.2. Data Collection

To develop a practical test for sampling according to the water source influence, wa-
ter intake point should be relatively close, and we used a simple principle of water via
hydrological observation hole sampling, drainage hole sampling, aquifer sampling, and
water hole sampling of four selected sampling points in the Huangyuchuan coal mine,
two sandstone fissure water, and two Ordovician limestone water. Sampling location in-
formation is shown in Table 1.

Table 1. Water sample point information.

Sampling Point Location

Number Water Sample Type Longitude Latitude Water Quality Type
H-1 Coal-measure sandstone fissure water 111.2047 39.6788 HCOs-Ca Mg
H-2 Ordovician limestone water 111.2049 39.6734 HCOs-Na *Ca *Mg
H-3 Coal-measure sandstone fissure water 111.2080 39.6790 Cl eHCOs-Mg (Ca)
H-4 Ordovician limestone water 111.1861 39.6785 Cl *HCOs-Na

3. Methods

3.1. Research Framework

In this study, the discrimination of water inrush source in the Huangyuchuan Mine
was conducted according to the following steps:

(1) Preparation of water sample spectral data. The water samples in the study area were
collected and mixed according to the ratios of 0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2,
9:1, 10:0, and 0:0 to prepare the absorption spectra data of the water samples with
different mixing ratios.

(2) Spectral data preprocessing. The spectral data of the water samples were prepro-
cessed by data filtering, scattering correction, baseline correction, smoothing and de-
noising, and data enhancement to correct the spectral dataset and improve the recog-
nition accuracy.

(3) Establish a deep-learning classifier. The GA-XGBoost deep-learning classifier was
constructed, and seven parameters of XGBoost were optimized by GA to classify and
learn the absorption spectrum data of the water samples.

3.2. Preparation of Spectral Data of Mixed Water Samples

Ultraviolet-visible-near infrared short-wave spectroscopy was used to detect a vari-
ety of water quality parameters based on the absorption properties of organic and inor-
ganic matter in water. It has obvious advantages in water quality monitoring technology
[35,36]. The analysis method was divided into qualitative and quantitative analyses based
on the curve shape of the absorption spectrum, such as the corresponding band, absorp-
tion peak height, and absorption peak number. The principle of quantitative analysis was
according to the Lambert-Beer law, that is, the intensity of the absorption spectrum is
proportional to the concentration of the measured substance when the absorption path is
fixed [37]. The formula is:
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A=1gI/I_0=kbc

where A is absorbance, I_0 is the intensity of incident light, I is the transmission light in-
tensity, k is the molar absorption coefficient, b is the liquid layer thickness (absorption
path), and c is the concentration of light absorbing material.

The total absorbance of the measured object is equal to the sum of the absorbance of
each substance in the medium when there are many substances that absorb light from the
measured object. The formula is:

A=A 1+A2+A3+...+An

According to the additional properties of absorbance and the absorption spectrum
characteristic curve of the measured object, multi-material analysis and multi-parameter
correlational analysis can be done [38].

In this study, an ultraviolet and visible spectrophotometry (UV-Vis) was used to pre-
pare the spectral data of mixed water samples taken at the study area. In the experiment,
it was necessary to control the influence of environmental changes on the experiment, so
the environmental parameters of the instrument were set including temperature of 19 °C
with a relative humidity of 22%; the instrument was not affected by direct sunlight, strong
electric or magnetic fields, or strong vibration interference, corrosive gas, and strong air-
flow, and it had an adequate AC power supply.

In the collected water samples, H-1 and H-2 were selected as a group, and H-3 and
H-4 were selected as a group. The samples were mixed according to the ratios of 0:10, 1:9,
2:8,3:7,4:6,5:5, 6:4, 7:3, 8:2, 9:1, 10:0, and 0:0. Three water samples were collected for each
ratio, and 66 water sample data were collected. The images were plotted after the absorb-
ance values were obtained using a UV-Vis. The images were expressed in dark red, red,
red-orange, orange-yellow, yellow-green, green, navy blue, blue, purple, and black lines,
in proportion.

3.3. Preprocessing of the Absorption Spectroscopic Data
The spectral pretreatment work was divided into the following steps [39-44]:

(1) Filter data. Due to the band selective absorption of light, the peaks of spectral data
were concentrated in the ultraviolet region. The absorbance of most water samples
was distributed in the band 190-250 nm, and some water samples were more than
250 nm. The absorbance values of the water sample spectral data between 300 and
1100 nm were basically 0. To reduce the amount of spectral data, facilitate data pre-
processing, improve the modeling efficiency of water inrush source identification
model, and maximize the retention of spectral information, only the spectral data
between 190 and 300 nm were selected.

(2) Baseline correction. In the process of spectral data acquisition, the error caused by
instrument background or other factors could not be avoided and would cause a
baseline drift in the collected spectral data. Furthermore, the interference among dif-
ferent components of the sample could also lead to overlapping in the absorption
spectrum. To solve this problem, the necessary baseline correction method was used
to process and optimize the spectrum.

(3) Scattering correction. Light scattering correction accounted for the spectral differ-
ences caused by the uneven distribution of sample particles and the scattering of par-
ticle sizes in the process of diffuse reflection data acquisition.

(4) Smoothing and denoising. Spectral signals contain not only useful signals, but also
useless signals, which are called noise. Smoothing and denoising reduces the random
noise in the spectral signal to improve the signal noise ratio of the overall spectral
signal.

(5) Data enhancement. To effectively improve the robustness and prediction ability of
the model, the original spectral data had to be processed using a data enhancement
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algorithm to eliminate repetitive information, increase the difference between sam-
ples, and normalize the absorbance of samples to the same order of magnitude; this
would enhance the internal comparison of the data and eliminate errors due to large
differences in values.

Through the analysis and spectral preprocessing methods, the original data were sig-
nificantly adjusted according to the standard normal variable transformation, and the
multivariate scattering correction was adopted. The baseline correction considered that
the noise of the second-order derivative was too large, which rendered the original rela-
tive gathered data more discrete and adopted the first-order derivative method; smooth-
ing and denoising applied various evaluation indexes to calculate the results of each
smoothing method. After comparing the evaluation indexes, the wavelet transform
method with db19 as the wavelet transform function was selected as the smoothing
method. As compared to the original data and other smoothing methods, this smoothing
method was closer to the real optimal value. The data enhancement selected the com-
monly used min-max normalization as the basic algorithm, and on this basis, it was im-
proved. The specific principles of spectral data preprocessing methods can be found in
Supplementary Materials.

3.4. XGBoost Algorithm

XGBoost was proposed by Chen et al. [45]. Due to its outstanding efficiency and high
prediction accuracy, it has drawn widespread attention. As compared to the conventional
boost algorithm, the XGBoost algorithm accounts for the generation of weak learners by
optimizing the structured loss function (the loss function with the regularization term was
added, which reduced the risk of overfitting). Moreover, the XGBoost algorithm does not
use a search method but directly uses the first-order and second-order derivatives of the
loss function, and improves the performance of the algorithm by pre-sorting, weighted
quantile, and other technologies.

The XGBoost algorithm adopted the step-by-step forward additive model, and the
basic model was the tree model. XGBoost continuously splits the features to grow a tree.
When the t-th tree is constructed, the residuals generated by the regression prediction of
the training samples of the previous t-1 tree are fitted. When each fitting generates a new
tree, the tree structure is traversed to obtain the tree structure that minimizes the objective
function value. Finally, when the training is completed, k trees are obtained. The corre-
sponding scores of each tree are calculated, where each leaf node corresponds to a score.
Finally, the predicted value of the sample is obtained by adding the corresponding scores
of each tree [46,47]. The model is as follows. The detailed principle of the model is shown
in the supplementary material:

T
Fr(0 = ) ful0)
m=1

Among them, T is the number of trees; fu(X) is the expression of the m-th tree.

XGBoost can be used for both classification and ranking problems as well as regres-
sion problems. In this study, the regularization method was used to measure the complex-
ity of the tree, which controlled the complexity of the model and avoided overfitting. In
addition, in the process of model optimization, the second-order derivative was intro-
duced by the second-order Taylor expansion of the loss function, so that the model algo-
rithm could be convex-optimized, and the convergence rate in the training process was
improved along with the adaptability of the model. Referring to random forest algorithm,
the algorithm supported row sampling and column sampling, which not only reduced the
risk of overfitting but also the amount of calculation.
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3.5. Genetic Algorithm

A genetic algorithm is a stochastic global search optimization method that simulates
natural selection and genetics. Starting from any initial population, a group of individuals
more suitable for the environment is generated by random selection, crossover, and mu-
tation operations, and then the population evolves into an increasingly appropriate area
for the search environment. This generation continues to multiply and evolve until it fi-
nally converges upon a group of individuals most suitable for the environment, so as to
obtain high-quality solutions to the problem. For iterative enumeration, the local mini-
mum trap is a typical error in processing that then cannot solve the global maximum. A
genetic algorithm uses random probability mechanism to iterate, avoiding the problem of
local maximum. The enumeration search process does not consider the intrinsic properties
of the model; the optimization problem does not need to improve the algorithm, only to
use the evaluation function to inspire, so there are no mathematical requirements for the
algorithm problem. The process is simple; it is flexible and scalable for special problems.
Hybrid construction ensures the effectiveness of the algorithm and is easy to combine
with other algorithms [48].

The parameter tuning of XGBoost was more complex, including learning rate, base
model selection, tree parameters (e.g., maximum depth, minimum weight, gamma, sub-
sample ratio, tree column sample), adjusting regularization parameters (lambda and al-
pha), iterations, and so on. In this study, a genetic algorithm was selected to optimize the
parameter tuning process of XGBoost. The specific operation steps were as follows:

The first step, encode. Selected the appropriate encoding scheme to convert variable
encoding to chromosome string, usually binary encoding.

The second step, generate populations. Randomly generated N different individuals
to form an initial group according to the parameters selected by the model.

The third step, calculate the adaptation values. Enumerate each individual in the
early generation and calculate the fitness value of each individual according to the fitness
function.

The fourth step, selection. Referred to the individual’s fitness value, according to spe-
cific rules to select the best individual retention as the parent.

The fifth step, crossover and mutation. Two individuals were selected from the par-
ent generation, and two gene points were randomly selected. The eigenvalues of the gene
points of the individuals were exchanged to obtain the new individuals.

The sixth step, judgment loop. If the genetic algebra satisfied the termination condi-
tion, the calculation was terminated; otherwise, the calculation was transferred to the sec-
ond step.

3.6. Model Accuracy Evaluation

Root-mean-square error (RMSE) represents the error between the measured value
and the predicted value, which is a common evaluation index to measure model predic-
tion ability and algorithm performance [49]. In this study, since the model would predict
the proportional relationship of mixed water samples, the RMSE was improved, and a
score evaluation method based on RMSE was established:

A
RMSE

Among them, RMSE was calculated using the following formula:

score =

Among them, y; is the measured value; 3, is the predicted value.
A represents the absolute value of the difference between the measured value and
the predicted value, the ratio of the number of items less than 0.8 to the total number:
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In this study, the larger the score value, the better the performance of the model.

4. Results and Analysis
4.1. Raw Spectral Data Analysis

The band of this study was 190-1100 nm, and the spectral resolution was set at 1 nm.
To reduce the amount of spectral data, improve the modeling efficiency of the water in-
rush source identification model, and maximize the retention of the spectral information,
the original spectral data were screened, and only 190-250 nm data were used as experi-
mental data for model processing. The spectral data of the filtered mixed water samples
are shown in Figure 2.

(a) b)

°

Absorbance

4
n

0.0

190

210 220 230 240 250 190 200 210 230 230 240 250
Wavelength (nm) Wavelength (nm)

Figure 2. (a) H-1 and H-2 mixed water sample spectra, (b) H-3 and H-4 mixed water sample spec-
tra.

As shown in Figure 2, the mixed water samples of H-1 and H-2 showed a downward
trend between 190 nm and 220 nm and then gradually slowed down, and the 220 nm
tended to be 0; the spectral curve ascended as the proportion of the OM7 water sample
increased; the fluctuation of the spectral values of each proportion is small. The mixed
water samples of H-3 and H-4 first increased between 190 nm and 195 nm, began to de-
crease and gradually slowed down after 195 nm, and then tended towards 0 after 220 nm,
but the size relationship of the spectral curve was reversed. With the increase in the pro-
portion of the H-3 water samples, the whole spectral curve ascended further, and the peak
was near the ultraviolet direction, but only the peak of the H-3 water samples and the H-
3/H-4 ratio of 9:1 had a low curve. The stability of the water samples mixed between 190
nm and 197 nm was better, while the volatility of the pure water samples was larger.
Overall, the difference between the two groups of mixed samples was small, and the con-
nectivity of the sandstone aquifer and the Ordovician limestone aquifer in Huangyuchuan
Mine was better.

Due to differences in the types of substances, their concentrations, their absorption
and scattering intensities, the turbidity of the water samples, and the PH values, the spec-
tral curves of different aquifers were relatively different. The results shown in Figure 2
indicated that the spectral absorbance of aquifers of different mines was different. The
aquifer water samples of the same mine had common characteristics, but the curves of
characteristic peaks and spectral curve inclination were also relatively different. There-
fore, the correlation of the original water samples for each aquifer was calculated and the
Pearson’s correlation coefficient between each aquifer and between each band and pro-
portion was obtained (Figure 3).
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Figure 3. (a) Pearson’s correlation coefficient between each aquifer; (b) Pearson’s correlation coeffi-
cient between each band and proportion.

From the correlation of the water samples of various water layers, the H-3 sample
was approximately 0.7. The correlation of the water samples of several other water-con-
taining layers was relatively strong. According to the graphs of the correlation coefficients
of each band, the correlation between 190-300 nm and 1030-1100 nm was relatively large,
but most were approximately 0.4, and the maximum was not 0.6. It also showed that the
water samples needed to be processed further to obtain a correlation in the data analysis.

4.2. Spectral Data Preprocessing Analysis

In this study, the spectral data of the original water sample were simply prepro-
cessed, including reducing the absorbance of the blank water sample of distilled water,
the influence of measurement background, and water sample interference. On this basis,
the portion with the largest fluctuation of 190-250 nm of the two mixed water samples
was preprocessed, including selecting multivariate scattering correction to eliminate the
particle scattering in the original data, using the first-order derivative to eliminate the
baseline translation in the data, and using wavelet transform to eliminate the spectral
noise.

Figure 4 shows the processing results of the scattering correction. As shown in Figure
4, the baseline translation and offset of each spectrum were corrected according to the
standard spectrum, which not only improved the signal-to-noise ratio of the spectrum but
also corrected the fluctuation of the rising band of the mixed water sample and increased
the spectral curve.

Figure 5 shows the results of the baseline correction. In Figure 5, the curve of the first
derivative changed significantly, and the general trend was to descend and then rise. The
curve above 0 fluctuated more and was more discrete while the part of the 0 axis was
separated; the part of the curve that originally tended towards the 0 axis had a size rela-
tionship; now, it was on the 0 axis. Although the spectrum was more conducive to the
identification and purity testing of the analyte, the noise increase was too great, and the
amount of information was too large. This would result in an increase in the proportional
discrimination error of the water source, and better results would be obtained after the
first derivative of the baseline treatment.

Figure 6 shows the results of smoothing and denoising. As shown in Figure 6, as
compared to the original curve, the curve after the wavelet inverse transformation had a
significant change, the smoothing effect of the spectral curve was obvious, the extreme
value was optimized, the noise was reduced, and the general fluctuation was retained.
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Figure 4. Scattering correction diagram. (a) Spectra of H-1 and H-2 mixed water samples, (b) Spectra
of H-3 and H-4 mixed water samples.
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Figure 5. Baseline correction diagram. (a) Spectra of H-1 and H-2 mixed water samples, (b) Spectra
of H-3 and H-4 mixed water samples.
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Figure 6. Smooth denoising diagram. (a) H-1 and H-2 mixed water sample spectrum, (b) H-3 and
H-4 mixed water sample spectrum.

Overall, after spectral processing, the image had been significantly improved for both
the two aquifers with the same mixing ratio of the spectral curve dispersion and the two
aquifers with different mixing ratio of spectral curve discrimination. The correlation of
the original water samples of each aquifer was further calculated, and Pearson’s correla-
tion coefficient of each aquifer and of each band are shown in Figure 7. As shown in Figure
7, the correlation between the transformed and the water samples before the transfor-
mation was significantly reduced, which ensured that the difference between the samples
was larger.
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Figure 7. (a) Pearson’s correlation coefficient between each aquifer after treatment, (b) Pearson’s
correlation coefficient between each band and proportion after treatment.

Finally, to normalize all the spectral data and facilitate model analysis, the data en-
hancement processing was improved for each spectral dataset.

4.3. Model Result Analysis

In this study, the water-like spectrum data were randomly divided into training and
test sets at a ratio of 8:2. During the operation, the optimal solution was not uniform due
to the differences in the breeding algebra and the differences in the random initial popu-
lation. The results of the calculation would not be large enough. After several experiments,
the initial population was 20, and the population breeding algebra was determined 300
times. The optimization parameters of the genetic algorithm are shown in Figure 8.
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Figure 8. Optimization parameter process of genetic algorithm.

The optimal evaluation index in the genetic algorithm continued to increase. At iter-
ation 222, the maximum value of the construction evaluation index did not change, and
the maximum value was 2.51. The optimal parameters were:

learning_rate: 0.10
n_estimators: 100
max_depth: 1
min_child_weight: 1.99
gamma: 0.01
subsample: 0.95
colsample_bytree: 0.32
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Since the results obtained by different training and prediction set samples could be
different, to ensure that the model constructed by this parameter had good adaptability
in a specific environment, a new segmentation and cross-validation was conducted on the
data in the ratio of 8:2. After 19 min of training and 26 s of prediction, the GA-XGBoost
model yielded the results shown in Figure 9.
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Figure 9. Cross-validation of evaluation scores.

As shown in Figure 9, the average value of A (blue line) was approximately 0.94,
which was a proportion within the threshold; in other words, 16 of the 17 predicted sam-
ples were accurate. The RMSE value (average value of yellow line) was approximately
0.55, which was much smaller than the value of the adjacent label reduction. This indi-
cated that the overall predictive value and the experimental value level were relatively
small. The score value (green line) reached approximately 4.7 and only 1, and the fluctu-
ations were relatively large. It also showed that the selection of samples of A and RMSE
was relatively large. Overall, the score value was distant from the A and RMSE values,
which also indicated that the prediction was explained. Therefore, the effect was better.

To show the necessity of data preprocessing and enhancement, GA was used to cal-
culate the corresponding parameters, predict, and cross-validate the original samples and
the samples without improved normalization. The results are shown in Figure 10.
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Figure 10. (a) Prediction results without pretreatment, (b) Prediction results without data enhance-
ment.

As shown in Figure 10, the RMSE values of the prediction results without pretreat-
ment were significantly higher than those of A, which resulted in a smaller score value;
therefore, the prediction results were insufficient. Although the average score value of the
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prediction results without data enhancement reached the level of 1.55, it was not separate
from the RMSE and A values, and the lines overlapped. Moreover, the predicted value of
A was less than that of the data with improved normalization, and the average value was
approximately 0.83. In other words, 14 of the 17 met the requirements, which also indi-
cated that preprocessing and normalization were necessary.

To further highlight the advanced nature of the research algorithm and the necessity
of spectral data preprocessing, a box diagram of A, RMSE, and score after different data
processing methods was constructed (Figure 11). As shown in Figure 11, the tail length
and interquartile spacing of the untreated and unnormalized box map were the box map
with the obtained A values, which were unstable. The median line of the processed A and
score value was higher than the other two, while the median line of RMSE value was much
lower, and the accuracy of the processed data was greatly improved.
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Figure 11. (a) A, (b) RMSE, (c) score.

5. Discussion

In this study, absorption spectrum technology was introduced to identify mine water
inrush sources, and 66 spectral curves of the water samples in Huangyuchuan Mine were
prepared using a UV-Vis. To address the spectral data redundancy, baseline drift, uneven
particle distribution, random noise, and many other factors that could have affected the
prediction results of the model, a water sample spectral preprocessing method system,
including data screening, scattering correction, baseline correction, smoothing and de-
noising, and data enhancement was established. To address the complex parameter tun-
ing of the XGBoost algorithm, a deep-learning classifier of water inrush sources based on
GA-XGBoost was established. GA selected seven optimal XGBoost algorithm parameters
through random global search optimization; the XGBoost algorithm measured the com-
plexity of the tree by using the regularization method and introduced the second-order
derivative to control the complexity of the model and avoiding over-fitting, so that the
model algorithm could be convex-optimized, and the convergence speed and adaptability
in the training processes were improved. In addition, considering the particularity of the
study, a new model accuracy evaluation method was defined. The model operation re-
sults showed that the training time of GA-XGBoost model was 19 min, the prediction time
was 26 s, and the average evaluation accuracy was 94%, which indicated that the GA-
XGBoost model was reliable in the rapid identification on a mixed water inrush source
spectrum. In addition, the prediction accuracy of the model before and after spectral data
preprocessing was further compared. The results showed that the accuracy of the pro-
cessed data had been greatly improved, and the spectral preprocessing was proved.

In addition, the research also had some limitations. These included the amount of
data in the research being relatively small and the generalizability of the model being
poor. The absorbance curves of the water samples in different mining areas had significant
differences and diversity. The correlation between the spectral curves from a single water
source and different water sources was strong, and it was not easy to distinguish in the
algorithm, so a larger volume of data could improve the discriminant ability of the model.
Secondly, the study only examined the mixing of two types of the water sources. For sce-
narios with many types of water samples, the treatment method would need to be further
refined, and the model parameters would need to be further optimized. Future research
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should consider using a larger dataset and improving data processing and model discrim-
ination in multidimensional situations.

6. Conclusions

This objective of this study was to establish a new method for identifying mixed wa-
ter inrush sources using absorption spectroscopy. Therefore, a mixed water source iden-
tification method was established, including spectral data preprocessing, deep-learning
classification for spectral data identification of mixed water samples, and model accuracy
evaluation. The results showed that the spectral pretreatment of the water samples effec-
tively resolved redundancies in the original spectral data, baseline drifting, uneven parti-
cle distributions, and random noise. The GA-XGBoost deep-learning classifier was used
to identify and predict the water sample data. The prediction accuracy of the final model
was 94%, which was 11% higher than that of the prediction before the spectral data were
preprocessed. This further illustrated the reliability of the GA-XGBoost model for the
spectral identification of mixed water sources, as well as the necessity and importance of
spectral data preprocessing. The method and research results established in this study
provided a new direction for the study of mine water inrush source discrimination, as
well as a technical reference for decision-makers when developing effective mine water
disaster prevention programs. In addition, due to the lack of experimental data, the study
only conducted a mixed simulation experiment with two types of water sources. Future
research should involve a more in-depth experiment and simulation for the mixing of
multi-aquifer water sources.
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