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Abstract: The Huanghuaihai River Basin (HRB) is one of the most prominent areas of water resource
contradiction in China. It is of great significance to explore the relationship between water balance in
this area for a deep understanding of the response of the water cycle to climate change. In this study,
machine learning methods are used to prolong the actual evapotranspiration (ET) of the basin on the
time scale and explore water balances calculated from various sources. The following conclusions are
obtained: (1) it is found that the simulation accuracy of Global Land Evaporation Amsterdam Model
(GLEAM) products in HRB is good. The annual average ET spatial distribution tends to increase from
northwest to southeast; (2) three machine learning algorithms are used to construct the ET calculation
model. The correlation coefficients of the three methods are all above 0.9 and the mean relative error
values of random forest (RF) are all less than 30%. The RF has the best effect; (3) the relative errors of
water balance in HRB from 1956–1979, 1980–2002 and 2003–2018 are less than ±5%, which indicates
that the calculation of each element of the water cycle in the study area can well reflect the water
balance relationship of the basin.

Keywords: actual evapotranspiration; machine learning; hydrologic cycle; Huanghuaihai River Basin

1. Introduction

Water balance refers to the relationship between water budget and storage formed in
the water cycle process on a certain space-time scale. The basic expression is the water bal-
ance equation [1]. The constituent elements include replenishment, excretion, consumption
and storage variation, that is, source sink and state variables. The balanced relationship of
regional water plays an important role in indicating the carrying state of water resources,
and the abnormal changes, which exceed the threshold, will lead to ecological environment
and socio-economic problems [2]. In the normal equilibrium state, the storage variables
fluctuate up and down, but close to zero on a multi-year scale; in the non-equilibrium state,
the storage variables show irreversible changes. The water balance equation expresses
the total water input in the form of precipitation in the watershed as the amount of water
returned to the atmosphere by evapotranspiration (ET), the amount of water flowing out
of the catchment in the form of runoff, and the change in terrestrial water storage [3]. The
water balance equation is a calculation equation that follows mass conservation. It is an
indispensable tool to verify the water cycle in the basin scale.

Some studies have used the water balance equation to explain hydrological climate
change in the basin [4] and verify the accuracy of the estimation of one component, as
well as the estimation of some components when other components are known [5,6]. In
the study of the water balance relationship, the accuracy of the results will be limited by
the uncertainty of each variable in the water balance equation. Especially in large spatial
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scales and less-developed areas, there will be water imbalance due to the lack of data
from measured stations, as well as uncertainties caused by measuring instruments and
methods [7]. For each component of the water balance, such as precipitation, ET, runoff, and
water storage, flux data assimilation techniques can be optimized to combine information
from multiple data sources (field observations, satellite remote sensing, surface models,
and reanalysis data). They can also spatially optimize the combination of multiple available
data sources for changes in precipitation, ET, runoff, and total water storage [8]. Globally,
water balance is achieved through data assimilation techniques [9,10]. By comparing the
calibrated data set with the ground-based observation results, the combined data sets of
precipitation, ET and runoff are usually superior to a single data set [11].

In previous studies, precipitation and runoff have been observed for a long time in
many watersheds, and there are many studies on them [12–14]. However, because of the
limitation of observation data, there are few studies on the variation in ET and terrestrial
water storage (TWS), especially for a long time. ET mainly includes soil evaporation,
vegetation transpiration and water surface evaporation. It is the key element of ground-
gas exchange, the thermodynamic process and atmospheric dynamic process, and its
uncertainties are also the most important among the components of land water cycle [15].
Affected by climate, vegetation and many kinds of environmental factors [16], how to regard
ET as an important link in the water cycle and realize accurate estimation of regional ET has
always been a difficult point in the field of hydrometeorology [17,18]. Hydrological model
simulation is a common method to calculate each component in water cycle [19]. However,
the input and output data, model structure, initial conditions and model parameters of the
hydrological model will cause the uncertainties of the model and affect the accuracy of the
simulation. In order to improve the accuracy and spatial resolution, the remote sensing
technology developed in recent years can provide the instantaneous value of terrestrial
parameters, and provide the spatial continuous estimation of each component of the land
water cycle from region to global [20]. However, whether the estimates of these individual
components are accurate enough or not [21,22] and how to estimate variations in ET and
TWS before the availability of remote sensing data still need to be studied.

As one of the most contradictory areas of water resources in China, the Huanghuaihai
River Basin (HRB) has complex surface conditions, including various types of ecosystem,
multi-climatic zones and so on. There are great uncertainties about the value and trend
of ET [23]. Improving ET estimation in HRB is very important. Combining various ET
algorithms with machine learning methods, we propose a method of extending region
ET estimation. We collected the data of precipitation, ET, latent heat flux, surface water
resources and groundwater resources of HRB from 1956 to 2018. According to the data
of flux station, we evaluated the accuracy of the terrestrial evapotranspiration dataset
across China (TEDAC), Global Land Evaporation Amsterdam Model (GLEAM) and Global
Land Data Assimilation System (GLDAS) data sets. The study applied machine learning
methods to prolong ET of HRB on the time scale. Meanwhile, combined with the change in
water reserves, we analyzed the error of water balance calculations according to different
data sets from the view of water balance, then the evolution of each element of the water
cycle and the change in water balance are analyzed systematically. It is crucial to improve
the carrying capacity of regional water resources and realize the rational allocation of
water resources.

2. Study Area and Data
2.1. Study Area

The HRB consists of three major water resources areas, the Haihe River Basin, Huaihe
River Basin and Yellow River Basin. The study area lies between 96◦–123◦ E and 32◦–43◦ N
(Figure 1). The total area of the study area is about 1.433 million km2, accounting for
14.8% of the territory of China. There is a shortage of water resources in the HRB, which
accounts for 7% of the country’s water resources and carries 34% of the country’s population
and 38% of GDP. Because of the vast area and complex terrain, the climate conditions in this
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area are complex and changeable, and the monsoon climate is the main feature of the area.
According to the topographic and geomorphological characteristics of HRB, 59 tertiary
areas in the basin are divided into 8 regions, namely, Haihe mountainous area, Haihe
plain, Huaihe River Basin, Shandong Peninsula, area above Lanzhou, Lanzhou-Tudaoguai
Interval, Middle Yellow River and Lower Yellow River. In recent years, due to the abnormal
change in global climate, the water circulation system has changed to a certain extent,
which affects the relationship between the water resources situation and water balance.
Therefore, it is necessary to study the relationship between the evolution of water cycle
elements and water balance in HRB. This is of great significance for analyzing the impact
of climate change on ET and TWS, improving the understanding of the impact of climate
change, and exploring the development and utilization of water resources in the basin.
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2.2. Data Sources
2.2.1. Hydrological and Meteorological Data

The meteorological data used in this paper are derived from the Daily Data Set of China
Surface Climate data (V3.0), which includes the daily observation data of precipitation,
temperature, evaporation, sunshine, wind direction and wind speed, station pressure,
relative humidity and 0 cm ground temperature from 699 meteorological stations in China
from 1951 to 2018. The data set has been strictly controlled by quality. It is widely used in
the field of hydrometeorology because of its high integrity, continuity and reliability. The
data acquisition site is as follows: http://data.cma.cn/, accessed on 27 September 2021.
The location of the weather station is shown in Figure 1. The spatial scale of this study is
59 tertiary basins in HRB, while the spatial distribution of more than 180 meteorological
stations in HRB is very uneven.

In this study, the meteorological data of meteorological stations in the basin are
interpolated by the inverse distance weight interpolation method. The interpolation data of
each grid center point are approximately replaced by the surface data of each grid according
to the plane relationship between the grid and the HRB. According to the plane relationship
between the grid and the HRB, the meteorological data of each three levels of watershed
are obtained by using the area weighted average. The interpolation of meteorological data
from point to surface is realized.

2.2.2. Evapotranspiration Product Data

GLEAM [24] is a set of algorithms based on remote sensing observation data to
estimate different surface evaporation components (including transpiration, bare soil evap-
oration, interception loss, snow sublimation and open water evaporation). The intermediate
output of the model algorithm also includes potential evaporation, soil moisture in the
vegetation root area and surface soil moisture. The basic principle of the algorithm is to

http://data.cma.cn/
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make maximum use of a climate remote sensing observation data set to reverse evapo-
rative information. Firstly, the potential evaporative emission is calculated according to
the observation data of net radiation and near-surface temperature and Priestley–Taylor
equation. The evaporation limiting factor is calculated by considering vegetation water
content and root soil moisture, so that the potential evaporative emission is converted
into actual evaporative emission. The actual evapotranspiration data of GLEAM used
in this study are version v3.3a. The spatial resolution is 0.25◦ × 0.25◦ and the time span
is 1980–2018.

TEDAC [25] is a Chinese surface evaporative product (v1.5) based on the evaporative
complementary method. The input data include downward shortwave radiation, down-
ward long wave radiation, air temperature, air pressure of China Meteorological Forcing
Dataset (CMFD), surface emissivity and albedo of Global Land Surface Satellite (GLASS),
surface temperature and air humidity of ERA5-land, scattering emissivity of National
Centers for Environmental Prediction (NCEP) and so on. The time span of the dataset is
from 1982 to 2017 and the spatial resolution is 0.1◦. The temporal resolution is monthly and
the spatial range is the land area of China. The dataset provides a basis for the study of
long-time scale water cycles and climate change.

GLDAS is a kind of land surface hydrological model that is widely used at present.
GLDAS-2.0 and GLDAS-2.1 data are provided by using surface observation data and satel-
lite remote sensing data as driving data, combined with four land surface models of CLM,
Noah, Mosaic and VIC. In this paper, the monthly evaporative data of GLDAS-2.1 NOAH
dataset are used. The time span is 2000–2018 and the spatial resolution is 0.25◦ × 0.25◦.

The flux tower data (Table 1) adopt the latent heat flux observation data released by
the eddy correlator. This data set is provided by the “National Cryosphere Desert Data
Center/National Service Center for Speciality Environmental Observation Stations”. The
average period of the observed data was 30 min, 48 data a day, and the missing data were
marked as −6999. Data processing includes the following:

(i) Data quality control. The quality control steps of data include eliminating outliers,
correcting delay time, coordinate rotation (plane fitting method) and frequency re-
sponse correction. Ultrasonic virtual temperature correction and density correction
include eliminating the data of instrument error; eliminating the data of 1 h before
and after precipitation; eliminating the data of 10 Hz original data with a loss rate
of more than 3% per 30 min; and eliminating the observed data of weak turbulence
at night.

(ii) Data interpolation. When the missing value is less than 2 h, the effective flux before
and after the time is calculated by linear interpolation. When the missing value is
between 2 h and 4 d, the average diurnal variation method is used to calculate the
average effective flux in the same period of 5 days before and after the adjacent period.
When the missing measurement value exceeds 4 days, it may be caused by power
supply or instrument failure. The linear fitting relationship between latent heat flux
and air temperature, sensible heat flux and net radiation is established by selecting
the observation data of the vacancy adjacent period, and the daily value is inserted
according to the simulated value.

(iii) Calculation of evaporation. This is carried out according to latent heat flux and
vaporization latent heat of water (λ = 2.45 MJ × kg−1). The actual evaporation of the
basin is calculated by Formula (1).

ET =
LE
λ

(1)

The site distribution is as follows.
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Table 1. Basic information of flux stations.

Type Site Longitude Latitude Underlying Surface Type Altitude/m Time Series

Grassland
Haibei 101.3 37.6 Alpine meadow 3216 2003–2010
Arou 100.5 38.0 Alpine meadow 3033 2015–2017
Yakou 100.2 38.0 Alpine meadow 4148 2015–2017

Farmland

Luancheng 114.4 37.5
Double cropping rotation of
Winter Wheat and summer

maize in one year
50 2007.10–2013.9

Daxing 116.4 39.6 Corn/wheat, melon and fruit 20 2008–2010
Guantao 115.1 36.5 Corn/wheat, cotton 30 2008–2010
Miyun 117.3 40.6 Orchards, corn/bare land, towns 350 2008–2010
Huailai 115.8 40.4 Watered field corn 480 2013–2018

Yucheng 116.6 36.8 Warm temperate semi-humid
dry farmland 28 2003–2010

2.2.3. Terrestrial Water Storage Data

At present, Gravity Recovery and Climate Experiment (GRACE) data are mainly
calculated and published by the Center for Space Research at the University of Texas (CSR),
Jet Propulsion Laboratory (JPL) and Geo-Forschungs-Zentrum-Potsdam (GFZ). There are
two common methods to retrieve land water reserves from GRACE data. The first method
is to use the spherical harmonic coefficient method to calculate water reserves and the
second is to use mass concentration (Mascon) inversion. Compared with the spherical
harmonic coefficient method, the Mascon product can improve the temporal and spatial
resolution of the inversion results. The Mascon method is mainly based on GRACE Mascon
products issued by JPL and CSR and other organizations. These data have been corrected
and processed by relevant errors, which can be used to directly calculate the water reserves
in the study area. In this paper, the Mascon model published by CSR is used to solve the
data CSR_GRACE_GRACE-FO_RL06_Mascons, which is stored in NetCDF format with a
spatial resolution of 0.25◦ × 0.25◦. Based on the monthly mean value from 2004 to 2009, the
negative value indicates that the water reserves in that month are lower than the monthly
mean value from 2004 to 2009, and the positive value indicates that the water reserves are
surplus, that is, the monthly water reserves in that month are higher than the monthly
mean value from 2004 to 2009.

For the early period without GRACE data, the sum of snow water equivalent, soil
moisture and plant cap water data simulated by GLDAS-2.0Noah model from January
1956 to December 2011 is used as the result of TWS. The soil moisture is divided into
four layers, which are the results of soil aquifers of 0~10 cm, 10~40 cm, 40~100 cm
and 100~200 cm depths. The temporal resolution is 1 month and spatial resolution is
0.25◦ × 0.25◦.

2.2.4. Natural Runoff Data

The amount of surface water resources refers to the amount of water that can be
updated year by year in all kinds of surface water bodies, including lake water, river
water and ice and snow water, and can also be expressed by natural river runoff. The
amount of groundwater resources is the dynamic water quantity received by underground
aquifers from precipitation, surface water and so on. There is a close relationship between
surface water and groundwater. The repeated parts of surface water and groundwater
need to be deducted when calculating the total runoff of the basin. In this paper, the
underground runoff is represented by the amount of underground non-repetition. The
total runoff refers to the sum of surface and underground runoff minus the amount of
repetition, excluding the amount of incoming water outside the area. The runoff data for
1956–2000 were obtained from the second national water resources assessment, and the
data for 2001–2018 came from the water resources bulletins of the Haihe River, the Yellow
River and the Huaihe River.
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2.2.5. Vegetation Data

The normalized difference vegetation index (NDVI) [26] data from 1982 to 2018 are
based on the NOAA meteorological satellite data set provided by NASA of the United
States. The temporal resolution is 15 d and the spatial resolution is 8 × 8 km. The data
set has wide coverage, long time span and strong vegetation monitoring ability. It is
the longest continuous data set at present. The monthly value of NDVI is calculated by
the maximum value composite (MVC) method, which effectively reduces the influence
of clouds, atmosphere, aerosol and solar altitude angle in the atmosphere, and obtains
quarterly or annual NDVI data according to the average value of the month.

3. Methodology
3.1. Trend Test Method

In this paper, the linear regression method is used to analyze and calculate the chang-
ing trend of time series. The regression slope can be used to characterize the variation range
of time series. In addition, the Mann–Kendall (MK) test is used to calculate the statistically
significant level of the comparative trend, which is widely used in meteorological and
hydrological fields. When the significant level α = 0.05 is set, the critical value of the
test statistic MK value is ±1.96, that is, if MK is greater than 1.96, the increasing trend is
significant at the 0.05 level. The decreasing trend is significant when the MK value is less
than −1.96. For the detailed calculation formula and application of the MK test method,
please refer to the reference [27].

3.2. Data Accuracy Evaluation

For the evaluation of evaporative data and machine learning algorithm, the mean
absolute error (MAE), mean relative error (MRE), root mean square error (RMSE) and
Pearson correlation coefficient ®are used as the evaluation basis. The formula is as follows:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(2)

MAE =
1
n

n

∑
i=1
|xi − yi| (3)

MRE =
1
n

n

∑
i=1

(MAE/yi) (4)

RMSE =

√
1
n

n

∑
i=0

(xi − yi)
2 (5)

In the formula, xi is the test value of the sample, yi is the reference value of the
sample, x and y are the multi-year averages of xi and yi, respectively, and n is the number
of samples.

3.3. Machine Learning Algorithm

(i) Random forest

Random forest [28,29] (RF) is a forest composed of decision trees in a random way.
There is no correlation between each decision tree of random forest. After obtaining the
forest, when a new input sample enters, each decision tree in the forest is judged and
classified separately. RF uses the CART decision tree as a weak learner. When generating
each tree, the selected features of each tree are only a few randomly selected features, which
ensures the randomness of the features. Because of randomness, it plays a very important
role in reducing the variance in the model, so random forest generally does not need
additional pruning, that is, better generalization ability and anti-overfitting ability can be
obtained. On the basis of the decision tree model, multiple training subsets {x1, x2, . . . , xn}
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are obtained by random sampling of the whole training sample set {I1, I2, . . . , In}, and a
decision tree model is trained by using the training subset obtained by each sampling. By
constructing a new training data set, multiple decision trees can be trained in parallel, and
the integration of multiple decision tree models can be realized. For the test set samples X,
the multiple prediction values { f1(X), f2(X), . . . , fn(X)} obtained by many decision trees
are taken as the final simulation results.

(ii) BP neural network

A back propagation neural network (BP) is a kind of multi-layer feedforward neural
network [30]. Its main characteristic is that the signal propagates forward and the error
propagates back. It simulates the structure of the neural network of the human brain and is
a simplified biological model. Each layer of neural network is made up of neurons, and each
neuron alone is equivalent to a perceptual device. The input layer is single-layer structure,
the output layer is also single-layer structure, and the hidden layer can have multiple layers
or a single-layer structure. The neurons between the input layer, the hidden layer and the
output layer are all connected to each other and are fully connected. In general, the BP
neural network structure is that the input layer is stimulated and transmitted to the hidden
layer, and the hidden layer will transmit the stimulus to the output layer according to the
weights of the neurons and according to the rules. If the accuracy requirements are not met,
the output layer will return to the weight of the relationship between the adjusted neurons
until the predicted output value of the training meets the target accuracy requirements.

(iii) Extreme learning machine

The extreme learning machine (ELM) is used to train the single hidden layer feedfor-
ward neural network [31]. The hidden layer bias, input layer weight, weight and threshold
of the limit learning machine are randomly generated. In the whole training process, it is no
longer adjusted. The loss function composed of the training error term and the regular term
of the output layer weight norm is minimized to obtain the output layer weight, which is
obtained according to Moore–Penrose (MP) generalized inverse matrix theory.

3.4. Water Balance Analysis

For closed watersheds, the water balance formula can be written as follows:

∆W = P− R− ET + WWater transfer + WError (6)

In this study, ∆W is the change value of water storage in the basin, which can be
expressed by the value of terrestrial water storage change (TWSC). P is precipitation and R
is the total runoff of the basin, including surface runoff (Rs) and underground runoff (Rg).
ET is the actual evapotranspiration of the basin. WWater transfer is water transfer across
watersheds and WError is the absolute error of water balance. Therefore, the above formula
can be written as follows:

TWSC = P− Rs− Rg− ET + WWater transfer + WError (7)

4. Results
4.1. Evaluation and Extension of Evaporative Data
4.1.1. Evaluation of Evaporated Data

Figure 2 is the scatter diagram between ET calculated by TEDAC, GLEAM and GLDAS
and the observed data from nine flux stations. Table 2 shows their correlation coefficients
and root mean square errors. The r values between ET calculated by TEDAC and ET from
flux stations are 0.69~0.96, and the r values between GLDAS data and flux stations data are
0.73~0.97. Except for the Yucheng station and Daxing station, the above r values in other
stations are more than 0.8. The results show that the evapotranspirative data simulated
by TEDAC and GLDAS are in good agreement with those from most flux stations. The
r values between ET calculated by TEDAC and ET data from three grassland stations
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(Arou station, Yakou station and Haibei station) are all above 0.9, which indicates that the
application effect of TEDAC products in semi-arid region of grassland is better than other
kinds of regions. Only one-third of the farmland stations have r values above 0.9, and
Luancheng station has an obvious underestimation., which indicates that the simulation
effect of the TEDAC data set is general in the area of farmland. The r values between
GLEAM data and flux stations data are 0.76~0.96, and the r values of all stations are more
than 0.75. The r values of all grassland stations are above 0.9, indicating that the application
effect of GLEAM products in the grassland semi-arid area is also very good, and the
correlation between GLEAM data and data from Daxing station and Yucheng station has
been improved compared with TEDAC data sets and GLDAS data sets.
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Table 2. Correlation coefficient and RMSE between the values of evapotranspiration products and
the evapotranspiration at the flux site.

Site
r RMSE

TEDAC GLEAM GLDAS TEDAC GLEAM GLDAS

Arou station 0.96 0.96 0.97 15.03 18.08 30.28
Daxing station 0.69 0.76 0.74 36.57 26.58 32.40

Guantao station 0.95 0.93 0.90 12.83 12.74 14.51
Haibei station 0.95 0.94 0.89 12.41 15.44 33.80
Huailai station 0.84 0.84 0.82 21.69 17.14 23.31

Luancheng station 0.82 0.83 0.82 35.27 28.69 28.09
Miyun station 0.95 0.94 0.96 14.43 14.64 11.43

Yucheng station 0.73 0.78 0.73 31.50 26.85 28.11
Yakou station 0.90 0.94 0.92 15.38 12.95 16.40

We know that the error of evapotranspiration data simulated by GLDAS is large by the
RMSE, which is lower than 20 mm in only three stations (Guantao station, Miyun station
and Yakou station). The errors of TEDAC products and GLEAM products are large in
Daxing station, Luancheng station and Miyun station, but the errors of GLAEM products
are maintained below 20 mm, while those of TEDAC products exceed 30 mm. Although
TEDAC products are superior to GLAEM products in some stations, there is no significant
difference between the two products. Therefore, on the whole, the application effect of
GLEAM evapotranspirative products in HRB is the best and we can use this data set to
reflect the evolution of ET.

4.1.2. Extension of Evapotranspiration Data

The effects of meteorological and vegetation driving factors, such as precipitation,
relative humidity, air temperature, sunshine time, wind speed and NDVI, on the ET are
considered synthetically. The spatial scale is each third grade area in the basin, while the
time scale is monthly date, and the sequence length of meteorological data is 1956–2018.

We use the correlation coefficient to analyze the correlation between the driving
elements of the eight regions and between the driving elements and ET. The results are
shown in Figure 3. In the Haihe mountainous area, the correlation coefficient between
sunshine and ET is low, and so is wind speed. Precipitation, humidity, NDVI, sunshine
time and temperature are significantly and positively correlated with ET (p < 0.01). The
three driving elements, precipitation, NDVI and air temperature is the main influencing
factor of ET. The situation of Haihe plain is similar to that of the Haihe mountainous area.
For the area above Lanzhou, there is a significant positive correlation between temperature
and ET and also NDVI and ET, just as the r value is above 0.8. The correlation coefficient
between humidity and ET is also higher than that in the Haihe River Basin, which reaches
0.71. In the Lanzhou-Toudaoguai Interval, humidity and wind speed have a weak positive
correlation with ET, while precipitation, temperature and NDVI have a significant positive
correlation with ET, which are the main factors affecting ET. For the Lower Yellow River,
wind speed and sunshine have little influence on ET; therefore, precipitation, temperature,
NDVI and humidity are the main influencing factors. For the Huaihe River Basin and
Shandong Peninsula, the correlation coefficient between temperature and ET is the highest,
which is more than 0.9. Precipitation, sunshine, NDVI and humidity are also significantly
and positively correlated with ET. These five elements will have a great impact on the actual
evaporation. On the whole, precipitation, humidity, temperature, NDVI and sunshine have
greater influence on ET, while the influence of wind speed can be ignored.
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Figure 3. Pairwise correlation coefficients between driving factors and actual evapotranspiration in
the HRB.

Combined with the results of the correlation analysis, we decided to use precipitation,
relative humidity, air temperature, sunshine time and NDVI as driving factors. Although
the NDVI data before 1982 cannot be obtained, according to the research, it is found that the
NDVI of HRB has increased obviously only after 2000, due to the conversion of cropland to
forest and grassland and conservation projects of soil and water resource, and before 2000,
the change in NDVI is relatively small. Therefore, the monthly mean value of NDVI in
eight regions from 1982 to 2000 represents NDVI from 1956 to 1979, and then the driving
factors of machine learning model are analyzed.

The construction of the actual evaporative calculation model is based on the analysis
results of the actual evaporative driving elements, each element data set is taken as the
input of the model, and the number of training set and test set are selected. The ET of
the eight regions is used as the output of the model. Three different machine learning
algorithms are used to train and test the model, respectively, and then we can obtain the
simulation results. Each driver element set cover monthly scale data from 1982 to 2018,
80% of which are selected by the training set and 20% are the test set.

The three machine learning methods work well on the training set and the test set,
because the fitting coefficients r2 of all regions have reached about 0.9. The correlation of
the area above Lanzhou is the best, according to the r2 (0.98). The simulation results in the
Lower Yellow River and Shandong Peninsula are poor, but the coefficients are still close
to 0.9. The r2, RMSE and MRE of the test set are shown in Table 3 and Figure 4. In the
test set, the prediction accuracy of various machine learning algorithms also remains at a
high level. The root mean square error is 4.0~10.5, and the average relative deviation is
about 28.9%. Combined with the results of r2, RMSE and MRE, the simulation effect of
the random forest algorithm in HRB is the best because the simulation effects of the BP
neural network and extreme learning machine are better, which are only embodied in some
individual areas. So, we choose the simulation results of random forest to invert the actual
evapotranspiration in HRB from 1956 to 1979.
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Table 3. Comparison of simulation results of machine learning test set.

Research Area
RF BP ELM

r2 RMSE MRE r2 RMSE MRE r2 RMSE MRE

Haihe mountainous area 0.94 9.10 28.9% 0.94 6.32 38.8% 0.95 6.01 46.6%
Haihe plain 0.94 7.14 13.6% 0.91 7.98 33.8% 0.92 7.95 48.1%

Area above Lanzhou 0.98 7.85 21.7% 0.98 4.08 21.8% 0.98 4.00 20.3%
Lantou Interval 0.92 6.46 18.0% 0.91 4.59 31.5% 0.91 4.72 23.1%

Middle Yellow River 0.93 4.02 27.1% 0.92 6.98 23.2% 0.90 7.51 27.8%
Lower Yellow River 0.92 4.55 19.7% 0.88 9.95 27.4% 0.88 10.13 40.2%

Huai River Basin 0.94 6.29 23.5% 0.93 7.60 18.0% 0.92 8.63 26.9%
Shandong Peninsula 0.92 6.19 21.5% 0.89 10.50 56.3% 0.91 9.61 37.9%
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4.2. Regional Water Cycle Change
4.2.1. Evolution of Hydrological Elements

Figure 5 shows the evolution of hydrological elements in HRB and its subregions
from 1956 to 2018. The total precipitation in HRB from 1956 to 2018 is between 576.3
and 1080.6 billion m3, and the total evaporation is 554.3~736 billion m3, and the total
runoff is 128.1~356.8 billion m3. The absolute error of water balance is between −148.1
and 29.7 billion m3. The precipitation fluctuates greatly, and the precipitation is less than
evaporation in individual years in the Haihe Plain and the Lower Yellow River, which is
the main agricultural area in North China. Affected by artificial agricultural irrigation, it
will lead to the increase in evapotranspiration in the basin.
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Figure 6 shows the temporal variation trend of water cycle elements in eight sub-
regions of HRB, in which the precipitation in the Lanzhou-Toudaoguai Interval shows
no significant upward trend, while the rest of the area shows a downward trend. The
evaporation has a significant upward trend in the whole Yellow River Basin and Haihe
Plain, but no significant change in other areas. The amount of surface water resources
in Haihe mountainous area and plain, the middle and lower reaches of the Yellow River
and Shandong Peninsula all show a significant downward trend, which show a significant
upward trend in the area above Lanzhou and Haihe mountainous areas, and the change in
TWSC is relatively smooth, embodied by the insignificant upward or downward trend.
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4.2.2. Variation in Water Balance

According to the study of the change in hydrological elements, the precipitation
has obviously obviously since 1980, and the precipitation in each district has evidently
recovered in 2003. Therefore, taking 1980 and 2003 as the two time nodes, the water balance
analysis is divided into three stages. Table 4 shows the water balance calculations of eight
study areas in HRB. From the table, we can observe that in addition to the Lantou Interval,
the amount of income is less than the amount of water expenditure in the other areas.
The main expenditure item of water quantity in each study area is evaporation, and it
accounts for the largest proportion in the Lantou Interval, which is about 89.2~93.4%, this
situation may be caused by drought and shortage of water resources in the area. Meanwhile,
evaporation accounts for the least proportion in the Huaihe River Basin, where ET accounts
for only 65.2~67.6% of the total water expenditure. The Huaihe River Basin is rich in
precipitation and has a high population density and large amount of water demand for
social production, life and agriculture, resulting in a small proportion of evapotranspiration
in contrast to the total expenditure. The variation value of TWSC appears to be positive
in the Lanzhou area. Combined with other scholars, it is found that the reason may be
the degradation of permafrost caused by the increase in temperature, which leads to the
increase in water storage capacity of soil aquifer, and then it changes the hydrological cycle
process in the study area. In short, permafrost degradation may affect runoff by increasing
groundwater reserves. When the thickness of the active layer in permafrost area increases,
more surface water will infiltrate into underground aquifer through infiltration, which will
lead to the increase in TWS in the area above Lanzhou.

The water balance analysis of HRB includes the calculations of income water quantity,
expenditure water quantity, basin water storage capacity and their changes, in which the
main sources of income water quantity are precipitation and external water transfer, and
the expenditure items include actual evaporation, surface runoff and underground runoff,
while the storage variables are reflected by the change value of land water reserves. Table 5
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and Figure 7 show the water balance of HRB from 1956 to 2018. The total income water
quantity of the HRB from 1956 to 1979 was 793.38 billion m3. The total amount of water
expenditure is 841.71 billion m3. The absolute error of water balance is −35.61 billion m3.
From 1956 to 1979, the relative error was −4.5%. The total income of the HRB from 1980 to
2002 was 720.09 billion m3. The total amount of water expenditure is 799.29 billion m3. The
absolute error of water balance shows little change. From 1980 to 2002, the relative error
of water balance is −4.91%, and the error has increased slightly. The total income of the
HRB from 2003 to 2018 was 785.66 billion m3. The total amount of water expenditure is
863.21 billion m3. The absolute error of water balance is 38.53 billion m3. In all years, the
relative errors of water balance in 2004, 2006, 2009, 2013 and 2017 are larger, which in the
rest of the years are less than 10%. The relative errors of water balance in the three research
stages are all within ±5%, which indicates that the calculation of each element in the water
cycle of HRB has reached a relatively good accuracy and the calculation results can reflect
the water balance relationship of basin correctly.

Table 4. Statistical unit of water balance entry and exit and storage variables in HRB (100 million m3).

Zoning Years

Income
Water Quantity Expenditure Water Quantity Water Storage

Change Value

p ET Rs Rg Total TWSC

Haihe mountainous area
1956–1979 924.2 764.8 187.4 45.1 997.3 −21.8
1980–2002 827.5 754.3 119.5 48.4 922.2 −118.7
2003–2018 869.4 818.9 96.2 61.5 976.6 −208.7

Haihe plain
1956–1979 737.2 592.4 68.5 116.5 777.4 −97.5
1980–2002 639.0 576.4 42.8 94.0 713.2 −88.7
2003–2018 683.0 640.5 43.8 98.9 783.3 −164.9

Area above Lanzhou
1956–1979 1050.3 904.7 346.4 1.3 1252.5 3.9
1980–2002 991.7 885.5 322.6 3.1 1211.2 42.7
2003–2018 1075.2 963.1 333.8 1.8 1298.8 181.5

Lantou Interval
1956–1979 553.2 443.9 21.2 32.6 497.6 57.0
1980–2002 513.0 434.4 19.2 29.3 482.8 −80.0
2003–2018 589.7 491.2 17.6 16.8 525.6 −63.8

Middle Yellow River
1956–1979 1748.5 1468.7 254.1 63.8 1786.7 −76.3
1980–2002 1590.5 1479.1 196.6 63.5 1739.2 −90.9
2003–2018 1721.0 1618.9 171.7 69.3 1859.9 −162.1

Lower Yellow River
1956–1979 142.5 120.8 26.3 16.3 163.4 −14.3
1980–2002 125.5 117.2 20.6 14.3 152.0 −14.7
2003–2018 140.2 128.8 11.8 13.7 154.2 −12.4

Huaihe River Basin
1956–1979 2384.8 1633.0 610.9 207.2 2451.1 18.4
1980–2002 2184.9 1584.2 556.7 203.1 2343.9 −35.1
2003–2018 2345.0 1667.1 663.2 230.3 2570.6 66.9

Shandong Peninsula
1956–1979 393.0 351.1 103.9 36.1 491.2 3.6
1980–2002 328.9 338.9 57.3 32.1 428.4 −52.8
2003–2018 377.4 358.2 76.6 28.4 463.2 −26.8

Table 5. Analysis of water balance in HRB from 1956 to 2018.

Year
Total Income

Water Quantity
(108 m3)

Total Expenditure
Water Quantity

(108 m3)

Water Storage
Change Value

(108 m3)

Absolute Error
(108 m3)

Water Balance
Relative Error

1956–1979 7933.8 8417.1 −127.1 −356.1 −4.49%
1980–2002 7200.9 7992.9 −438.3 −353.7 −4.91%
2003–2018 7856.6 8632.1 −390.3 −385.3 −4.94%
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5. Discussion

The study of the cause and space pattern of ET has always been a hot issue in the study
of the hydrological cycle. Because of the few observation stations and short observation
time in the HRB, the research based on the measured data has not yet reached a unified
conclusion on the actual evaporation in the study area. The Mann–Kendall test is not suited
for data with periodicities (i.e., seasonal effects). Other robust season-trend fit models,
such as least-squares spectral analysis, could also be useful [32]. At present, the average
annual evaporation of different products in China is quite different [33,34]. As far as the
changing trend is concerned, the results of MOD16 and model simulation show that the ET
in China is mainly on the rise [35–37]. Compared with other products, GLEAM products
have better accuracy and spatial resolution in the Huaihe River Basin [38], Yellow River
source region [39] and even the whole of China [40,41].

When simulating evaporation by machine learning, this paper focuses on meteorologi-
cal and vegetation driving factors, such as precipitation, temperature and NDVI, but the
terrain of HRB is complex and the climate change is diverse. In recent years, the change
in underlying surface conditions caused by human activities, such as cross-basin water
transfer and afforestation, will also affect the calculation of actual evaporation [42,43].
The correlation between meteorological factors and ET in the Haihe River Basin and the
middle reaches of the Yellow River is poor or negative, which may be the influence of
urban development and industrialization, and the phenomenon of “evaporation paradox”
appears [44,45]. In addition, some studies show that the accuracy of the integration results
obtained by using a variety of algorithms is higher than the estimated value of a single
ET model [46,47]. Therefore, combined with a number of control factors, the fusion of the
actual evaporation simulation method is one of the research priorities in the future.

For the calculation results of the water balance in HRB from 1956 to 2018, it is found
that the amount of water earned in the study period is less than the amount of water
spent, and cannot reach a complete balance, and the amount of water in revenue is less
than the amount of water spent. According to the water resources bulletin of the basin,
the annual average annual precipitation of HRB from 2003 to 2018 is 825.2 billion m3.
The relative error of water balance calculated according to this value is only 0.8%, which
significantly improves the accuracy of the water balance calculation. Due to the lack of
water transfer data, this paper only considers the impact of cross-basin water transfer after
2008, which will also lead to low income and water volume. In addition, when calculating
the change value of water storage, the changes in reservoir operation and deeper soil
water are not taken into account. Only 0~2 m soil water is considered in the calculation of
water reserves [48], while there are many reservoirs in HRB, the degree of groundwater
development and utilization is high, and the groundwater level evidently drops [49], which
is also an important reason for the imbalance of water quantity.

6. Conclusions

In order to study the change in the water cycle in HRB, the evolution law and influ-
encing factors of ET were analyzed. Combining GLEAM products with vegetation and
meteorological data, the ET from 1956 to 1980 in HRB is simulated by the machine learning
algorithm. Based on the calculation results of each component of the water balance formula,
the following conclusions are obtained:

(1) The accuracy verification results of ET data from flux stations show that the simulation
accuracy of GLEAM products in HRB is good, and the annual average ET spatial
distribution tends to increase from northwest to southeast as a whole.

(2) Precipitation, temperature, sunshine, humidity and NDVI are used as the influencing
factors of ET. Three machine learning algorithms, BP, RF and ELM, are used to
construct the ET calculation model. The r values of the three methods are all above
0.9 and the MRE values of RF are all less than 30%. The RF calculates the best results.
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(3) The water balance analysis of HRB shows that the income item of the basin is mainly
precipitation, and the amount of water spent is mainly ET, accounting for 76% of the
total amount of water spent, and TWSC of the basin is in a state of decrease. The
relative errors of water balance in HRB from 1956–1979, 1980–2002 and 2003–2018
are less than ±5%, which indicates that the calculation of each element of the water
cycle in HRB has reached a certain accuracy and can reflect the relationship of water
balance in HRB.

At present, there are many products for the research on ET and the integration of
suitable products should be considered to improve the accuracy of the calculation results.
Different data sources cause certain uncertainties in the results of water balance studies.
How to realize the fusion of data and the elimination of unbalanced quantities in the
watershed still needs to be studied.
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