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Abstract: Water is a fundamental resource for human survival but the consumption of water that
is unfit for drinking leads to serious diseases. Access to high–resolution satellite imagery provides
an opportunity for innovation in the techniques used for water quality monitoring. With remote
sensing, water quality parameter concentrations can be estimated based on the band combinations of
the satellite images. In this study, a hybrid remote sensing and deep learning approach for forecasting
multi–step parameter concentrations was investigated for the advancement of the traditionally
employed water quality assessment techniques. Deep learning models, including a convolutional
neural network (CNN), fully connected network (FCN), recurrent neural network (RNN), multi–layer
perceptron (MLP), and long short term memory (LSTM), were evaluated for multi–step estimations
of an optically active parameter, i.e., electric conductivity (EC), and an inactive parameter, i.e.,
dissolved oxygen (DO). The estimation of EC and DO concentrations can aid in the analysis of the
levels of impurities and oxygen in water. The proposed solution will provide information on the
necessary changes needed in water management techniques for the betterment of society. EC and
DO parameters were taken as independent variables with dependent parameters, i.e., pH, turbidity,
total dissolved solids, chlorophyll–α, Secchi disk depth, and land surface temperature, which were
extracted from Landsat–8 data from the years 2014–2021 for the Rawal stream network. The bi–
directional LSTM obtained better results with a root mean square error (RMSE) of 0.2 (mg/L) for DO
and an RMSE of 281.741 (µS/cm) for EC, respectively. The results suggest that a hybrid approach
provides efficient and accurate results in feature extraction and evaluation of multi–step forecast of
both optically active and inactive water quality parameters.

Keywords: deep learning; multi–step forecasting; physico-chemical parameters; time series forecasting;
water quality monitoring

1. Introduction

Water is an essential resource for human survival on Earth. However, water quality
deterioration is a common occurrence due to various anthropogenic activities, including
the improper disposal of sewage and other waste materials, construction and poor agri-
cultural practices [1,2]. Water bodies can also be physically affected by natural factors
such as the erosion of soil [3]. It is important to continuously monitor any deterioration in
quality and plan for appropriate recovery mechanisms such as the use of aerators, linings,
biological treatments, embankments, etc. The most commonly used parameters for ana-
lyzing water quality include physico–chemical parameters such as pH, conductivity and
turbidity. These parameters are usually gathered manually and later tested in laboratories
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to measure water quality, which can be a tedious and time–consuming task. In Pakistan,
as in most other countries, these traditional methods and tools are used for collecting and
analyzing water samples [4–6]. Moreover, this requires human intervention and depends
on the ready availability of data collection sites. Overall, this can lead to delayed action in
response to events, leading to a deterioration in water quality. Traditionally, water quality
estimation studies focus on predicting the water quality index (WQI) value, which is a
multi–classification problem. However, water quality indices are biased as they are devel-
oped for a specific place and use a limited number of parameters. Thus, such indices are
not applicable to all water types as they are dependent on the core physico–chemical water
parameters, the location and the frequency of data sampling. With the recent advance-
ments in remote sensing technology, a more generic approach can be used for acquiring
timely data and increasing coverage in assessing water quality for any drinking water
reservoir [7–10]. In remote sensing, the water quality is monitored by measuring the param-
eters that change the spectral properties of water bodies upon their interaction with light.
These are known as the optically active constituents of water. On the other hand, there also
exist components that do not show any direct detectable signals but can be estimated as
they show high correlations with the detectable water quality parameters and these are
referred to as the optically inactive parameters of water [11,12]. However, remote sensing
alone does not have the capability to assess the water quality with precise and accurate
results. Thus, modern techniques involving the combination of remote sensing and AI for
accurate and timely water quality forecasts can be a more useful approach [13,14].

As for multi–step forecasting, researchers have been looking for more suitable models
as the state–of–the–art artificial neural networks (such as MLP) directly consider each time
point independently and discard much of the information in historical data in order to
make a prediction at each time step [15,16]. Here, deep–learning–based regression models
have been proven to be more effective as compared to machine learning models in solving
complex regression problems such as multi–output multivariate time series forecasting [17].
The traditional models lack the ability to capture real–world dependencies, whereas deep
neural networks such as recurrent neural network (RNN) and long short term memory
(LSTM) models can be very powerful in this regard [18,19]. This is especially true for
multi–output problems, where temporal dependencies need to be detected to make future
forecasts, as in the case of weather forecasting [20].

The use of deep learning on remote sensing data for water quality parameter estimation
is very limited. However, the work on water quality estimation through remote sensing
has been utilized in this study. Due to the availability of various satellite images, water
quality parameters have been investigated and various researchers have proposed different
estimation algorithms for calculating water quality parameters. These studies have used
satellites including Landsat, Sentinel and MODIS. Most of the studies have focused on
optically active parameters, such as Chl–α [21,22], temperature [11], turbidity [23] and
total suspended solids [24,25]. The reflection characteristics of optically active variables
have allowed researchers to estimate parameters using semi–empirical/semi–analytical
methods. These methods are used to establish patterns between the band wavelengths
and the water quality parameters and to derive formulas for parameter estimations. For
example, turbidity is calculated using bands 2 to 5 [26] and wavelength bands of 645 nm
and 859 nm [27] of Landsat 8 images. Chl–α is extracted from images of Sentinel–2A [28].
However, parameters with weak optical characteristics are also important for assessing
the water environment. Such water quality parameters can be derived from the optical
active parameters [29]. Optically inactive parameters are also retrieved through remote
sensing [30]. Similarly to optically inactive parameters, DO is retrieved through regression
methods applied to establish patterns comparing the remote sensing and field data based
on the ratio of Bands 2 and 4 [31]).
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With the advent of artificial intelligence, machine learning is gradually being applied
on remote sensing data. The use of machine learning techniques for water quality param-
eter estimation is traditionally carried out with models such as support vector machines
(SVMs) [32]. Similarly in [33], 12 water quality parameters including DO, EC, nitrate,
nitrite, pH, turbidity, etc., were extracted from the Karun River and the water quality
index (WQI) was estimated with the use of a M5 Model Tree classifier that exhibited an
RMSE of 1.412 and an MAE of 0.0274, in combination with the Gamma test technique,
which was applied to the acquired data for data reduction purposes. An artificial neural
network (ANN) model in combination with a linear regression model was used to extract
total phosphorus and total nitrogen concentrations from Landsat 8 images [34]. Other
regression–based models, including evolutionary polynomial regression, have been used to
predict DO, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) with
nine independent variables i.e., pH, turbidity, nitrite, nitrate nitrogen, phosphate, calcium,
magnesium, sodium and EC, giving RMSE values of 4.417, 4.999 and 5.557 for DO, COD
and BOD, respectively [35]. A deep neural network (DNN) was proposed, using multiple
hidden layers between the input and output layers and this network performed well in
resolving complex problems with high accuracy [36]. Deep–learning–based regression
models are very effective as compared to traditional models in solving complex regression
problems such as the forecasting of water quality parameters. A CNN model was used
to estimate the concentrations of phycocyanin and chl–α using airborne hyperspectral
imagery [37]. In [38], deep–learning–based regression models were applied to remote
sensing images of the Guanhe river in China to estimate optically inactive water quality
parameters—zinc, the permanganate index, total nitrogen, and total phosphorus—with a
coefficient of determination (R2) greater than 0.6. A hybrid approach using a traditional
model (ARIMA) and neural network model was investigated for water quality time series
prediction, resulting in RMSE values of 0.039, 0.063, and 0.051 for water temperature, boron
and DO, respectively [39]. A regression convolutional neural network (RegCNN) was
proposed for multi–step wastewater treatment prediction with an MSE of 0.05 [40].

The literature has revealed that, overall, the use of remote sensing techniques for the
estimation of water quality parameters is a much faster and economical method, with minor
concerns regarding the accuracy of the parameters retrieved. In addition, the studies have
discussed the importance of deep learning models in multi–step water quality forecasts.
However, less work has been conducted on utilizing the combination of both techniques
for water quality monitoring. Thus, in this study, an approach utilizing both remote
sensing and deep learning techniques applied to optically active and inactive water quality
parameter estimation was investigated.

In this study, data were acquired for the stream network of the Rawal watershed.
The Rawal watershed area consists of land as well as water streams. Hence, the stream
network was extracted from the Rawal watershed using GIS tools. A digital elevation
model (DEM) was created with Shuttle Radar Topography Mission (SRTM) data to extract
the stream network. A total of eight water quality parameters were extracted from Landsat
8 (Collection 1 Level 1(C1 L1)) images for the period from 2014 to 2021. Amongst these
eight parameters, six were optically active and two were optically inactive parameters.
The optically active water quality parameters included “turbidity”, “total dissolved solids
(TDS)”, “electric conductivity (EC)”, “Chlorophyll–α (chl–α)”, “Secchi disk depth (SDD)”
and “land surface temperature (LST)”. The optically inactive parameters were “pH” and
“dissolved oxygen (DO)”. Out of the eight parameters, seven were taken as dependent
variables to estimate the future concentrations of the inactive parameter ‘DO’, which
was considered an independent variable. Similarly, ‘EC’ was considered an independent
variable amongst the eight parameters, whereas the remaining seven parameters were
taken as dependent variables. The estimation of the EC and DO concentrations was chosen
as these parameters are crucial in monitoring water quality. EC and DO help to identify the
level of impurities and the level of oxygen in the water bodies, which can help analyze the
survival of fish and other aquatic organisms. In addition, to analyze the performance of
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deep learning models on multivariate multi–step forecasts; various deep learning models
including a convolutional neural network (CNN), fully connected network (FCN), recurrent
neural network (RNN), multi–layer perceptron (MLP) and five variants of LSTMs [41] that
included vanilla, stacked, bidirectional, convolutional and CNN LSTMs were evaluated.
This study was limited to the satellite imagery collected for the years 2014 to 2021 that
covered the Rawal watershed area. Moreover, the optically active and inactive water quality
parameters, i.e., EC and DO, were estimated for current and future events, using different
water quality parameters with deep learning models. The study revealed that LSTMs
demonstrated significantly goodperformance in multi–step forecasting for both optically
active and inactive (EC and DO) parameters. The major contributions of this study are
as follows:

1. The extraction of the stream network for the Rawal watershed from the SRTM DEM.
2. The extraction of a total of eight water quality parameters, six optically active and

two optically inactive water quality parameters, by applying estimated band equations
on Landsat 8 satellite imagery for the Rawal watershed stream network pertaining to
the years 2014–2021.

3. The application of deep learning models for current and future multi–step forecasting
of an optically active parameter, i.e., EC, and an optically inactive parameter, i.e., DO,
using optically active/inactive water quality parameters. The analysis conducted
using the deep learning models demonstrated the decline in water quality over the
eight–year period and revealed that the factors that have contributed to the deteriora-
tion in water quality include seasonal variations and other environmental variables.

The value of using a remote sensing and machine learning approach was that it led
to some important conclusions, including the identification of (i) the fact that the quality
of water declined over the eight–year period, as well as (ii) the factors that contributed
to this deterioration in water quality. In this study we aimed to find practical methods
to analyze the factors affecting the water quality and to investigate the changes needed
in the traditional water quality monitoring techniques for the betterment of society on
a global scale. This will improve the socio–economic environment, which is dependent
on an appropriate standard of water quality for its development, which may include
activities such as agricultural operations. Therefore, the proposed solution can be used as
a guideline for applications in other drinking water reservoirs besides the current study
area. The hybrid deep learning and remote sensing approach can promote innovation in
state–of–the–art water quality management and assessment techniques.

The paper is organized as follows. Section 2 covers the proposed methodology for the
extraction of the optically active and inactive water quality parameters and the application
of deep learning models is discussed. The results of the deep learning models are elabo-
rated in Section 3. In Section 4, the conclusions and future works in this area of research
are presented.

2. Materials and Methods

In this paper, we introduces a multi–step forecasting–based deep learning model for
the multi–step parameter estimation of two optically active and inactive water quality
parameters, i.e., EC and DO, for the study area of the Rawal watershed stream network.
Figure 1 illustrates the methodology employed for creating the desired model. The process
is divided into four main steps. These steps and the respective methods used are discussed
in this section.
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Figure 1. Steps proposed for estimating multi–step forecasts of EC and DO parameters for the study
area of the Rawal watershed.



Water 2022, 14, 2112 6 of 22

2.1. Study Area

The Rawal watershed covers an area of 272 sq km within longitudes 73°03’–73°24’ E
and latitudes 33°41’–33°54’ N [42]. The watershed area is surrounded by highly populated
places, which results in water quality deterioration due to anthropogenic activities such as
improper sewage disposal. Water is received from 4 major streams and 43 small streams.
The Rawal watershed encompasses land, as well as the water tributaries. Thus, to extract the
parameter values from only the water bodies, the study area was enhanced by producing a
stream network using SRTM DEM data, and this can be seen in Figure 2.

Figure 2. Study area DEM of the Rawal watershed and the stream network extracted after processing.

Stream Network: The production of the stream network required the latest map of
the Rawal watershed area. However, due to construction and development over the years,
the most recent map of the watershed did not show a high–resolution image of the area
of the water streams. To overcome this issue, GIS tools were utilized to extract only the
water bodies from the Rawal watershed. The resultant stream network was produced
using the SRTM data. The SRTM images of the desired area were mosaicked together using
ArcGIS software [43]. Later, flow direction and flow accumulation were calculated with the
Hydrology toolset in ArcGIS software to produce the required DEM. This tool helped to
model the flow of water across the Rawal DEM. The Rawal stream network can be seen in
Figure 2.

2.2. Data Acquisition

The data were acquired in the form of multi–spectral satellite images from Landsat 8
(C1 L1) satellite data from the archives of the United States Geological Survey (USGS) [44].
The Landsat images were observed for the years 2014 to 2021, which comprised of a total
of 327 images. However, in the data preprocessing phase, 167 out of 327 satellite images
were found to show or cover the Rawal lake area. These preprocessed satellite images were
used to perform band calculations to acquire water quality parameters from only the water
streams located in the watershed. A stream network was produced using SRTM DEM
data and then both optically active and inactive parameters, including pH, turbidity, DO,
TDS, EC, chl–α, SDD and LST, were extracted. Five–thousand data/sample points were
retrieved from each satellite image after the calculation of the water quality parameters, i.e.,
820,848 data points in total, as seen in Table 1.
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Figure 3 shows the acquisition process for a single Landsat image and the features
extracted for a single data point. Each parameter selected for this study plays a key role in
the monitoring of the water health [45]. For example, the LST parameter is responsible for
many water–borne processes. Similarly, high and low values of pH determine the usability
of water. pH values in the range of 6.5 to 8 are considered ideal for the productivity
of fish and other aquatic organisms. EC is an important indicator of pollution or some
other discharge in the water body. On the other hand, the turbidity and SDD parameters
signify the clarity of water, which can determine the depth of photosynthesis that can take
place in the water body. Thus, aquatic organisms are dependent on water turbidity for
survival as highly turbid water can impact the level of DO, which will affect the growth
rate. The Chl–α parameter indicates the presence of algae growth, which is essential for
photosynthesis and oxygen production. Another important parameter is DO, which has the
highest significance amongst the other variables, as all respiring organisms are dependent
on it for their survival. Moreover, the Landsat 8 remote sensor, used to retrieve data on
these water quality parameters, has a spatial resolution of 15–100 m, with the presence of
11 bands. The parameters that were successfully retrieved based on the band calculations
used in previous studies include the pH, turbidity, DO, TDS, EC, chl–α, SDD and LST.
These eight parameters were then reproduced for the selected study area.

Figure 3. Data acquisition process for a single mosaicked Landsat image.
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Table 1. Numbers of satellite images, preprocessed images and sample points retrieved for the years
2014 to 2021.

Years No. of Images Preprocessed Images that Cover
Rawal Lake No. of Samples

2014 41 22 107,492
2015 42 21 102,606
2016 44 23 112,378
2017 45 23 112,378
2018 42 21 102,606
2019 43 22 107,492
2020 38 19 92,834
2021 32 16 83,062
Total 327 167 820,848

Water Quality Parameter Extraction from Landsat Images

Landsat 8 (C1 L1) satellite data for an eight year time period, i.e., 2014 to 2021, were
used to extract the optically active and inactive water quality features, using different band
combinations. These satellite images have 11 bands with high–quality Landsat scenes, i.e.,
30 m (Bands 1–7, 9), 100 m (Bands 10, 11), and 15 m (Band 8). A total of 167 images were
retrieved and 5000 samples were extracted from the stream network for each image. To
extract each water quality feature from the images, an estimation algorithm was applied,
which involved the following steps.

1. Conversion of Digital Numbers (DN) to Top–Of–Atmosphere (TOA) Reflectance:
Preprocessing of the satellite images comprised operations including atmospheric or
geometric correction and normalization. The first step of retrieving the water quality
features involved the conversion of the DNs or the pixels in the satellite image to TOA
reflectance values. TOA reflectance values include factors from clouds, atmospheric
aerosols and gases. These DNs are converted to ToA reflectance values using rescaling
coefficients and parameters found in the metadata file provided with the data and
using the following expression:

Rx = MP ∗ Qcal + Ap (1)

In Equation (1), Rx = TOA reflectance for band number x; MP = REFLECTANCE_MULT

_BAND_x, Qcal = standard pixels of band x or DN of band x; and AP = REFLECTANCE_ADD

_BAND_x where x is band 2, 3, 4, 5 and 6, respectively. This conversion formula uses
values such as REFLECTANCE_MULT_BAND and REFLECTANCE_ADD_BAND , which are
kept in the metadata set with each image. REFLECTANCE_MULT_BAND is multiplied for
the reflectance correction valueto be applied with each input band and its default
value for Landsat 8 is 0.00002. Similarly, the REFLECTANCE_ADD_BAND is the addictive
correction value for reflectance to be applied with each input band and its default
value is −0.1 [46].

2. Application of the Estimated Equations:
The optically active/inactive features were then calculated by applying the algorithms
given in Table 2. These methods were selected as they performed the best amongst
others for the selected study area. Band math analysis was applied to the images
using the Google Earth Engine. A total of 0.82 M sample points for every feature
were extracted.
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Each feature was calculated based on different band combinations. The optically
inactive pH feature used a combination of bands 3, 4 and 6. The optically active
turbidity feature was extracted with bands 3, 4 and 5. Bands 1 and 5 were used to
extract EC and TDS. A combination of bands 2 and 4 were used to extract DO and
SDD. Finally, bands 2, 3, 4 and 5 were used to retrieve chl–α.

3. Evaluation of the Equation:
The methods were evaluated by comparing them with the observed ground parame-
ters for the study area. The best–performing method on the selected study area was
selected for extracting the sample points.

Table 2. Calculations performed to determine pH, Turbidity, DO, TDS, EC, Chl–α, SDD, and LST
using Landsat 8 images.

Parameters Adapted Equation Equation No Reference

pH 8.790 + (1.141 × R6) − (0.288 × ((R3)/(R4))) 2 [47]
Turbidity 35.121 − (14.489 × (R3/R4)) − (0.911 × R5) 3 [48]

DO (R2) / (R4) 4 [31,49]
TDS 120.750 + 264.752 × (R5/R1) 5 [47]
EC 241.500 + 529.504 × (R5/R1) 6 [47]

chl–α 54.658 + 520.451 × R2 − 1221.89 × R3 + 611.115 × R4 − 198.199 × R5 7 [26]
SDD 0.2 + 1.4 × ln(R2/R4) 8 [50]

LST

L10Λ = ML × Qcal + AL
1 9

[51]

BT = K2 / ln (1 + K1/L10Λ) 2 10
NDVI = (NIR − VIS)/(NIR + VIS) 3 11

Pv = ( ( NDVI − NDVIMIN ) / ( NDVIMAX − NDVIMIN ) ) 2 12
ε = 0.004 × Pv + 0.986 13

LST = BT/ ( 1 + ( Λ × BT/ ρ ) × (ln (ε) ) ) − 273.15 4 14

Note(s): 1 Here, L10Λ = TOA spectral radiance for Band 10, ML = RADIANCE_MULT_BAND_10,
AL = RADIANCE_ADD_BAND_10, 2 K1 = K1_CONSTANT_BAND_10, K2 = K2_CONSTANT_BAND_10,
3 NIR = Band 5, VIS = Band 4, 4 Λ = 10.895 µm, ρ = 1.438 × 10−2 m·K.

2.3. Deep Learning Models

In this study, various deep learning models, including MLP, CNN, FCN, RNN, and
five variants of LSTMs, were considered for the comparison of their estimations of the
water quality parameter concentrations. For time series problems, deep learning models
such as RNN and LSTM can discover dependence in the historical data with the patterns in
their networks. Deep networks such as CNN are used for image and video classification
problems but they can also be used for sequential data. In the following, we introduce the
parameters and the structures of the deep learning models used in this study.

2.3.1. Multi–Layer Perceptron (MLP)

In this study, the MLP model was made up of three layers in a dense layer. The first
layer had 128 neurons and the second layer had 64 neurons, each followed by a rectified
linear unit (ReLU). The ReLU activation function was used as it is fast, simple and works
well with a deep neural network, compared to other activation functions. The second layer
was followed by a dropout activation function. To avoid overfitting/ underfitting problems,
the deep neural network used a regulatory layer known as the dropout layer [52]. The
optimization hyperparameter was used to minimize the loss function to an acceptable level.
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2.3.2. Convolutional Neural Network (CNN)

A one–dimensional CNN was employed for estimating water parameter concentra-
tions in this study, and this did not differ much from a regular CNN model [53,54] other
than the fact that the convolutional hidden layer operated on one–dimensional sequential
data [55]. In this study, the first convolutional layer was followed by a second layer and
then a pooling layer that summarized the features by filtering the output of the preceding
convolutional layers. The convolutional and pooling layers were followed by a flatten layer
to reduce the input to a single one–dimensional vector. Then a dense fully connected layer
was implemented to interpret the extracted features.

2.3.3. Fully Connected Network (FCN)

The FCN model employed for this study was the same as the architecture originally
proposed by Wang et al. in 2017 [56], composed of three convolutional blocks, in which
each convolution is followed by a batch normalization fed to a ReLU activation function
with a slight change in the pooling layer where instead of taking the average, the results
are fed to a max pooling layer. Finally, this is followed by a dense layer to obtain the
final output.

2.3.4. Recurrent Neural Network (RNN)

The RNN employed in this study for predicting multi–step water quality parameter
concentrations is known as the stacked RNN. It uses a combination of multiple recurrent
neural networks [57]. The model had 2 layers; the first RNN layer was followed by a
dropout layer and then the second RNN layer, followed by the final dense layer.

2.3.5. Long Short Term Memory (LSTM) and Its Variants

LSTM was first proposed by Hochreiter and Schmidhubercin 1997 [58], and it is
popular due to its internal self–looped cell that captures the dynamic characteristics of a
time series problem. Five variants of LSTM models were evaluated in this study. These
included the basic LSTM and the LSTM–dominated and LSTM–integrated variations.
The integrated variations consisted of LSTM cells with other components, whereas the
dominated variations focused only on the performance of the LSTM cells [41]. The LSTM–
dominated versions included a stacked LSTM (S–LSTM), a bidirectional LSTM (Bi–LSTM),
a convolutional LSTM (Conv–LSTM), and an LSTM–integrated variant, i.e., a CNN LSTM
(CNN–LSTM). These variants were chosen for their distinct characteristics in handling
regression and time series problems.

Vanilla LSTM (V–LSTM) is the most commonly used LSTM proposed by Graves and
Schmidhuber. It has a single hidden layer with forget gates and an output layer. S–LSTM is
simply an LSTM model that has multiple hidden layers, each stacked one on top of another.
All layers use the output of the previous layer as their input. The final output is passed on
to a full–connect layer for classification. Bi–LSTM learns both forwards and backwards, as
proposed in [59]. This model is capable of accessing long–range context in both directions.
The model is trained using back–propagation through time (BPTT) [60]. The Conv–LSTM
model has units that directly read the convolutional input. Conv–LSTM tends to preserve
spatial information, which can help in the reconstruction of data. CNN–LSTM is a hybrid
of the CNN model with an LSTM backend. This hybrid model uses a CNN to interpret
subsequences of input and passes them together to the LSTM model to interpret. Each
input is passed through a convolutional and max pooling layer.
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2.3.6. Training of the Deep Learning Model

Once the water quality features were extracted from the clipped Rawal stream network,
the data were then prepped for the multi–step forecasting problem. This step involved data
preprocessing and normalization, before outputting datafor the training of the deep model.
The procedure is described below.

1. Data Preparation: The dataset was converted into a time series dataset by transforming
the timestamp column as an index.

2. Normalization: All features in the dataset were normalized in the range of 0 to 1, in a
process referred to as min–max normalization. For every water quality feature, the
values were in different units. For example, the pH of water was mostly in the range
of 6 to 9. Similarly, the EC of water lay in the range of 400 μS/cm to 1000 μS/cm. Thus,
to bring uniformity into the dataset, the values were normalized for each feature in
the range of 0 to 1.

3. Series to Supervised: The dataset was then further transformed for a supervised
learning problem by splitting the input sequence, i.e., the input data at the current
time (t) were split into a three dimensional shape (samples, time steps, features) for a
multiple input multi–step time series, where a lag time (t − n) and further time steps
(t + 1, t + 2, . . . , t + n) were defined for features (n).

4. Training and test sets: The transformed dataset was then split into training and test
sets. Here, the last 2 years’ worth of data (220,845 samples) were selected as the test
set and 5 years’ worth of data (600,000 samples) were selected as the training set.

5. Model Parameters: The parameters (neurons, epochs, and hidden layers) of the deep
model were initialized. Here, each deep model had a different set of parameters with
a difference in dropout layers and hidden layers.

6. Model Evaluation: The model was evaluated based on the three loss functions, i.e.,
root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). RMSE and MAE give the error in the same units as the
predicted variable and MAPE is given as a percentage (%).

Figure 4 shows the designed Bi–LSTM architecture used for predicting the multi–step
EC concentrations. This figure demonstrates the six steps involved in the training of the
deep model, as mentioned in detail in Section 2.3.6.
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Figure 4. The architecture of the designed Bi–LSTM model, displaying the steps involved in training
the deep model to predict the multi–step EC concentrations.
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3. Results and Discussion

The aim of this study was to explore the use of different deep learning models in
current and multi–step parameter estimation for both optically active and inactive water
quality parameters, i.e., EC and DO. The results and findings are discussed in detail in
this section. The models were assessed in terms of three loss functions i.e., the root mean
square error (RMSE), mean absolute error (MAE) and the mean absolute percentage error
(MAPE). The RMSE and MAE both measure the error in the same units as the predicted
variable. On the other hand, the MAPE indicates the error margin in the model forecast
and is expressed as a percentage (%). Moreover, there are some temporal dependencies for
time series forecasting problems. To overcome such dependencies, the data were trained
by determining a split point without shuffling them. Hence, the training was performed
on 0.6M samples without shuffling the data. A sample of the features calculated from the
Landsat 8 images for the year 2021 is depicted in Figure 5 and the last twenty samples are
shown in Table 3. The results of the deep learning algorithms—the CNN, FCN, RNN, MLP
and LSTM variants—are assessed and each model performance is compared on the basis of
the lowest RMSE reached with the same number of epochs.

Figure 5. Water quality features, i.e., Chl − α, turbidity, TDS, SDD, pH, LST, EC, and DO, extracted
from Landsat 8 images using the adapted equations mentioned in Table 2 for the year 2021.

The regression time series problem was framed inthe following two formulations:

1. Predict the DO and EC at the current time event (t) given the eight water quality
features at the prior time steps, that is, a lag time period of three (t − 3, t − 2, t − 1).

2. Predict the DO and EC for the next three events (t + 1, t + 2, t + 3) based on the eight
water quality features at the prior time steps with a lag time period of one (t − 1).

Next, the results for both of these formulations are discussed. The LSTM variants
showed exemplary performance as compared to the other deep learning models.

Predictions of current event parameters: For current predictions of the optically active
and inactive parameters, the last three lag events (t − 3, t − 2, t − 1) were used to predict
the current time event (t). Figure 6 displays the results for the current EC predictions. It
can be seen that S–LSTM outperformed the other deep models, followed by the bi–LSTM
with RMSE values of 281.689 and 281.811 (μS/cm), respectively. Overall, the LSTM variants
displayed a much better performance for the current time event prediction task. This shows
that the LSTM–dominated variants outperformed the LSTM–integrated ones. On the other
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hand, FCN and RNN models exhibited high RMSE values up to 301 (μS/cm). Figure 7
displays the results for the current DO prediction task. The best results were achieved with
V–LSTM and conv–LSTM, with RMSE values of 0.197, 0.198 (mg/L), respectively. Here,
the LSTM variants showed a better performance when compared with other deep models,
with V–LSTM giving only an 0.109 % MAPE. Similarly, for DO prediction, the RNN model
demonstrated a high RMSE of 0.242 (mg/L).

Table 3. Last 20 water quality samples extracted from LANDSAT 8 images for September 2021.

DO EC LST SDD TDS Tur chl–α pH

1.69 487.22 23.71 0.94 243.61 15.51 31.23 8.43
1.69 466.66 23.14 0.94 233.33 15.73 32.73 8.43
1.58 524.88 23.78 0.84 262.44 15.76 24.90 8.44
1.37 698.71 23.78 0.64 349.36 18.71 26.96 8.53
1.41 713.33 24.06 0.68 356.66 17.18 14.78 8.52
1.52 492.27 23.50 0.79 246.14 16.45 28.01 8.45
1.54 488.48 23.43 0.80 244.24 16.14 26.70 8.44
1.35 824.81 22.26 0.62 412.41 18.32 13.58 8.56
1.52 496.10 23.49 0.78 248.05 16.35 26.80 8.45
1.47 1065.93 23.72 0.74 532.96 17.32 1.79 8.57
1.66 460.37 23.40 0.91 230.19 15.63 31.76 8.43
1.60 526.96 23.23 0.86 263.48 16.27 28.01 8.45
1.64 493.14 23.08 0.90 246.57 16.27 31.84 8.45
1.25 1105.11 23.61 0.51 552.56 18.69 −9.95 8.69
1.69 468.18 23.62 0.93 234.09 15.72 33.26 8.43
1.28 685.49 18.29 0.54 342.75 19.07 1.93 8.59
1.49 773.22 24.09 0.76 386.61 17.18 16.71 8.51
1.50 993.48 22.87 0.77 496.74 16.65 0.72 8.53
1.76 456.41 23.55 0.99 228.20 15.46 35.63 8.42

Figure 6. Results for the optically active parameter EC for the current (t) event.

Predictions of future event parameters: For multi–step forecasts, a lag time period of
one (t − 1) was used to predict the next three events, i.e., t + 1, t + 2, and t + 3. For the future
time event predictions of optically active and inactive parameters, EC and DO, Bi–LSTM
performed the best among the other LSTM variants. For DO, V–LSTM and Bi–LSTM
showed the minimum RMSE values of 0.2 and 0.199 (mg/L), respectively. Other variants,
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such as CNN–LSTM and Conv–LSTM, showed much better results than other deep models
for the multi–step forecasting of DO, as shown in Table 4. The RNN model exhibited a
high RMSE of 0.238 (mg/L). For EC, the best results were shown by the two variants of
LSTM as well, i.e., S–LSTM and Bi–LSTM with RMSE values of 281.93 and 281.741 (μS/cm),
respectively, as seen in Table 5. Thus, for both current and future water quality forecasts,
the LSTM variants showed much better results than the other deep models. However,
Bi–LSTM was the best performer when compared with the other LSTM variants. For EC,
FCN and CNN showed high RMSE values of 296.46 and 294.38 (μS/cm), respectively.

Figure 7. Results for the optically inactive parameter DO for the current (t) event.

Table 4. Results for the optically inactive parameter DO for the multi–step (t + 1, t + 2, t + 3) events.

Deep Learner Lag Time Period Time Steps Epochs Hyperparameters RMSE (mg/L) MAE (mg/L) MAPE (%)

CNN 1 3 500 filters = 6, 12, average pooling
(size 1) 0.213 0.16 0.116

FCN 1 3 500 filters = 128, 256, 128 , kernel = 1, 1,
1, max pooling (size 1) 0.209 0.15 0.112 1

MLP 1 3 500 128, 64 with dropout 0.212 0.16 0.115

RNN 1 3 500 20 neurons, 2 layers with 1 dropout
0.2, 8 dense layer 0.238 0.18 0.135

V–LSTM 1 3 500 50 neurons 0.2 2 0.15 3 0.111

S–LSTM 1 3 500 dropout = 0.2, 4 layers with
50 neurons 0.213 0.16 0.116

Bi–LSTM 1 3 500 50 neurons 0.199 4 0.15 0.114

Conv–LSTM 1 3 500 filters = 64, kernel = 1, LSTM with
50 neurons 0.203 0.15 0.114

CNN–LSTM 1 3 500 filters = 64 and 128, kernel = 1, max
pooling, LSTM with 50 neurons 0.206 0.16 0.116

Note(s): 1 The lowest MAPE retrieved. 2 The second lowest RMSE retrieved. 3 The lowest MAE retrieved. 4 The
lowest RMSE retrieved.



Water 2022, 14, 2112 16 of 22

Table 5. Results for the optically active parameter EC for the multi–step (t + 1, t + 2, t + 3) events.

Deep Learner Lag Time Period Time Steps Epochs Hyperparameters RMSE (μS/cm) MAE
(μS/cm) MAPE (%)

CNN 1 3 500 filters = 64, 128, average pooling
(size 1) 294.38 238.72 0.33

FCN 1 3 500 filters = 128, 256, 128, kernel = 1, 1, 1,
max pooling (size 1) 296.464 238.59 0.325 1

MLP 1 3 500 128, 64 with dropout 288.939 236.96 0.373

RNN 1 3 500 20 neurons, 2 layers with 1 dropout
0.2, 8 dense layer 288.613 238.73 0.386

V–LSTM 1 3 500 50 neurons 290.254 234.23 2 0.326

S–LSTM 1 3 500 dropout = 0.2, 4 layers with
50 neurons 281.93 3 234.99 0.361

Bi–LSTM 1 3 500 50 neurons 281.741 4 234.36 0.363

Conv–LSTM 1 3 500 filters = 64, kernel = 1, LSTM with
50 neurons 282.153 235.55 0.359

CNN–LSTM 1 3 500 filters = 64 and 128, kernel = 1, max
pooling, LSTM with 50 neurons 282.614 236.25 0.360

Note(s): 1 The lowest MAPE retrieved. 2 The lowest MAE retrieved. 3 The second lowest RMSE retrieved. 4 The
lowest RMSE retrieved.

Figures 8 and 9 show a year–wise comparison of the Bi–LSTM model for DO and
EC, respectively. The performance of the Bi–LSTM model was the best among the deep
learning models. The actual and predicted forecasts for both DO and EC parameters for the
years 2020 and 2021 can be seen. Figure 8 shows that, for each time step, the error margin
for the DO predictions was very low. However, for EC, the forecasts for October through
December 2020 were not that accurate as seen in Figure 9. This could be due to the fact
that EC shows variations during the summer and winter seasons. EC values in winter are
generally lower than those in the summer season due to the high evaporation losses in
summer and the increased drainage water inflow [61]. Moreover, the year–wise analysis
showed a decline in the water quality over the eight–year period, as we can observe a
decline in the observed concentrations of the EC and DO water quality variables. The
decline in concentrations over the years can be attributed to seasonal variations and other
environmental variables [62].
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Figure 8. Cont.
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Figure 8. Test data results of the Bi–LSTM model for multi–step (t + 1, t + 2, t + 3) forecasts of the
optically inactive parameter DO for the years 2020 and 2021.
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Figure 9. Test data results of Bi–LSTM model for multi–step (t + 1, t + 2, t + 3) forecasts of the optically
active parameter EC for the years 2020 and 2021.

4. Conclusions

Rawal Lake is the main source of drinking water for the residents of Islamabad and
Rawalpindi. However, the lake water is unfit to drink from as it receives untreated sewage
and other wastewater due to the increase in population. Water quality assessments are
made using manual labor and in laboratories, which is time-consuming. Thus, using the
advancements in remote sensing and other technologies, water quality monitoring tasks
can be made simple and robust. In this study, eight water quality features for the years
2014 to 2021 were calculated using Landsat 8 images of the study area of the Rawal stream
network that were extracted with SRTM DEM data, using hydrological GIS tools. Six
optically active water quality parameters, including turbidity, Chl– α, SDD, TDS, EC, and
LST, and two optically inactive features, i.e., DO and pH, were taken as inputs to observe
the water quality parameter estimations for current and future events.

The experiments were limited to predicting only one of the active and inactive water
quality parameters, i.e., EC and DO. The multi–step water quality forecasts were made using
different deep learning models, i.e., CNN, FCN, MLP, RNN, and five variants of the LSTM
model, which included LSTM–dominated and LSTM–integrated versions, including vanilla,
stacked, bi–directional, convolutional, and a CNN LSTM hybrid. These models were then
compared on the basis of the lowest RMSE achieved. The results showed that the LSTM
variants displayed the best performance in the current and future multi–step parameter
estimations for both optically active and inactive parameters with the bi–directional LSTM
emerging as the leading variant among them. Moreover, the performance of the LSTM–
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dominated variants was better when compared with the LSTM–integrated version for the
observed problem.

The proposed approach, using the combination of remote sensing and machine learn-
ing, identified that the water quality declined over the eight–year period, as observed
through the concentrations of the water quality variables. Moreover, the factors that con-
tributed to this water quality deterioration include the concentrations of water quality
variables that are affected by seasonal variations and other environmental variables. Thus,
in the future, some additional water quality parameters can be used for multi–step water
quality parameter estimations and forecasts. These environmental variables, which may
include air quality parameters, slope, soil type, and the geology and lithology of the study
area, can be considered to examine water quality parameters.
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