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Abstract: Municipal water mains are built with a target service age of several decades. In such a
long life, breaks can occur, even multiple times. Water mains can be maintained before or right at
breaks. The former is referred to as the preventive strategy, whereas the latter is the corrective strategy.
Depending on the costs of repair, replacement, and failure consequence, different strategies should
typically be implemented in order to achieve the optimal watermain management in terms of life
cycle costs. This study aims to investigate the optimal scenarios for the two strategies based on a two-
time-scale (TTS) point process used to model the deterioration of water mains. The corrective strategy
is to determine the optimal number n, where upon the n-th break, implementing a replacement for
water main is justified, compared to a minimal repair. The preventive strategy is to determine the
optimal replacement time in terms of pipe survival probability Ps. Monte Carlo simulations are used
to investigate the optimal n and Ps considering a number of influential factors, including model
parameters of the intensity function and ratios of maintenance, replacement, and consequence costs.
Then, the full distributions of the life cycle costs are characterized with the mean of total life cycle
costs being the target for optimization. Last, a case study is illustrated to demonstrate the application
of both strategies in real water systems. An important finding is that with a typical pipe diameter of
400 mm and length of 200 m, the optimal n is typically less than five, and the optimal Ps is below 50%.

Keywords: maintenance and replacement; deterioration; water mains; two-time-scale model; strategy
optimization

1. Introduction

Water mains are key municipal infrastructure assets supporting the daily life of citi-
zens [1]. Though water mains are designed to serve for several decades, they deteriorate
with increasing service age, and can break before reaching the target design life. As a matter
of fact, unexpected water main breaks are very common in reality. A main reason is that
water mains are buried underground, and thus, it is very difficult to inspect and monitor
their service conditions nondestructively, non-disruptively, timely, and easily [2,3].

Upon a water main break, municipal water managers have to decide whether to repair
or replace the pipe. Even for water mains installed at some critical areas where a failure
would cause severe loss, a preventive strategy can be adopted. A corrective strategy means
maintaining a water main only after breaks occur, whereas a preventive strategy refers to
maintaining a water main before it breaks.

Usually, if the consequence of failure is of little concern, maintenance can be imple-
mented after a failure takes place. On the other end, if the failure would bring about
massive loss [4,5], then a preventive strategy is warranted. Other than these two extreme
cases, how to optimize the managing strategies depends on a set of influencing factors, for
example, deterioration of the mains, repair cost, replacement cost, consequence, readiness
of repairing technology, pipe location, ease of access, municipal budget, citizen affordability
upon break, flooding risk, etc.
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Although advanced managing strategies such as multiple target optimization on water
pipe network level have been advocated [6,7], the application seems still limited in local
areas due to the complexity. The current practice is still based on a ‘fire-fighting’ strategy
coupled with a service age strategy, for example, replacing a pipe when the service age
reaches 40 years regardless of its conditions. Moreover, the threshold service age at which
a pipe will be replaced is selected somewhat arbitrarily, and with a lack of sound evidence.
Obviously, improvements can be made.

This study investigates the optimization of managing strategies for water mains by
setting the minimization of life cycle cost as the target. To do this, a proper deterioration
model capturing breaks of water mains must be first determined. On the one hand,
repairing a broken water main minimally will no doubt resume its functionality; however,
the pipe condition remains the same, or at least not significantly improved, and degradation
continues as before. A drawback for minimal repair, although it costs less, is that the water
main could break again shortly after treatment. If so, another repair is then needed.
Continuous repairs add up to the maintenance cost. On the other hand, replacing a
broken water main with a new one starts a new life cycle. The new main is in excellent
condition, and can be expected to serve for a much longer time before a break takes place.
Nevertheless, a replacement typically costs much more than that of a minimal repair.
Despite extensive studies on the management and maintenance of infrastructure assets,
e.g., van Noortwijk [8], van Noortwijk and Frangopol [9], Jardine and Tsang [10], Bull [11],
and Campbell et al. [12], under which scenarios a water main should be replaced rather
than repaired remains a question to answer.

As a matter of fact, the estimation of the life cycle cost of water mains depends
significantly on the deterioration. There have been extensive deterioration models proposed
for water pipes, e.g., both break-history-independent [13–20] and -dependent [21–23].
Reviews of the modelling of water pipe deterioration can be seen in [2,24–28]. Obviously,
history independence is a strong assumption in the prediction of water main breaks, which
will inevitably reduce the prediction accuracy. As such, degradation models considering
the breaking histories are superior and advantageous to be adopted in life cycle costing
analysis (LCCA). Nevertheless, this is the part that has not yet received due attention in
the current literature for the life cycle management of municipal water pipe networks.
Existing studies, though they have made significant advances in water pipe management,
have focused largely upon network effects and a simplification of methods for LCCA, e.g.,
Termes-Rifé et al. [29], Roshani and Filion [30], Naoum-Sawaya et al. [31], Lee et al. [32],
Ghobadi et al. [33], among other excellent works. A brief review of LCCA for water pipes
can be found in Ghobadi et al. [33].

In this paper, we examine two simple maintenance and replacement strategies for
water mains. The first is a corrective strategy which is to determine the optimal number
of breaks n at which the water main is replaced; before reaching the n-th break, repair is
implemented upon a break. The second is a preventive strategy, which is to determine the
optimal survival probability at which the water main is replaced. The water main break,
along with time, is modelled as a two-time-scale (TTS) point process, proposed by Lin and
Yuan [34]. The influences of degradation intensity, ratios of maintenance, replacement,
and failure consequence costs are discussed. The Monte Carlo simulation approach is
adopted to conduct the analyses. A case study is provided in the end to elaborate the
application of the two strategies for the real world. The outcomes of this study are valuable
to municipalities for implementing better management strategies for water mains.

The rest of the paper is organized as follows. The next section introduces the TTS
degradation model for water mains and the simulation technique for breaks. The definition
of life cycle cost is formulated in Section 3 with respect to corrective and preventive
strategies. Section 4 shows the results of strategy optimization, followed by a case study in
Section 5. The paper is concluded in Section 6, followed by references.
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2. Degradation Model
2.1. Modelling Water Main Breaks as a Point Process

Upon a break, a water main is not always replaced by a new one; instead, it is usually
repaired, which brings the main back to functioning. Since the working conditions, e.g.,
surrounding soils, inner pressure, corrosion, external loading, etc., are typically unknown
or just partially known, physical modeling of the birth and growth of defects on a pipe
turns out to be very challenging, if not impossible [35]. An alternative is to model the
occurrence of a water main break phenomenically [36]. If ordering all water main breaks in
terms of breaking times, then a series of ‘points’ in the timeline are obtained, as shown in
Figure 1. Due to the unknown, the occurrence of these points is uncertain. This can then be
simply modelled as a stochastic point process.
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Figure 1. Concept of modelling failure events as a point process.

For a simple point process, it can be fully characterized by a conditional intensity
function describing the potential of an event to take place within the next interval of time
given the event history. According to Cox and Isham [37] and Cook and Lawless [38], the
conditional intensity λ(t|H(t)) can be mathematically expressed as:

λ(t|H(t)) = lim
∆t→0

1
∆t

Pr{N[t, t + ∆t) = 1|H(t)} (1)

where H(t) = history of the N(t) until before time t; and N[t, t + ∆t) is the number of
occurrences within the time interval [t, t + ∆t). where ∆t > 0. When ∆t approaches zero,
the probability for more than one event to occur within the ∆t period is ignorable. This
assumption can be written as Pr{N[t, t + ∆t) ≥ 2|H(t)} = o(∆t). Discussion on the general
theory of point processes in detail can be found in Cox and Isham [37], Jacobsen [39], Cook
and Lawless [38], and Daley and Vere-Jones [40], among others.

2.2. The Two-Time-Scale (TTS) Intensity Function

The break of water mains has been most commonly modelled as a Poisson process.
An implicit assumption of this type of modelling is that breaks to occur do not depend on
the breaking history. Nevertheless, this is a strong assumption and does not have any solid
scientific support. To account for the influence of breaking history upon the future breaks,
Lin and Yuan [34] developed a two-time-scale (TTS) intensity function for breaks of water
mains. The intensity function includes an overall time scale representing the entire pipe
deterioration, as well as a local time scale representing the renewal effect. The TTS function
is expressed as:

λ = αtβwγ (2)

where t = current time; w = sojourn time since the last break; α, β, and γ are model
parameters. Obviously, the break history in Equation (2) is simplified as inter-occurrence
duration w.
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Lin and Yuan [34] demonstrated the capability of the TTS model in capturing different
deterioration trends, i.e., both monotonic and non-monotonic. In particular, it is able to
model a bathtub curve deteriorating trend, which is of great interest to engineers, as shown
in Figure 2, where the surface of λ is plotted against model parameter β and the sojourn
time w given α = 0.1, β = 0.6, γ = −0.3, and TL = 20. Note that these values for α, β, and
γ are intentionally selected here for λ to be in a bathtub curve shape, which is a highly
desirable deterioration trend for engineers to model. With an increase in the sojourn time w
from zero, the intensity λ first drops dramatically until reaching a minimal, then increases
back as w continues to increase. The parameter α controls the overall scale of λ, whereas β
and γ are the shape factors controlling the trend together. With the increasing of w, λ first
decreases to a minimum and then increases, showing a bathtub curve. Table 1 summarizes
the trends that correspond to the permutations of β and γ. In general, the larger the λ, the
higher the breaking potential of a water main. Readers are directed to Lin and Yuan [34]
for more explorations on Equation (2).
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Figure 2. Three-dimensional plot of λ against model parameter β and the sojourn time w given
α = 0.1, β = 0.6, γ = −0.3, and TL = 20.

Table 1. Summary of deterioration trends captured by the TTS model with respect to permutations of
model parameters (after Lin and Yuan [34]).

Case #
Model Parameter

Conditional Intensity, λ (Equation (2))
β+γ γ

1
β + γ > 0

γ > 0 Monotonically increasing
2 γ = 0 Monotonically increasing
3 γ < 0 First decreasing, then increasing

4
β + γ = 0

γ > 0 Monotonically increasing
5 γ = 0 Constant
6 γ < 0 Monotonically decreasing

7
β + γ < 0

γ > 0 First increasing, then decreasing
8 γ = 0 Monotonically decreasing
9 γ < 0 Monotonically decreasing
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2.3. Simulating a TTS Point Process

Given λ, the probability of a water main surviving through a time duration [t1, t2] can
be computed as [38,41]:

Ps = Pr{N[t1, t2] = 0|H(t1)} = exp
[
−
∫ t2

t1

λ(u|H(u))du
]

(3)

Equation (3) suggests that once Ps, t1, and λ are known, t2 can be determined by
solving the equation. Based on the breaking data in the city of Toronto, Canada, Lin and
Yuan [34] showed that the TTS is superior to Poisson process, and water mains follow a
bathtub deterioration trend. Therefore, the TTS intensity function is adopted here, and the
model parameters are taken as α = 0.1, β = 0.6, and γ = −0.3 for analyses. Figure 3 shows
100 simulated TTS point processes starting from t1 = 0. For the simulations, Ps is randomly
sampled from a uniform distribution of U ∼ [0, 1].
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On average, the first two breaks occur within t = 10, i.e., t1 = 6.5, t2 = 9.8. A total of
eight breaks can be expected within t = 20. It should be noted that here, t does not have a
unit, meaning that it can be a year, month, minute, second, or others, depending on the
data used for investigation. Another observation is that the simulated break events tend to
occur either one shortly after another, or none within a relatively long period of time. This
matches observations from engineering experience.

3. Definition of Life Cycle Cost

Upon a break, a water main pipe can be either maintained or replaced. Maintenance
resumes the serviceability of the main while the deterioration continues at the original
rate [42–44]. On the other hand, a replacement brings in a new main pipe and starts a
new life cycle. Suppose the cost of a maintenance is Cm and the cost of a replacement
is Cr; then, it is reasonable to assume Cr > Cm, especially when the no-dig technology
is employed [45–49]. In addition to Cm and Cr, failure consequence is another primary
source of costs. For example, a water main break could block the traffic for hours, flooding
infrastructure assets, and thus, resulting in damage and loss. The cost due to failure
consequence is denoted as Cc in this study. Depending on λ, Cm, Cr, and Cc, different
strategies must be practiced to reach the goal of minimum life cycle cost for water main
asset management. Two asset management approaches are considered here: corrective
and preventive strategies. The following introduces these two strategies, including the
definition of life cycle cost and the steps to compute these costs.
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3.1. Corrective Strategy

A corrective strategy is that the maintenance, repair, or replacement is implemented
only after water main breaks take place. The cost for each break event is either (Cm + Cc)
for maintenance or (Cr + Cc) for replacement. As was pointed out earlier in this paper, a
repair or maintenance will only resume the serviceability of the main, but does not improve
its condition. The degradation is still accelerating with service age, meaning that the water
main will break more frequently as time goes. After some point, minimal repair is no longer
cost-effective compared to a renewal.

Consider a simple corrective maintenance strategy: replacing the water main with a
new one at the n-th breaks; then, the question becomes: what is the optimal n? This idea
is illustrated in Figure 1. In terms of the concept of net present value, the total cost of the
water main due to maintenance and replacement in a sufficient long planning horizon can
be written as:

CL|p,n =
k=p

∑
k=1

{
j=n−1

∑
j=1

D
(

tk,j

)[
Cc

(
tk,j

)
+ Cm

(
tk,j

)]
+ D(tk,n)[Cc(tk,n) + Cr(tk,n)]

}
(4)

where p = number of lifecycles; D = discount factor converting future cost to net present
value. Usually, D = (1 + d)−t, with d being the discounted rate. The most commonly
used discounted rate is 5% annually [50,51]. This study adopts d = 5% as a reference
for analyses.

Assuming Cm, Cr, and Cc are all constant with time, then for convenience, the life cycle
cost expressed by Equation (4) can be normalized by Cm as:

CL|p,n

Cm
=

k=p

∑
k=1

[
j=n−1

∑
j=1

D
(

tk,j

)( Cc

Cm
+ 1
)
+ D(tk,n)

(
Cc

Cm
+

Cr

Cm

)]
(5)

Equation (5) indicates that the optimal n mainly depends on the cost ratios of Cc
Cm

and
Cr
Cm

. If Cm = Cr, then obviously the main should be replaced at each break. The breaking
event becomes a renewal process. This also applies to cases with severe consequence, i.e.,
Cr � Cc. If Cm � Cr, then the optimal solution for n will depend on the ratio of Cc/Cr.

The steps to determine the optimal n value are as follows.
Step 1. Determine the values for the ratios of Cc

Cm
and Cr

Cm
, discounting factor d, and for

model parameters α, β, and γ;
Step 2. Select an initial n value, e.g., n = 1;
Step 3. Generate a realization of the TTS point process given the pre-determined α, β,

and γ;

Step 4. Compute the normalized life cycle cost
CL |p,n

Cm
using Equation (5);

Step 5. Repeat Steps 3 to 4 for a sufficient number of times, i.e., 100,000 times in this

paper, to obtain the full distribution of life cycle cost
CL |p,n

Cm
;

Step 6. Calculate the statistics of
CL |p,n

Cm
, i.e., mean, coefficient of variation;

Step 7. Repeat Steps 2 to 6 to compute the means and COVs of
CL |p,n

Cm
for different n

values; then, the one that gives minimal mean of
CL |p,n

Cm
is determined as the optimal;

Step 8. Change the values of Cc
Cm

, Cr
Cm

, d, α, β, and γ to investigate their influences on
the optimal n.

3.2. Preventive Strategy

As will be demonstrated later in this study, for cases with high failure consequence,
a corrective strategy might not be adequate, and the life cycle cost can still be further
optimized by adopting a preventive strategy, that is, replacing a water main before it fails.
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Since the exact time instance for a break to take place is unknown, this study takes
the survival probability Ps computed as Equation (3) as a time indicator for taking a
replacement action. The idea is illustrated in Figure 4.
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Figure 4. Illustration of the preventive strategy in terms of survival probability.

Suppose the last break of the water main is at t1; then, the steps to compute the cost of
the next life cycle CL are as follows.

Step 1. Select an initial survival probability Ps;
Step 2. Compute the corresponding tPs using Equation (3);
Step 3. Generate a random sample u from a uniform distribution U ∼ [0, 1];
Step 4. Determine t2 corresponding to the u with Equation (3);
Step 5. Compare t2 against tPs ; if t2 > tPs , then the cost is calculated as CL = D(tPs)× Cr,

and t1 is updated as t1 = tPs ; otherwise, t2 ≤ tPs , CL = D(t2)× (Cr + Cc), and t1 = t2;
Step 6. Repeat steps 2 to 5 for a large number of times; then sum all the costs up to be

the total cost of one simulated path;
Step 7. Repeat Step 6 a large number of times, and take the average as the mean total

life cycle cost.
Step 8. Change the initial Ps and repeat steps 2 to 7 until the minimum mean total life

cycle cost is reached; then, the corresponding Ps is determined as the optimal Ps.

4. Results of Strategy Optimization

A reference example is firstly set up for analysis purposes: α = 0.1, β = 0.6, γ = −0.3,
d = 5%, Cc/Cm = 1, and Cr/Cm = 10. This setting assumes that the loss due to failure is
the same as the cost for a maintenance, whereas the cost of a replacement is 10 times to that
of a maintenance. These ratios will be varied to reflect different scenarios, as well as their
influences on establishing optimal strategies.

4.1. Corrective Strategy

Figure 5 shows the distributions and the means of the normalized total life cycle costs
CL/Cm (in net present value) against the n value for the reference example. In the figure,
the mean CL/Cm was averaged from 10,000 simulations; each simulation had 1000 cycles.
The means, medians, and COVs for the CL/Cm in Figure 5 are summarized in Table 2. As
shown, all the distributions are more or less symmetric. Applying K-S tests shows that
most of them can be considered normal distributions. The mean CL/Cm is about 30 at
n = 1, but decreases to about 17.5 as n increases to 7; after that, CL/Cm increases to about
22 for n = 50. These results suggest that the optimal n value is 7, meaning a water main
pipe should be replaced by a new one rather than repaired every 7 breaks. The difference
of the mean CL/Cm reaches 12.5, i.e., n = 7 against n = 1.
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Figure 5. Normalized life cycle cost CL/Cm varying with replacement at the n-th failure n (d = 5%,
Cc/Cm = 1, and Cr/Cm = 10 ).

Table 2. Summary of means, medians, and COVs of the CL/Cm for the example based on
the simulations.

Para.
Replacement at the n-th Failure

1 2 3 4 5 6 7 8 9 10 20 30 40 50

Mean 29.9 23.2 20.0 18.8 17.9 17.8 17.5 17.6 17.6 17.8 19.0 20.1 21.0 21.7

Median 29.3 22.6 19.5 18.4 17.6 17.6 17.1 17.5 17.2 17.5 18.8 20.1 20.8 21.7

COV 0.32 0.30 0.30 0.30 0.28 0.27 0.27 0.26 0.26 0.26 0.23 0.22 0.23 0.23

Another observation from Figure 5 is that the coefficient of variation (COV) of CL/Cm
exhibits a decreasing trend with increasing n value. The CL/Cm COV is as large as 32%
for the n = 1 case, and continuously drops to about 22% for the n = 50 case. It is worth
mentioning here that this study takes the mean CL/Cm as the target for life cycle cost
optimization. For those taking both mean and COV of CL/Cm as the targets, a different
optimal n value can be resulted.

It is also worth noting that the mean CL/Cm has a very flat bottom for n, varying from
5 to 10. The differences in the mean CL/Cm values are practically negligible. Hence, though
the optimal value is n = 7, it also seems acceptable to take any integers between 5 and 10
for n.

Keeping the other two parameters unchanged while varying the third one for the
three TTS model parameters, the effects of α, β, and γ on the final outcome of the optimal
n value are examined. The results are provided in Figure 6. The increases of α and β
lead to a decrease of optimal n value, whereas for γ, the opposite is observed. This can
be explained by the fact that both α and β are parameters acting on the overall level of
λ. The increases of them will result in a higher deterioration intensity, meaning that the
water main tends to break more and more frequently. This causes a quick add-up of the
total repair cost, and thus, the need of a replacement is justified so as to yield an economic
benefit. After replacement, t is re-zeroed, and the λ dramatically drops. Hence, a lower
optimal n matches better the target of minimizing the total life cycle cost. On the other
hand, parameter γ is a factor acting on the local level of λ. A smaller γ (negative value)
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indicates a stronger local renewal effect of the water main degradation, which, in turn, calls
for a more frequent replacement of the asset.
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The second observation is that the effect of β is much larger than those by α and γ. As
β drops from 0.8 to 0.2, the optimal n correspondingly increases from 6 to 63, which is over
an order of magnitude of difference. For α and γ, the variation ranges are within 6 to 10 for
α decreasing from 0.20 to 0.05, and 4 to 7 for γ increasing from −7 to −0.1. This reveals
that β is the most influential parameter in λ.

Despite this, it should be emphasized that, in reality, the sojourn time of a break of
water mains could be very long, and the cost, after converted to the net present value,
would become very small. An indication of this is that the cost ratios Cc/Cm and Cr/Cm
could play a more important role than the three model parameters.

Figure 7 shows the influences of ratios of consequence to maintenance cost Cc/Cm and
replacement to maintenance cost Cr/Cm on the determined optimal n value. For Cr/Cm = 1,
the optimal n value will always be 1, regardless of Cc/Cm. This is understandable, as a
replacement gives a new water main whose condition is better than a repaired one with a
certain service age without extra cost. For Cr/Cm > 1, a smaller optimal n is obtained for a
larger Cc/Cm. For example, for Cr/Cm = 10, the optimal n is found to be 14 if Cc/Cm = 0,
but drops to 1 after Cc/Cm exceeds 9. For Cr/Cm, its increase will lead to an increase of
the optimal n value. Given Cc/Cm = 10, the optimal n value is 1 for Cr/Cm = 10, and
increases to 4 for Cr/Cm = 20. Figure 7 demonstrates the importance of Cc/Cm and Cr/Cm
in the decision-making of maintenance and replacement strategies for water mains. This
also implies the need to implement pertinent strategies for water mains located in different
areas, e.g., rural, commercial, residential, or industrial areas.
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nance cost Cr/Cm on optimal n value.

The last observation from Figure 7 is that it is not uncommon for the optimal n value to
be 1 under the corrective strategy framework. This suggests implementation of a preventive
strategy could be a better solution for those scenarios.

4.2. Preventive Strategy

For preventive strategy, there is no maintenance; only replacement is considered. As a
result, Cm is removed from the calculation of life cycle cost CL; only Cc and Cr are taken into
account. Figure 8 shows the normalized life cycle cost CL/Cr varying with replacement
at different survival probabilities of water mains. The means, medians, and COVs for
the CL/Cr in Figure 8 are summarized in Table 3. For the scenario of Cc/Cr = 10, the
optimal survival probability for implementing a replacement is found to be Ps = 70%. The
corresponding life cycle cost is CL/Cr = 28.2. If Ps is increased to 90%, CL/Cr would
increase to be about 33.0; if Ps is decreased to 0%, which is equivalent to the corrective
strategy of n = 1, CL/Cr would increase to be about 32.0. This means that turning the
strategy from corrective to preventive, in this case, would reduce the life cycle cost by
(32 − 28.2)/32 = 12%. For other cases, the improvement could be larger.
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Table 3. Summary of means, medians, and COVs of the CL/Cr for the example based on
the simulations.

Parameter
Replacement at the Survival Probability, Ps (%)

90 80 70 60 50 40 30 20 10 0

Mean 32.9 29.6 28.2 28.7 29.4 29.8 30.7 30.8 31.8 31.8

Median 31.8 28.6 27.2 28.2 28.3 28.2 29.7 29.9 30.7 31.1

COV 0.29 0.35 0.38 0.37 0.38 0.38 0.37 0.36 0.35 0.33

Similarly, though the mean CL/Cr reaches its minimum at Ps = 70%, the COV does
not concurrently reach its minimum. The COV of CL/Cr is found to be 0.38 at Ps = 70%,
but only 0.29 at Ps = 90% and 0.33 Ps = 0%. Again, if minimizing both means, and COV of
CL/Cr is the target, then the optimal Ps could not be 70%. This observation also calls for the
development of a new approach for the optimization of life cycle cost, e.g., multiple targets
or information entropy. The means of CL/Cr for Ps between 60% and 70% are essentially the
same; however, the sojourn times corresponding to these two Ps values are different. For
cases where assets will be decommissioned after a limited planning horizon, the advantage
of CL/Cr by setting Ps = 70% over Ps = 60% will then be more evident.

Figure 9 shows the influences of Cc/Cr on the optimal survival probability for re-
placement Ps with consideration of discounted rates at d = 1%, 5%, and 10%. As Cc/Cr
increases, i.e., the consequence due to water main breaks becomes higher, the main should
be replaced earlier, i.e., at larger Ps. For larger discounting rate with a fixed Cc/Cr, a higher
optimal Ps for replacement is reached. This is because a larger d results in less costs than
the net present value, which, in turn, gives higher optimal Ps. Interestingly, it is found that
the effect of d diminishes at a larger Cc/Cr value, for example, for Cc/Cr exceeding 20, the
optimal Ps appears to be independent on d. This can be explained by the fact that for large
Cc/Cr, the optimal Ps is also high, i.e., over 80%. The water main will be replaced ‘shortly’
after being put into service. Due to this short time duration, the effect of d is small.
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different discounted rates.

Table 4 summarizes the influences of model parameters, as well as cost ratios on the
optimal corrective and preventive strategies. In general, the model parameter β and the
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Cc/Cr ratio are the two most influential factors on the decision-making of maintenance and
replacement of water mains.

Table 4. Summary of effects of model parameters and cost ratios on determination of the optimal n
and Ps value.

Parameter Optimal n Optimal Ps Influence

α Negative Positive Medium
β Negative Positive High
γ Positive Negative Medium

Cr/Cm Positive N/A High
Cc/Cm Negative N/A High
Cc/Cr Negative Positive High

d Negative Positive Medium
Note: N/A = not applicable.

5. Case Study

This section presents the analysis of optimal maintenance and replacement strategies
for water mains using model parameters obtained from a real project in a relatively young
municipality in Canada. The water mains in the municipality are mainly ductile iron pipes
and concrete pressure pipes. This case study focuses on ductile pipes. Most of the pipes
were put into service before 1998; the oldest one was installed in 1967. The pipes are
typically 400 mm in diameter, and less than 200 m in length. Other information relating to
deterioration include pressure zone, surface type, and soil types; however, these pieces of
information are not complete. The break records for these pipes are available only after
January 1st, 1998. The records are basically the time instances when the breaks took place.

Based on the water main inventory and break records, Lin and Yuan [34] reported that
the degradation of ductile iron water mains in the municipality can be modelled by a TTS
intensity function including the length and diameter, expressed as:

λ = α

(
l
lo

)kL
(

D
Do

)kD

tβwγ (6)

where l and D are length and diameter of a water main, respectively; lo = 50 m and
Do = 400 mm are constants used to normalize l and D, respectively. The model parameters
were reported to be α = 0.0071, κL = 0.4344, κD = 1.0703, β = 0.4619, and γ = −0.5380.

Based on the lengths and diameters reported for the municipality by Lin and Yuan [34],
we consider an example water main with l = 200 m and D = 400 mm. Figure 10 shows the
distributions of predictions for the first five breaks for this example water main. The means,
medians, and COVs of these predictions are summarized in Table 5. The predictions spread
widely, with a COV of 1.055 for the first one, but reducing to 0.546 for the fifth one. The
means are 103.0, 148.5, 185.3, 217.0, and 241.4 years. The medians are 64.4, 118.0, 154.9,
194.6, and 218.1 years. Obviously, the distributions of the predictions are not symmetric,
since the means and medians are significantly deviated from each other; this deviation
reduces for later breaks.

Table 5. Mean, median, and COV of predictions of the first five breaks for the example water main.

Parameter 1st 2nd 3rd 4th 5th

Mean (Year) 103.0 148.5 185.3 217.0 241.4
Median (Year) 64.4 118.0 154.9 194.6 218.1

COV 1.055 0.796 0.678 0.605 0.546
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to those cases or not. It is also worth emphasizing here that the hydraulic pressure at 
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lack of data. Nevertheless, it should be formulated into the intensity function whenever 
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When corrective strategy is implemented for this water main, it is found that for most
cases, the optimal n value is under 5. A typical n value of 2 or 3 is obtained. This can be
expected, as the breaking times are so large (over 100 years) that the gaps of costs due
to maintenance or replacement are small in terms of net present value. Similar to earlier
analyses, an increase of Cc/Cm or a decrease of Cr/Cm would lead to a smaller optimal n
value, as shown in Figure 11.
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When a preventive strategy is preferred, the optimal survival probability to carry out
a replacement would be 10% for Cc/Cr = 1 (See Figure 12). If the consequence of failure is
much more severe than a replacement, for example, Cc/Cr > 20, then the water main is
best replaced at a survival probability as early as 40% (or equivalently, the probability of
failure reaches 60%). In general, it appears that the best time to implement a replacement
of a water main is when its survival probability lies below 50%.
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It is worth mentioning that the model parameters and ratios are firmly based on the
case study used here. Though the analysis process can be applied to other cases, caution
should be practiced to see whether the values of the parameters and ratios are applicable to
those cases or not. It is also worth emphasizing here that the hydraulic pressure at which a
water main operates is an important factor for pipe ageing, and thus, for life cycle costing
analysis. This factor is not explicitly accounted for in this case study due to the lack of
data. Nevertheless, it should be formulated into the intensity function whenever possible
to enable a more accurate LCC analysis.

6. Conclusions

This paper presented analyses of both corrective and preventive repair and replace-
ment strategies for water mains. The recurrent water main breaks with increasing service
age were modelled as a two-time-scale (TTS) stochastic point process. The corrective strat-
egy was simplified as finding the optimal n-th break at which implementing a replacement
is more cost-effective than a minimal repair. The preventive strategy is set as determin-
ing the optimal survival probability Ps for a water main to receive a replacement. Both
strategies were investigated from the perspective of life cycle cost (LCC). The Monte Carlo
simulation technique was adopted to conduct the analyses. A case study was illustrated to
demonstrate the application of the strategies for real water pipes. The main conclusions
drawn from this study are the following.

(1) Both of the optimal corrective and preventive strategies, optimal n and Ps, depend
highly on the degradation intensity of water mains, as well as the ratios of mainte-
nance, replacement, and failure consequence costs. For corrective strategy, the higher
the breaking intensity, the higher the failure consequence loss, and the lower the
replacement cost, the lower the optimal n value. For preventive strategy, the higher
the ratio of consequence loss to replacement cost, the higher the optimal Ps. In addi-
tion, the effect of discounting rate diminishes when the ratio of consequence loss to
replacement cost becomes large.

(2) The optimal maintenance and replacement strategies are sensitive to the overall shape
parameter of the service age in the TTS intensity function, whereas the effects of the
scale parameter and the local shape parameter of the sojourn time since the last break
on the optimal n and Ps are comparatively secondary.
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(3) A case study using a typical pipe diameter of 400 mm and length of 200 m shows that
the optimal n value is typically under 5, and the optimal Ps lies below 50%.

Though the approach adopted in this study for carrying out a life cycle cost (LCC)
analysis is easy to implement, it has three limitations. First, the TTS deterioration model
is used, which is advantageous, as it takes breaking history into account; however, the
parameter estimation for the TTS model would be very computationally demanding if the
early break history is missing. Moreover, only the mean of LCC is set as the single target for
optimization in this study. If the COV is also considered, then the optimization outcomes
could be different. Last, the LCC analysis presented in this study is on individual pipe level,
rather than pipe network level. Note that the latter two issues exist not only for this study,
but also for many other studies in the literature. It is suggested that the extension from pipe
to network level LCC analysis based on the TTS model should be carried out considering
multiple objective optimizations. Related topics can be referenced to, e.g., [6,52].
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