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Abstract: Water level data from telemetry stations typically demonstrate diverse behaviors over time.
Specific characteristics can be observed among distinct station groups that are different from others.
Clustering time series data into a specified number of groups based on their similarity is an initial
step for further analysis in water management analytics. Our main goal in this work is to develop a
clustering framework based on a combination of feature representations, feature reduction techniques,
as well as clustering algorithms. Thorough experiments on multiple combinations of these methods
were conducted and compared. Based on collected water level data in Thailand, UMAP reduced
representations of engineered features using HAC clustering with euclidean distance outperformed
other methods. Its performance reached 0.8 Fowlkes-Mallows score. Out of 81 stations, only nine
unclear cases were incorrectly clustered. Distinct behaviors with abrupt and frequent fluctuations
could be perfectly identified.

Keywords: water management analytics; hydrological time series; time series clustering; feature
representation; dimensionality reduction; clustering

1. Introduction

Water level obtained from telemetry stations is counted as time series data which is
a sequence of data points occurring over some period of time. Various characteristics by
nature are shared among a group of stations which are relatively different from other groups.
A time series clustering task aims to separate all data points into several groups based on
their similarity. In simple words, similar traits of data should be clustered together while
maximizing a dissimilarity among groups. It is successfully used in broad applications
ranging from biology, financial markets, weather data, and hydrometry. A great amount of
previous work was conducted in the area of time series clustering as thoroughly reviewed
in [1–6]. There are three main categories in the context of time series clustering. These
include whole time series clustering—which is our focus in this work—sub-sequence time
series clustering, and time point clustering.

According to a water management system, hydrological time series are automatically
collected from telemetry stations equipped with specifically designed sensors. The col-
lected water level data varies across stations due to multiple factors such as a geolocation,
environmental factors in surroundings, and even diverse seasonal effects. Some of these
data tend to behave similarly, and some behave completely different from others. Clus-
tering these data into distinct groups is an initial step prior to further analysis in water
management analytics, which includes anomaly detection and data imputation, as well as
a forecasting model [7]. Due to diverse behaviors of water level data across stations, the
developed models for these analytics tasks could underperform significantly. Different
parameter settings for groups of stations with similar behaviors were also needed. Hence,
accurately clustering similar data into distinct groups could substantially benefit the whole

Water 2022, 14, 2095. https://doi.org/10.3390/w14132095 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14132095
https://doi.org/10.3390/w14132095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-4438-7601
https://doi.org/10.3390/w14132095
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14132095?type=check_update&version=1


Water 2022, 14, 2095 2 of 14

process of the water management analytics. In addition, data preprocessing steps prior to
data visualizations or any further analysis required unique settings for diverse water level
patterns. Initially clustering these data into similar groups could alleviate manual work
that might be required in the current practice.

Previous work applied diverse methods and techniques to cluster hydrological time se-
ries. Pattanavijit et al. [8] proposed the linear clustering algorithm which required relatively
less computational time while maintaining desirable accuracy performance compared to a
traditional DBSCAN method. The large scale water level data in Thailand was used as the
case study in [8]. Numerous statistical clustering methods relying on any potential similar-
ity among hydrological time series data were explored, see [9]. Marín Celestino et al. [10]
assessed groundwater quality based on K-means clustering coupled with Principal Com-
ponent Analysis (PCA) and a spatial analysis. Furthermore, clustering approaches such
as K-Medoids, DBScan, and x-means on water level data were generally implemented for
detecting flood patterns. More recently, Li et al. [11] verified the usefulness of water depth
clustering techniques such as K-means clustering, agglomerative clustering, and spectral
clustering algorithms in an application of flood detection. Naranjo-Fernández et al. [12]
proposed groundwater level time series clustering with static and dynamic approaches
while Wunsch et al. [13] focused on feature-based clustering approaches. An ensemble
modeling based on Self-Organizing Maps with a modified DS2L-Algorithm was introduced
to characterize and cluster hydrographs [13]. Qiao and Li [14] relied on a linear clustering-
based approach to determine Lake Water Footprint to generate water level time series
based on multi-mission satellite altimetry data.

In addition, clustering time series data techniques were used in accordance with
other models to tackle specific water management tasks. Han et al. [15] introduced the
groundwater level modeling framework which relied on the self-organizing map (SOM)-
aided stepwise clustering model. Candelieri [16] used clustering algorithms to detect water
consumption patterns before applying short-term forecasting models. Similarly, Farzad and
El-Shafie [17] enhanced the typical ANNs rainfall-water level data prediction model with
the SOM clustering method in an unsupervised manner. Kardan Moghaddam et al. [18]
instead used spatial clustering approaches in a combination with machine learning models
to predict aquifer groundwater level. Not only the prediction task but clustering techniques
were also combined with simulation and optimization methods to accurately simulate
groundwater level data, see [19]. Moreover, effects of water level and precipitations on a
reservoir landslide as a target variable were tested with two-way ANOVA coupled with
the K-means clustering [20].

Additionally, some previous works involved contemporary real-life case studies of
sustainability or uncertainty in hydrology using related methods. Rezaei and Vadiati [21]
provided a comparative review of data-driven models for estimating river suspended
sediment load. Eskandari et al. [22] proposed an integrated approach of hydrochemical,
isotopic, and cluster-based methods to thoroughly investigate water evolution in a vul-
nerable karstic region [22]. An ensemble clustering approach was developed to assess the
spatiotemporal changes in groundwater quantity and quality [23]. In addition, a combina-
tion of genetic algorithm (GA) and self-organizing map (SOM) were introduced to cluster
groundwater level prior to applying the prediction model for estimating groundwater level
fluctuations [24].

Another pool of research applied unsupervised clustering techniques in relevant
applications with respect to ours. Weather data is one of the rich fields of time series
clustering analysis. Lin et al. [25] applied the functional PCA to initially observe US
weather patterns prior to implementing two types of clustering approaches. The K-means
clustering algorithm was proposed to tackle rainfall and storm prediction tasks, see [26–28].
Oppel and Fischer [29] identified temporal distributions of rainfall events based on an
unsupervised learning approach which further led to flood types correlation analysis.
The time series can typically involve spatial relationships among data points. Previous
works also attempted to cluster spatio-temporal data in relevant applications using various
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methods. Clustering approaches such as K-means and fuzzy C-means were applied with
spatio-temporal data such as the dam deformation monitoring data, see [30,31]. The
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) with its variants
were also used to determine the characteristics of earthquake clustering areas, see [32].

In this work, we focused mainly on clustering hydrological time series collected from
telemetry stations. The whole time series over time from each station was considered as
one data point in our analysis. We proposed the framework, which combined various
feature representation methods, dimensionality reduction techniques, as well as clustering
approaches. We retrieved water level time series from hydro-informatics institute (HII) as
our case study. Specifically, data from 2019 at 81 telemetry stations across Thailand were
selected due to their completeness. The proposed clustering framework was assessed based
on a manual observation as the ground truth. The Fowlkes-Mallows Score, a common
metric to evaluate the similarity among clusters, was used. A novel framework and model
experiments with data application distinguish our work from others. Our main contribution
is applying several components with advanced techniques to enhance the overall clustering
performance. To the best of our knowledge, no previous study applied the proposed
clustering algorithm pipeline on water level data locally collected in Thailand.

The paper is organized as follows. A main methodology regarding an experimental
analysis, the proposed framework and evaluation metrics is thoroughly described in
Section 2. The framework consists of feature representations, feature reductions, and
clustering algorithms. Section 3 provides results and discussions while the conclusions are
summarized in Section 4.

2. Materials and Methods

This study proposed a novel framework for clustering water level data collected from
telemetry stations. These stations were equipped with sensors to monitor water level pat-
terns over time. After the data collection process, an exploratory data analysis coupled with
a data preprocessing step were performed. Our main methodology framework consisted
of three main components which were feature representations, feature reductions and
clustering methods. Multiple approaches of all components and their combinations were
thoroughly experimented to achieve a desirable clustering performance. An evaluation
step was performed at the very end to ensure the model accuracy. A flow chart of the whole
process is summarized in Figure 1.

Figure 1. A flow process chart.

2.1. Data Collection and Data Preprocessing

According to the raw data collected from telemetry stations across Thailand, we
retrieved 10-min time series water level data during 2019. We picked the range of 2019
due to its completeness. The raw data commonly contained missing values and extreme
anomalies due to malfunctioned sensors or unexpected circumstances occurred at stations.
Prior to performing further analysis, an exploratory observation and a data pre-processing
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step were needed. Data visualizations of retrieved time series data from all stations
were conducted.

More recent data were relatively complete compared to long-dated historical data.
We eliminated stations whose missing values were proportionally high to avoid excessive
data manipulations. Extreme anomalies in the data were also removed whereas a simple
interpolation function was used to impute remaining incomplete data. After this pre-
processing step, there remained a total of 81 telemetry stations as depicted in Figure 2.

Figure 2. Locations of all 81 stations used as our case study.

The “LowessSmoother” smoothing function from tsmoothie library was applied to the
remaining data to alleviate extreme deviations or noises. The Locally Weighted Scatterplot
Smoothing (Lowess), a regression analysis method to create a smooth line through a scatter
plot, was applied to understand trends of any variable. Interesting trends and patterns were
expected to become more distinct resulting in more insights. For the sampling protocol,
we selected the first data point in each hour as a representation because variations within
an hour were not significant based on the data. With an exploratory observation, diverse
seasonal behaviors were observed in particular stations as depicted in Figure 3. Stations in
Case 1 tended to stay stable with an abrupt peak prior to moving back down to a previous
level. Highly fluctuated water level data could be clearly observed in stations within Case
2 group. While relatively random patterns with infrequent fluctuations were detected in
Case 3. Stations in Case 4 exhibited more frequent upward and downward trends than
those observed in Case 1 and Case 3.
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Figure 3. Examples of seasonal behaviors observed from the water level data within each group.
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2.2. Methodology

The main methodology pipeline consists of three subcomponents. According to the
raw data, water level time series is counted as a sequence of data over time. In order
to extract insightful information on time series behaviors, feature representations were
computed. With numerous choices of feature representation techniques, a total size of
extracted features were typically large. An additional step of the feature reduction through
dimensionality reduction techniques was considered. Resulting features were finally fed
into the clustering algorithms to group stations with similar patterns together.

2.2.1. Feature Representations

We initially extracted features based on manual observations through time series visu-
alizations from the data exploration step. These manually extracted features represented
the maximum, the minimum, and the range of the data within pre-specified windows.
These window periods included midnight-6 a.m., 6 a.m.-midday, midday-6 p.m. and
6 p.m.-midnight. Figure 4 illustrates these features within specific windows.

Figure 4. Examples of manually extracted features from a particular window.

To further enhance a list of insightful features, we adopted automated feature ex-
traction functions from the tsfresh package (https://tsfresh.readthedocs.io/en/latest/,
accessed on 1 August 2021). A large number of time series characteristics, which captured
insights from raw sequential data and associated dynamics, were computed. Resulting
features with a large proportion of null values, i.e., greater than 80%, were eliminated. The
elimination threshold at 80% was set based on manual observations and evaluations from
repeated experiments.

We also explored a specific type of neural networks named a sequence to sequence
(seq2seq) model which aimed to learn representations from sequence data in an unsuper-
vised manner. An autoencoder learned compressed representations of the raw data as
depicted in Figure 5. It consisted of encoder and decoder sub-components. The encoder
compressed the original data while the decoder attempted to reconstruct the original data
based on the compacted version resulting from the encoder. Both components were stacked
and trained from the raw time series data. After completing the training process, the
output of the encoder was retrieved as extracted features whereas the decoder part was
discarded. In addition, we adopted Deep Temporal Clustering Representation (DTCR)
which incorporated the K-means clustering objective into the seq2seq model [33]. With this
approach, extracted features tended to be more cluster-specific which potentially improved
cluster structures later on.

https://tsfresh.readthedocs.io/en/latest/
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Figure 5. A structure of the autoencoder used in our study.

2.2.2. Feature Reductions

The total number of extracted features from the previous step was typically large. Some
of these features might be irrelevant, which added unnecessary noise to the data. To retrieve
relatively more concise features, dimensionality reduction techniques were adopted.

First, Principal Component Analysis (PCA), a common dimensionality-reduction
method was implemented. It involved an eigend composition of the covariance matrix
generated from the original data to concentrate much of the information into the first few
principal components and ignore irrelevant ones.

Secondly, we adopted the Uniform Manifold Approximation and Projection (UMAP), a
universal purpose manifold learning and dimension reduction algorithm as a feature reduction
technique (https://umap-learn.readthedocs.io/en/latest/, accessed on 1 November 2021).
It attempted to optimize for the lower dimensional representation to constitute the con-
structed fuzzy topological representation. According to our experiments, we optimized the
number of parameters in both approaches to achieve preferable performance.

2.2.3. Clustering

Three main clustering algorithms were implemented to group a set of similar objects
together which were different from other groups in an unsupervised manner.

A commonly used K-means clustering method was explored. It is an iterative al-
gorithm which assigns points to the closest cluster and re-computes clusters’ centroids
repeatedly until reaching the convergence. The algorithm attempts to minimize the to-
tal variations within each cluster which implies a higher similarity of data points within
the cluster.

We also implemented a Hierarchical Agglomerative Clustering (HAC) algorithm to
subsequently group an individual data into a group of clusters. At the starting step, each
data point was treated as an individual cluster. The closest clusters were continuously
merged until only one cluster remained. Along with this method, a tree-like diagram
named Dendrogram was constructed to represent the hierarchy sequence where data
points were merged.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) was further
considered. It is an alternative approach for cases where K-means and HAC are potentially
inferior in clustering arbitrary shapes or varying densities. It is a density-based clustering
algorithm which relies on clustering dense regions in a separation from relatively lower
density areas. Interestingly, DBSCAN is not sensitive to outliers and does not require a
predefined number of clusters.

https://umap-learn.readthedocs.io/en/latest/
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All clustering algorithms used in this study involved similarity among data points
which could be captured from various distance metrics. Three diverse distance measures
were the subjects of experimentation. A euclidean distance calculated the line segment
between two coordinate points. A dynamic time warping (DTW), commonly used to
measure a matching similarity between two sequences, was also considered. In addition,
Kolmogorov–Smirnov distance was implemented to compute the maximum difference
between cumulative distribution functions (CDF) of two distinct distributions.

2.3. Evaluation Metrics

A common evaluation metric was used in this work. The Fowlkes–Mallows Score was
employed to evaluate the similarity among various clustering algorithms. In particular,
we initially constructed four classes of ground-truth labels based on manual annotations
of the data. The score was then computed to measure the performance of each particular
clustering algorithm by referencing against the ground-truth.

3. Results and Discussion

We conducted multiple experiments by varying feature representations, feature reduc-
tion techniques, and clustering algorithms as illustrated in Table 1. Within the proposed
clustering framework, we observed differences among clustering algorithms and used
distance measures. Among these experiments, concise representations through UMAP
of hand-crafted features and tsfresh extraction features using HAC clustering with the
euclidean distance provided superior performance at 0.8 Fowlkes-Mallows score.

In our experiment as shown in Table 1, we initially started with the raw data as
feature representations. We compared between two commonly used clustering algorithms,
namely K-means and HAC, with choices of distance measures. Large number of features
generated from the tsfresh package boosted up the performance significantly against the
previous two feature representations. We further incorporated auto-generated features
using the autoencoder technique with diverse choices of clustering models and distance
measures. Furthermore, a more complicated representation method, such as DTCR, was
experimented with. Unfortunately, none of them outperformed K-means with tsfresh
features. Later, we experimented on an enhancement of tsfresh features with hand-crafted
feature representations. The DBScan clustering algorithm was also explored with this set
of features. To further enhance the performance, we incorporated two choices of feature
reduction techniques, which were UMAP and PCA, to shrink feature spaces into lower
dimensions while maintaining captured information.

When the raw data was used as feature representations without further preprocessing,
K-means with DTW distance measure yielded superior performance. The DTW distance
played an important role in boosting the clustering performance as it captured relationships
over long sequences of data relatively well. The HAC clustering method was constructed
based on hierarchical relationships of data points so the DTW distance measure was not
suitable. Using the Kolmogorov–Smirnov distance yielded substantially low performance.
This potentially resulted from the similarity among distributions of two time series data that
was not well-measured. With these undeniable results, we disregard this distance measure
from further experiments. In the next step, the hand-crafted features were developed
based on domain knowledge as well as manual observations of the dataset. However,
these features were too simple to provide insightful information. Due to the simplicity of
hand-crafted features alone, the model performance was unsurprisingly low regardless
of the clustering algorithms. Extracted features from the tsfresh package were relatively
great in number with enriched information. According to the experiments, K-means with
euclidean distance tended to work well with these features.
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Table 1. Clustering performance.

Feature Extractions Clustering

Feature Representations Feature Reductions Clustering Algorithms Distance Measures
Fowlkes-

Mallows Score

Euclidean 0.446

DTW 0.618
K-means

Kolmogorov–
Smirnov

0.282

Euclidean 0.446

Raw data -

HAC Kolmogorov–
Smirnov

0.288

K-means 0.47
Hand-crafted Features -

HAC
Euclidean

0.453

K-means 0.798
Tsfresh -

HAC
Euclidean

0.629

Euclidean 0.581
K-means

DTW 0.566

Euclidean 0.677
Autoencoder -

HAC
DTW 0.532

DTCR K-means Euclidean 0.35

K-means 0.684

HAC 0.785-
DBScan

Euclidean
0.515

K-means 0.675

HAC 0.803UMAP
DBScan

Euclidean
0.684

K-means 0.706

HAC 0.743

Hand-crafted + Tsfresh

PCA
DBScan

Euclidean
0.288

Instead of these feature engineering techniques, the autoencoder based on neural net-
works to automatically construct feature representations was used. With the autoencoder
features, the HAC clustering yielded slightly better scores compared to K-means. How-
ever, the clustering performances were still inferior to results from the tsfresh-extracted
features. In terms of distance measures, clustering methods with DTW distances provided
worse scores than the common euclidean distances using the autoencoder features. Auto-
generated features from the autoencoder might not represent sequence relationships within
the time series data well enough for the DTW distance to capture. In addition, we adopted
the DTCR which relied on the seq2seq model adjusted toward clustering with k-means
objective function. Results from DTCR were not as promising as other methods. Training
the neural networks such as the autoencoder or DTCR with enhanced data potentially
yielded more desirable results.

We further combined hand-crafted and tsfresh feature representations with various
clustering methods including K-means, HAC, and DBScan. Resulting scores were slightly
lower than those from the tsfresh alone. This potentially resulted from the fact that several
hand-crafted features was relatively small compared to those from tsfresh. Adding a small
number of features did not contribute rich enough information for the clustering model to
improve. HAC is among the most suitable clustering methods with these features.
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Based on our observation, the number of extracted features was significantly large
especially from the tsfresh package. We then applied the dimensionality reduction tech-
niques which are UMAP and PCA to concise these features. These two approaches were
purposely designed to contain as rich important information with much less dimensions.
Generally, both feature reduction methods enhanced the overall performance with some
slight variations. The UMAP technique combined with HAC using the euclidean distance
provided the best performance. To further observe this pattern, a scatter plot among three
reduced features of UMAP is constructed as depicted in Figure 6. Each data point is color-
coded with the ground-truth label. As suggested in the plot, the same color data points
are flocked together with small errors. A confusion matrix corresponding to the proposed
method is shown in Figure 7.

Figure 6. A scatter plot of UMAP representations with cluster labels.

Figure 7. Confusion matrix of UMAP representations of hand-crafted features and tsfresh extraction
features using HAC with euclidean distance.

According to the confusion matrix depicted in Figure 7, the predictions of Cluster 2
were relatively accurate due to their specific characteristics with large fluctuations in the
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water level data. This can also be observed in a group of points in the top-left corner in
Figure 6 which was color-coded as Cluster 2. These points were tightly grouped together
and separate from the other clusters. The number of stations labeled as Cluster 4 was small
with respect to other clusters. Our proposed clustering framework was able to correctly
predict stations within this cluster even though two stations could not be recalled. From
Figure 6, points belonging to Cluster 4 were mostly grouped in the bottom-right corner, see
the purple dots. Our model could correctly predict these points while a few data points
located in a higher position were missed. Water level data from stations in Cluster 4 tended
to have relatively more frequent upward and downward abrupt trends compared to what
can be observed in Cluster 3. An example of the incorrectly classified stations as illustrated
in Figure 8 had slightly diverse patterns with respect to this cluster.

Figure 8. Station ‘SKG006’ in Cluster 4 which was incorrectly identified as Cluster 3.

Relatively large errors were observed in Clusters 1 and 3 as illustrated in overlaps
between orange and green points in Figure 6. There were six cases which were incorrectly
identified as Cluster 3 by the algorithm while the true labels were Cluster 1. Both of these
two clusters exhibited similar high and low tide characteristics at various timeframes. The
water level at the stations in Cluster 1 tended to stay stable at the lower range with an
abrupt peak at some point of time. On the other hand, the water level data within Cluster
3 typically had more fluctuations during the beginning of the year, reached its peak and
stayed for a while around the middle of the year. Figure 9 depicts an example of incorrectly
identified stations in Cluster 1 group which shares similar behaviors as those in Cluster 3.

Figure 9. Station ‘CHI013’ in Cluster 1 which was incorrectly identified as Cluster 3.
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On the other hand, we observed the error case of Cluster 3 in which the algorithm
was incorrectly specified as Cluster 1. From Figure 10 at station ’CHR002’, the water level
data at the beginning of the year was slightly high. It then decreased to a stable level prior
peaking with some fluctuations. Even though these behaviors were more similar to those
observed in Cluster 3, they partially resembled patterns within Cluster 1. This observation
explained the model inaccuracy. In order to enhance the model capability as our future
work, we could focus on a sequence of smaller parts of the whole data to better capture
finer patterns.

Figure 10. Station ‘CHR002’ in Cluster 3 which was incorrectly identified as Cluster 1.

Apart from adjusting the granularity of focused periods of study, our proposed clus-
tering framework currently relied on specific data preprocessing protocols such as the
smoothing function and the sampling protocol. Varying these settings potentially affect the
overall results. Additional work could be performed to explore other choices of these proto-
cols. Another major limitation of our work is the application of the proposed framework on
other data set collected from diverse settings or different locations. Developing a relatively
more robust framework could also be a potential direction of our work. Some previous
studies proposed an ensemble clustering technique which promisingly enhanced the model
performance and its robustness. Alternatively, we could incorporate our proposed model
with outlier detection or data manipulation tasks as the whole pipeline to enhance the
water management analytics.

4. Conclusions

Thorough experiments on water level time series clustering were performed in this
paper. Multiple feature representations, dimensionality reduction techniques as well as
clustering methods with diverse distance measures were implemented. Enhancing an
overall clustering framework of time series data through extensive experiments is our
main contribution.The proposed combination of feature extractions and clustering was
able to separate water level data measured at telemetry stations into distinct groups. In
particular, the reduced version of multiple enriched feature representations was able to
capture relationships within the time series relatively well. Stations with similar behaviors
were clustered together into the same group which was diverse compared with other
groups. Significantly unique behaviors such as the high fluctuations in Cluster 2 were
perfectly clustered. Small errors in the proposed algorithm could be observed in groups
with overlapped patterns. Clustering telemetry stations would be beneficial for further
analysis on water level data.
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