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Abstract: Deaths and property damage from floods have increased drastically in the past two decades
due to various reasons such as increased populations, unplanned developments, and climate change.
Such losses from floods can be reduced by issuing timely early warnings and through effective
response mechanisms based on situational intelligence during emerging flood situations. This paper
presents the outcome of a literature review that was conducted to identify the types and sources of
the intelligence required for flood warning and response processes as well as the technology solutions
that can be used for offering such intelligence. Twenty-seven different types of intelligence are
presented together with the technologies that can be used to extract such intelligence. Furthermore,
a conceptual architecture that illustrates how relevant technology solutions can be used to extract
intelligence at various stages of a flood cycle for decision-making in issuing early warnings and
planning responses is presented.

Keywords: flood early warning and response processes; situational intelligence; conceptual architecture

1. Introduction

Floods are a frequently occurring hazard that impose adverse effects on a significant
number of humans and cause substantial economic damage worldwide [1]. They constitute
the highest number of recorded hazards and are responsible for 43% of total disasters
between 1998 and 2017 according to the joint report by the Centre for Research on the
Epidemiology of Disasters (CRED) and the United Nations Office for Disaster Risk Reduc-
tion [2]. Floods affected 2 billion people and caused 142,000 deaths during this period [2]
and in recent years, flood frequency and its impact have been increasing drastically due to
climate change and unplanned urban developments [3,4].

Panwar and Sen [5] suggest that the economic impact of natural hazards such as floods
is more prominent in developing countries, and the CRED/UNISDR report [2,6] discloses
that deaths from natural hazards in low-income countries are seven times higher than those
in high-income countries. The key contributing factors for such increased losses have been
recognised as population growth and rapid urbanisation [7,8]. Many researchers [6,9] have
asserted that such losses and causalities can be significantly reduced by implementing an
effective Flood Early Warning and Response Systems (FEWRS). In this regard, the Sendai
Framework for Disaster Risk Reduction (SFDRR) emphasises the need for the availability of
multi-hazard warning systems and disaster risk information to the community by the end
of 2030 [10] (p. 12). The SFDRR promotes the need to have an integrated and coordinated
approach to “generate, process and disseminate” disaster risk information using state-of-art
technologies as a priority in member countries [11].

A study conducted by Rogers [12] reports that an effective forecast and warning
system based on accurate real-time information on disasters can reduce the average annual
flood damage by up to 35%. Furthermore, Seng [13] asserts that such a system can reduce
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vulnerability and mortality rates. The reasons for the continued use of ineffective early
warning systems that cause higher death rates are considered to be due to bureaucratic
water management and digital divide-related issues [14], resulting in a lack of timely
information for issuing warnings [9]. Therefore, the availability of an information system
(IS) that can offer accurate and timely data with high service quality and user satisfaction
has been recognised as one of the key reasons for implementing efficient FEWRSs [9].
Such information systems for flood warning and response systems should offer hazard
detection, forecasting, warnings, and responses [15]. A study of global early warning
systems within developed and developing countries [16,17] has found that the availability
of such technology platforms is an important factor that influences the effectiveness of early
warning systems in addition to policy, institutional, and societal factors.

Situational intelligence is crucial for making sound decisions quickly and efficiently,
especially in a crisis situation [18]. In simple terms, situational intelligence is the ability to
anticipate and react in a given situation [19]. Schilling argues that situational intelligence is
a process that offers insight into a situation by processing and visualising multi-sourced
data to make an appropriate decision on a specific situation [20]. The concept of situational
intelligence has been used in numerous applications including the military [21,22], power
and energy [23,24], petroleum [25], aviation [26], and disaster response [27,28]. In a crisis
scenario, authorities need credible information to understand the reality on the ground. For
example, in fluvial flooding, rainfall, river water level, and the number of persons impacted
are typical types of intelligence that are required by authorities for making better decisions
when issuing early warnings and responding to disasters.

The role of technology is important in acquiring intelligence in a crisis situation. In
the quest for intelligence for FEWRSs, a broad range of technologies such as the Internet of
Things (IoT) [29], big data [30], and near-real-time satellite data [31] are used to capture
critical information such as rainfall, rising river levels, and floor rates to detect flood threats.
Furthermore, integrated information systems [32,33], geographic information systems
(GIS) [34], and simulation techniques [35], are being used to process such information and to
generate early warnings. Increasingly, crowdsource technologies based on social media [36],
mobile apps [37], and Volunteer GIS [38] are being used for engaging communities in
reporting incidents during the response phase. However, in order to exploit the potential
of such technologies, it is important to establish a clear understanding of the “intelligence”
required and the appropriate “technologies” that can be used to generate such intelligence
for developing early warning and response systems.

Therefore, this paper presents the full range of intelligences needed for flood warning
and response phases as well as the technologies that can be used to provide such intelligence,
captured through a review of academic papers published between 2015 and 2020. The
findings of this review are then synthesised to produce a conceptual architecture that
illustrates how the identified intelligence and advanced technologies can be deployed to
help decision makers make evidence-based decisions for early warnings and responses
during flood events.

2. Materials and Methods

The research question established in this review is “what are the types and sources
of intelligence required for effective early warning and response for flood events ?”. The
methodology established by Webster and Watson [39] was followed to identify and analyse
the relevant literature for this review. A set of keywords was defined to search for the rele-
vant research articles, and an inclusion/exclusion criterion was used to determine relevant
and quality papers. A search criterion was established to filter relevant articles by conduct-
ing a “title” search using a combination of keywords. The keywords “floods’, “response”,
and “warning” were used in the search since the context of this study is “floods” within the
scope of the disaster management phases of “response” or “warning”. Furthermore, the
keywords “information” and “intelligence” were included to limit articles that are written
in the specific area of interest in this review. These keywords were combined to create
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the generic search string “flood” AND (“warning” OR “response”) AND (“information”
OR “intelligence”).

The keyword combination was used in the Scopus, Web of Science, Wiley, and Gale
databases, which resulted in the retrieval of 150 records. These databases allowed litera-
ture searches within a broad range of high-ranked journals and conference proceedings.
Furthermore, snowball sampling was conducted, which resulted in adding 16 articles to
the investigation. The overall search was limited to articles published from 2015 onwards
and written in English.

Following this, the title and abstract of all papers were thoroughly examined to
remove duplicates and to remove articles that are not suitable for the final analysis. This
step resulted in 65 articles. In the next step, the contents of the articles were analysed
to identify the relevant papers. After studying the full texts, only the articles on flood
warning and response systems and processes, as well as those that describe the use of
information and intelligence in the warning and response processes, were considered in this
study. Papers that discussed flood hazard and risk assessments, flood preparedness, flood
management, health, and other emergencies were excluded. Only articles that focused on
intelligence for detecting, monitoring, and evaluating flood hazards during the warning to
response stage were selected for the final analysis. This resulted in fifty-four articles (54)
for the content analysis (see Figure 1). These fifty-four research articles were analysed and
synthesised to extract state-of-art knowledge on the intelligence used in flood warning and
response stages and the tools and techniques used to derive such intelligence.
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Figure 1. The workflow of the review process.

The scope of this review concurs with the flood risk management framework adopted
by Adelekan [40]. According to Adelekan [40], planning for flood warning, evacuation, and
relief are considered sub-activities in the preparedness phase, whereas emergency rescue,
humanitarian assistance, and reconstruction are considered sub-activities in the response
phase. Following this framework, the intelligence related to potential and historical flood
inundation, damage, and losses was considered as part of the preparedness phase. Similarly,
the intelligence associated with the actual flood levels, damage, and losses was considered
as part of the response phase (see Figure 2).
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Figure 2. Scope of the intelligence used in the review.

Fundamental stages of early warning systems such as risk knowledge capture, moni-
toring and warning, dissemination and communication of warning, and preparedness to
response defined by UNDRR [41] have been used to structure the review findings. The
outcomes of this review are then used to establish a relationship between the flooding
process, situational intelligence required at various stages, and methods (technologies) that
can be used to derive intelligence to support strategic decisions at each stage of the flood
warning and response process.

3. Results
3.1. Research Landscape of the Contributions

Figure 3a shows the spread of the publications used in this review between 2015 and
2020. Figure 3b shows the locations of the study, distributed across 26 countries. The main
contributors were China (3 articles), the Philippines (3 articles), Pakistan (3 articles), and
the USA (5 articles). However, ten contributions were either review papers or were not
classified under a particular country.

Water 2022, 14, x FOR PEER REVIEW 4 of 21 
 

 

emergency rescue, humanitarian assistance, and reconstruction are considered sub-
activities in the response phase. Following this framework, the intelligence related to 
potential and historical flood inundation, damage, and losses was considered as part of 
the preparedness phase. Similarly, the intelligence associated with the actual flood levels, 
damage, and losses was considered as part of the response phase (see Figure 2). 

 
Figure 2. Scope of the intelligence used in the review. 

Fundamental stages of early warning systems such as risk knowledge capture, 
monitoring and warning, dissemination and communication of warning, and 
preparedness to response defined by UNDRR [41] have been used to structure the review 
findings. The outcomes of this review are then used to establish a relationship between 
the flooding process, situational intelligence required at various stages, and methods 
(technologies) that can be used to derive intelligence to support strategic decisions at each 
stage of the flood warning and response process. 

3. Results 
3.1. Research Landscape of the Contributions 

Figure 3a shows the spread of the publications used in this review between 2015 and 
2020. Figure 3b shows the locations of the study, distributed across 26 countries. The main 
contributors were China (3 articles), the Philippines (3 articles), Pakistan (3 articles), and 
the USA (5 articles). However, ten contributions were either review papers or were not 
classified under a particular country. 

  
(a) (b) 

Figure 3. Distribution of articles based on (a) the year of publication and (b) the country of the case 
study. 

3.2. Intelligence Used for Flood Warning and Response Phases 
The types of intelligence that were identified from the review as necessary for issuing 

flood warnings and responses can be categorised as follows: intelligence on flood hazards; 
intelligence related to the population at risk; intelligence on impacted infrastructure; and 
intelligence on resources and capacities required during the response phase. Table 1 

0

5

10

15

2015 2016 2017 2018 2019 2020

Number of Articles

0
2
4
6
8

10
12

Au
st

ra
lia

Ba
ng

la
de

sh
Br

az
il

Ca
na

da
Ch

in
a

Fr
an

ce
Ge

rm
an

y
In

di
a

In
do

ne
sia Ira

n
Ja

pa
n

M
al

ay
sia

M
or

oc
co

Ne
pa

l
No

rd
ic 

co
un

tr
ie

s
Pa

ki
st

an
Ph

ili
pp

in
es

Po
rt

ug
al

Sa
ud

i A
ra

bi
a

Sl
ov

ak
ia

Sp
ai

n
St

. L
uc

ia
Ta

nz
an

ia
Th

ai
la

nd UK US
A

Un
cla

ss
ifi

ed

Figure 3. Distribution of articles based on (a) the year of publication and (b) the country of the
case study.

3.2. Intelligence Used for Flood Warning and Response Phases

The types of intelligence that were identified from the review as necessary for issuing
flood warnings and responses can be categorised as follows: intelligence on flood hazards;
intelligence related to the population at risk; intelligence on impacted infrastructure; and
intelligence on resources and capacities required during the response phase. Table 1 below
summarises the types of intelligence under each category with their attributes, purpose/use,
and citations.



Water 2022, 14, 2091 5 of 20

Table 1. Types of intelligence used in flood warning and response processes.

Category Intelligence Purpose/Use References

Intelligence on
flood hazards

Rainfall values, real-time Flood forecasting in real time. [36,42–48]

Rainfall values, historical Predict a possible flood scenario from past
flood incidents for a given rainfall. [49]

Rainfall duration Quantify the rainfall and forecast the floods. [42,50]

River Flow/ water flow rate
(total volume passed in a given

location)
Forecast floods. [49,51]

River or flood water, level measured
Assess whether the river is about to be flooded
or has flooded and issue warnings accordingly.

[29,37,38,48,51–55]

River or flood water, level observed [36,38,56]

River or flood water, level forecasted [32,57–61]

Flood inundation extent Establish a spatial representation of floods to
understand the impacted area.

[30,31,34–
36,44,50,56,62–75]

Flood inundation depth Identify the hazard/risk level to the
community and infrastructure. [36,38,43,64,74]

Flood intensity
flood frequency/flood magnitude/

return period

Predict the hazard levels and use them to
evaluate possible damage to the community,

infrastructure, and natural environment.

[35,38,50,66,69,70,
76–78]

Historical flood events and water level
Understand inundation levels and impact

caused by past flood events and extrapolate
this knowledge to an emerging flood situation.

[53,56,79]

Flood propagation time/lead time

Calculate lead time (travel time) of floods to
plan early warnings, evacuation, and response,
e.g., upstream to downstream or flood arrival

time based on predicted or actual rainfall.

[44,58,59,65,69,71,
72,75,76,80]

Soil moisture level Determine the level of water infiltration and
flood forecasting. [46,48]

Intelligence
related to the
population

at risk

Mobility of crowd Monitor movements of people during
a disaster. [30,62]

Potentially affected population Plan for better response, evacuation, relief
distribution, and family reunification. [30,37,62,70,77,81]

Population density/demography and
distribution

Useful for response planning and
relief operations. [32,68,73]

Basic needs (food, water, etc.) Acquisition and managing basic needs during
the response period. [70]

Evacuation (estimated and actual) Evacuation planning and relief management [35,63]

Affected population Plan rescue operation and provide
emergency treatments. [37,62,63,70,82,83]

Intelligence
related to

infrastructure
at risk

Potential impact on
infrastructure

Develop response plan in preparedness phase
to ensure efficient and effective response. [32,64,66,84,85]

Potential impact on
roads

Make necessary re-routing of traffic as well as
identify routes and transport methods. [63,77,81,84]

Actual impact infrastructure Conduct actual damage assessment during
and after the disaster to support ongoing

response as well as future risk management
and response planning.

[43,71,86,87]

Actual impact roads [30,63,67,70]
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Table 1. Cont.

Category Intelligence Purpose/Use References

Intelligence on
Resources and

Capacities
required

during the
response phase

Resources (helipads, evacuation centres,
medical services, etc.) Plan and co-coordinate response. [73,77]

Active NGOs and other voluntary
organisation Advance response planning. [73,77]

Food and Supply Information Understand help available for humanitarian
support during response. [73]

Service range (coverage) of responders
(fire brigade, military, other

emergency services)
Plan and coordinate response. [81]

3.3. Intelligence on Flood Hazards

The relationships between the stages of the flooding process, the numerous intelli-
gences captured to detect and monitor each stage, and the tools and techniques that are
being used to capture the intelligence are discussed in this section.

3.3.1. Rainfall

Rainfall data at various point locations are typically captured through rain
gauges [33,36,42–46], and the spatial variability is captured through doppler and satellite
radar systems [45,47]. Such live rainfall data, as well as historical rainfall data, are used as
input to the hydrological models for flood forecasting [49]. However, in cases where rain
gauge data is not available, satellite observation is used to monitor and predict floods [88].
In some cases, the analyses of past flood events and their magnitudes have been used as the
basis for preparing and responding to emerging flood events [45,47]. The study reported
in [46] shows how the analysis of 35 years of soil moisture data derived from a satellite and
integrated with gridded rainfall and elevation can be used for flood forecasting [46].

3.3.2. River Water Level

The measuring of river water levels can be classified into three categories based on the
method employed: measured water level (by IoT) [29,37,38,52–55], observed water level
(by the public) [36,38,56], and forecasted water level through simulations [32,57–60]. Many
modern early warning systems have employed IoT devices such as automated river gauges
to continuously measure river water levels in real-time with greater accuracy [29,37,38,52–55].
On the other hand, active and passive social media systems and crowdsourcing platforms
are also being used to report water levels observed by the community as texts and pho-
tographs with time and location data [36,38,56]. Crowdsourcing methods are beneficial for
areas that do not have expensive sensor-based water level monitoring systems [38,56]. The
integration of these two approaches (IoT and crowdsourcing) could increase confidence in
water level measurements during disaster situations [38].

In order to gain a further lead time for issuing an early warning for an evacu-
ation, predictive models such as hydrological models and rainfall–runoff inundation
models [32,57–60] are being used to forecast water levels at a given point. The accuracy of
these models can be enhanced by providing continuous real-time data gathered through
both IoT and crowdsourcing [29,37,38,52–55].

3.3.3. River Water Flow

River water flow is a key parameter used in hydrology that measures the amount of
water passing through a specific point in time. The flow rates are typically measured by
gauge stations and are used in hydrology models [49] for predicting potential floods [51].
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3.3.4. Flood Inundation

Flood inundation extent and inundation depth are two vital types of intelligence used
in flood warning and response systems. At present, near-real-time satellite data are being
used to collect such intelligence during and post-event [30,31,34,44,56,62,64,71]. Radar data
analysis [31] tends to be the most popular method in flood inundation mapping during the
rainy season as it can penetrate clouds. In addition to satellites, airborne sensors attached to
UAVs, which can supplement or even replace traditional satellite remote sensing systems,
can detect the spatial coverage of floods [34].

Passive crowdsourcing media such as Twitter and Facebook [36] and active crowd-
sourcing platforms such as Ushahidi [63] have become popular in collecting information
on flood inundation and damage [70]. People’s observations of flood events in the form
of photographs uploaded via social media and crowdsourcing applications have shown
their value to decision making in the disaster response phase [56]. In [74], both proba-
bilistic and deterministic approaches have been used to transform the Twitter response
to floods. The review articles by Tomaszewski et al. [34] and Yu et al. [30], elaborate on
how the combination of satellite and crowdsourced information can be used to determine
the extent of a flood in near real time [30,34]. Two case studies from the Philippines and
Pakistan reported in Jongman [71], show how the combination of multiple sources such
as near-real-time satellite data and Twitter responses collected from the community, were
utilised for monitoring the extent of the floods. These case studies have demonstrated
how the integration of traditional remote sensing data with real-time social media data
can increase situational awareness of flood hazards in terms of location, time, cause, and
impact, hence improving the efficiency and speed of the response.

Many are using numerical models and GIS-based inundation mapping to determine the
possible inundation zones, which allows advanced planning for disaster responses [33,35,47,49,78].
Such intelligence for response planning by disaster agencies offers sufficient time to mobilise
their teams to respond efficiently and warn citizens well in advance.

Along with the inundation extent, flood depth can also be predicted before and after
a flood [36,38,43,64,74] to estimate the impact on people and property by the relevant
authorities [38,89]. Flood depth is typically calculated using hydrological models [38], but
recently social media such as Twitter has been used to collect the flood inundation depth
data [36].

3.3.5. Flood Arrival Time

Flood arrival time (lag time) is known as the time difference between rainfall time
centroid and peak discharge [76,90]. The early prediction of the arrival time of floods at a
given point is used for issuing flood early warnings to the community [44,59,65,69,71,72,75,80].

Traditionally this is measured by hydrological modelling techniques such as rainfall–
runoff inundation modelling in combination with Geographic Information System (GIS)
and Remote Sensing (RS) [44,65]. Recently, researchers have used intelligence from multiple
sources to improve the accuracy of predicting the flood arrival time and eliminating false
flood warnings. For example, Jongman et al. [71] present an approach that combines
passive radar satellite data on soil moisture (AMSR) with social media data to improve
accuracy in flood predictions. Similarly, Tekeli and Fouli [80] present an approach that
combines AMSR satellite data with Tropical Rainfall Measuring Mission (TRMM) satellite
data to improve accuracy. In [76], the authors present the analysis of historical river gauge
data and the satellite data (radar) of various return periods to ascertain the lag time over a
given river basin in the Charlotte Metropolitan region in the USA.

Flood arrival time is also being estimated by employing various Artificial Intelligence
(AI) techniques since conventional methods are unable to capture the nonlinearity and
non-stationarity related to hydrological applications [59]. Fuzzy sets and neural networks
are two other popular Computational Intelligence (CI) techniques that are commonly
used in the hydrology field [59]. Recent research based on the Wavelet Transform Neuro-
Fuzzy (WT-NF) technique has shown promise in forecasting floods with an increased lead
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time [59]. Some researchers have explored how the accuracy of the CI techniques can be
enhanced by using hybrid methods that combine different CI methods for improving the
accuracy and lead time of flood forecasting [59,91]. For example, [92] combines neural
networks with generic algorithms, and [57] combines neural networks with the wavelet
technique to increase flood forecast accuracy.

Other developments in this area include the use of Service-Oriented Architectures
(SoA) [69] linked with ontological frameworks [72] for capturing and processing data from
a variety of sources (IoT sensors, social media, crowdsourcing, satellites) to support the
prediction of flood arrival times using the aforementioned techniques.

3.3.6. Flood Frequency and Return Period

Flood frequencies and return periods are two inter-related factors essential in under-
standing and preparing for possible situations since they indicate the magnitude of an
emerging event [35,38,66,69,70,76–78]. Flood frequency analysis is a statistical technique
used by hydrologists to estimate the flood return period or exceedance probability by
measuring peak discharge values over a period of time. Flood frequency analyses pro-
vide decision makers with a broader understanding of the hydrological behaviours of a
given river from the perspective of the flood response [76]. Higher peak discharge and
runoff rates increase flood frequency, which increases the severity of floods. Therefore,
it is necessary to understand the flood hazard level at different flow conditions so that
proper evacuation planning can be arranged in advance [35]. In addition to the frequency
calculation, historical flood events are useful for validating various models, developing
risk and damage assessment techniques, and preparing for future events [53,56,79].

3.4. Intelligence Related to Exposed Population

The intelligence required to understand and estimate the exposed population and
the underpinning technology that can be used to acquire such intelligence during flood
hazards are discussed in this section.

3.4.1. Population Density, Distribution, and Demography

The spatial distribution and density of populations are primary data that are required
in order to identify and estimate an exposed population for a given hazard [32,68,73,93].
Population data are usually obtained from the national census, available in spatially aggre-
gated forms up to local administrative boundaries, which are too coarse for disaster impact
analyses. Hence, land use maps [93] and satellite-derived settlement data [94] are being
used to derive population density maps at finer scales. In addition, global data sources
such as the Landscan data also provide population grids of various grid sizes [95].

3.4.2. Potentially Affected Population

The potentially affected population by a flood is the most important intelligence re-
quired by authorities to make decisions during the early warning and response
stages [30,37,62,70,77,81]. Furthermore, an estimation of the affected population is es-
sential to plan for relief assistance and post-disaster impact assessments [70,77]. Data from
various sources such as government authorities and municipalities are typically combined
with open-source spatial data to estimate the exposed population in the GIS domain [81].
Tzavella et al. [81] report how Volunteered Geographic Information (VGI) has successfully
been used in an extreme flood event in Cologne, Germany, to improve the efficiency of the
flood response with decreased response times.

Numerous models and approaches have been used to evaluate the potential effects
of floods on people. For example, the Disaster Diagnostic and Evaluation System (SEDD)
offers a fuzzy rule-based classification system that can be used to assess the possible impact
on people just after a disaster [77]. It uses the Emergency Events Database (EM-DAT) as the
primary source of population data together with sources such as the Human Development
Index (HDI), published by UNDP, to calculate vulnerabilities. Deng et al. [70] propose a
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social media-based model to estimate the impact of a disaster on the community, which has
been tested for typhoon Haiyan. In contrast, Ushahidi collects actual affected population
data during the Haiti earthquake [62] using crowdsourcing.

3.4.3. Mobility of Crowd

Intelligence with respect to the location and mobility of crowds is critically important
in the emergency response phase and allows authorities to target people who need im-
mediate rescue and medical assistance. Call Detail Records (CDR), referred to as digital
trails of modern mobile device users, can be used to monitor population movement and
displacement and in disaster response planning [62] since it offers a detailed record of
mobile phone locations and call logs generated by mobile companies in real time. The
successful use of CDR techniques is reported in [30] during the Haiti earthquake. Even
though CDR is a useful technology for understanding population dynamics, it is still not
widely used due to privacy issues and lack of supportive legal frameworks [62].

3.4.4. Evacuation Needs (Estimated and Actual)

People who require evacuation or have already been evacuated are another critical
type of intelligence useful in the response phase. The number of people who require
evacuation is typically estimated and identified during the preparedness planning process
for various flood simulation scenarios for multiple return periods [35]. However, a more
accurate picture of evacuated people can be captured through social media platforms, active
and passive crowdsourcing, and geo-referenced VGI techniques during a disaster [62].

3.4.5. Affected Population

Intelligence on affected people such as those who are trapped, injured, and victims
who need immediate rescue is critical during an emergency response. Furthermore, they
require a mechanism to connect with response teams and their families and friends who
are concerned about their safety and well-being.

Crowdsourcing applications [62], social media microblogs [70,83], and mobile CDR [62]
are potential tools and technologies used to gather the status and needs of affected people
in real time. As successfully demonstrated during Typhoon Haiyan, a semantic analysis
of the microblog posted on social media can help authorities to understand the concerns
of affected people at different stages of the disaster and respond better [50]. Ushahidi
is another popular crowdsource application that has been successfully used to collect,
visualise, and map data gathered from affected communities [62].

Eivazy and Malek [82] illustrate an example of how agent-based solutions, integrated
with crowdsourcing services, were used during the Aquala flood disaster in Iran in 2019
to help victims obtain emergency support from rescuers. In this example, individuals
injured and in a critical situation are reported through crowdsourcing systems, and an
agent-based information system attempts to ensure the victim’s safety by connecting them
with rescuers [82]. The increasing trend in providing safety checks through social media
systems such as Facebook to inform friends and family during a disaster is now common
and reported in [62]. Bachmann et al. [37] present a mobile app that can be used to reunify
families affected by disasters.

3.4.6. Essential Needs

During the response phase, government authorities are also responsible for supplying
essential needs such as the food and water required by displaced populations. Intelligence
regarding essential needs is typically collected from microblogs such as Twitter [70,83],
social media, and crowdsourcing systems [30]. Deng et al. [70] report that during Typhoon
Haiyan, a community in Hainan, China, used social media techniques (“Sina Weibo”,
a Chinese microblog similar to Twitter) and semantic analysis to inform the relevant
authorities of the needs of the affected people.
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3.5. Intelligence Related to Affected Infrastructure
3.5.1. Potential Impact on Infrastructure

The potential impact of floods on infrastructure, buildings [64,66,84,85], and roads [63,77,81,84]
is essential intelligence required for disaster preparedness and response. Geo-referenced
data on buildings, critical infrastructure, and road networks obtained from administrative
sources and using VGI techniques, including OpenStreetMap, are integrated with flood
inundations maps and can be used to obtain information on infrastructure exposed to the
floods [32,84].

Potential damage to residential buildings and other infrastructure is typically esti-
mated using simulation techniques for multiple return periods with different exceedance
probabilities of floods [64,66,85]. Vulnerability curves that represent the damage levels to
buildings for different levels of floods are used to assess possible damage to buildings and
to propose hard and soft mitigation solutions [66]. The monetary value of the damage is
then aggregated at different scales, from an individual building to administrative bound-
aries and catchment areas [85]. In addition, the early identification of road inundation
possibilities allows authorities to explore different re-routing options during a disaster [81].

3.5.2. Affected Infrastructure

Intelligence regarding the actual impact on infrastructure, both during and after
a disaster situation, is essential in managing disaster situations. The use of near-real-
time satellite data and social media responses (Tweets) for calculating such intelligence is
reported in [71]. Similarly, the use of geo-tagged images of damaged buildings to conduct
damage assessment is reported by Bica et al. [86] and Nguyen et al. [87]. Based on a study
conducted in Nepal by Bica et al. [86], a positive correlation has been observed between
actual ground damage and damage assessment results conducted using geo-tagged Twitter
responses during earthquakes that occurred in April and May 2015.

The analysis of historical damage data from multiple flood events provides a compre-
hensive view of past flood damage. In [43], the authors present a comprehensive database
that captures actual damage to housing, infrastructure, and the economy for various histor-
ical flood events that can be used for future mitigation and response planning processes.

Intelligence regarding inundated road networks is necessary during the emergency re-
sponse phase to plan and re-route rescue services as well as establish regular transportation.
Road inundation data during floods is acquired mainly by social media, crowdsourcing,
near-real-time satellites, and UAV [30,63,67,70].

3.6. Intelligence on Resources and Capacities
Resources and Capacities

Intelligence on available resources and capacities are required in order to respond to
disasters [73,77], including available response organisations and volunteers [73], health
services [96], and food and supply information [73]. Saad et al. [73] present the successful
implementation of an Integrated Flood Disaster Management system in the District of
Kemaman, Malaysia, that is comprised of a database containing the critical resources and
capacities required during a flood response. In their system, intelligence, such as details of
evacuation centres, data on non-Governmental Organisations (NGO) and other volunteer
organisations, and data on helipad locations have been identified as necessary capacities
during responses in order to manage logistics to transport food and essential needs as
well as efficient response management [73]. The locations of these facilities are typically
organised and stored in GIS databases.

The locations of health facilities and the travel times to such facilities are considered
useful intelligence in the emergency response phase to manage flood-affected victims [96].
OpenStreetMap (OSM)-derived global health facility data with their locations and other
attributes are made available via www.healthsites.io. In [97], access to healthcare facilities
has been analysed and presented in global maps to visualise travel times by foot and
motorised transport.

www.healthsites.io
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Tzavella et al. [81] calculate the service range of the first responders such as the
fire brigade, through network analysis, taking into account the road network, points of
resources, and floods in Cologne, Germany.

4. Discussion

The critical analysis of the literature shows that the situational intelligence obtained
for flood warning and responses is associated with rainfall, river flow, inundation, impact
on people, properties, and response capacities. It was observed that numerous tools and
technologies are used to derive intelligence that is transformed into decisions. The relation-
ship between the flooding process, the required intelligence, and the tools and technology
to derive this intelligence can be presented as a conceptual system architecture for making
informed decisions for early warnings and responses. This conceptual architecture can be
presented in four key segments for ease of understanding, as discussed below.

4.1. Conceptual Model of Flooding Process and Warning Generation

According to the literature, it was observed that numerous technological approaches
such as IoT [29,37,38,52–55], crowdsourcing [36,38,74], satellites [31,44,64,71,80,98], and nu-
merical modelling [35,58,59,85] are used to extract intelligence related to flooding at various
stages, such as rainfall, river flow propagation, and inundation as indicated in Figure 4.
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The intelligence extracted from these technologies includes rainfall, river level (mea-
sured, observed, and forecasted), both inundation depth and extent (measured, observed,
and forecasted), flood frequency, return period, intensity, flood arrival time, and soil mois-
ture. Figure 4 captures the use of technological approaches for extracting intelligence to
respond to various activities by disaster management personnel during a flood disaster
scenario. The overall conceptual architecture presented in Figure 4 integrates four layers:
the process layer, technology layer, intelligence layer, and decision layer. The process
layer represents how the flooding process evolves starting from the rainfall and river flow
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to inundation. The technology layer can then be built using the technological solutions
identified in this survey to monitor the evolving flooding situation and extract and pass the
relevant information to the intelligence layer. The information captured in the intelligence
layer can then be used by disaster management authorities to monitor the evolving flood
situation and generate flood early warnings in advance, as illustrated in the decision layer.
The conceptual architecture presented in Figure 4 can be implemented using the state-of-
the-art technology presented in the previous sections to extract the relevant intelligence,
allowing decision makers to ensure public safety before, during, and after floods.

However, it should be noted that there are many barriers to implementing such sys-
tems [16,99,100]. Some barriers and challenges include (i) the inadequate coverage of IoT
sensors due to capital and maintenance costs and the unavailability of internet connec-
tions [16], (ii) the lack of accurate flood simulation models running on high-performance
computers to provide near-real-time responses [99], and (iii) the limitations of acquisition
and the limited coverage of near-real-time satellite images [100]. Although many devel-
oping countries have access to the International Charter for Space and Major Disasters,
Copernicus System, and Sentinel Asia System, the average time for satellite activation for
receiving the first image is three to four days [101]. As a result, many disaster management
agencies in developing countries resort to historical inundation information to estimate
the possible inundation zones during flooding incidents. In this context, crowdsourcing
techniques are more efficient than satellite observations, even with the limitations of their
effectiveness and accuracy [102].

4.2. Conceptual Model of Flooding Impact on People

When a population is exposed to floods, intelligence such as the movements of people
and their vulnerabilities and numbers, as well as the locations of people trapped or injured,
people evacuated, and their basic needs are required by authorities and response teams.
These are acquired during different phases of the disaster event (before, during, and after)
using simulations, crowdsourcing techniques, voluntary GIS activities, social media, call
detail records (CDR), and remote sensing.

Figure 5 illustrates the relationship between the impact of flood inundation on people
and the technologies that can be used to derive intelligence for supporting evacuation and
rescue operations. As shown in Figure 5, as the inundation is impacting the population,
people will begin to self-evacuate, sometimes with the support of government agencies
and NGOs who need to evacuate vulnerable people with mobility and health conditions.
Following the same layered approach used in Figure 4, Figure 5 shows how the various
technology solutions identified in this survey can be used to extract the intelligence required
for issuing early warnings and conducting intelligence-driven rescue and relief operations
as the inundation is impacting people, as shown in the process layer.

The flood inundation results derived from simulations and satellites, and overlayed
with census data have the potential to provide intelligence on potentially affected people
and those who are at risk. Such information can be used to disseminate targeted warnings
to the people at risk before the floods, hence saving lives. As the flood begins to impact
people, technologies such as CDR, crowdsourcing, and social media techniques can be
utilised to gain near-real-time intelligence on affected people on the ground to coordinate
evacuation and rescue operations.

However, access to up-to-date population data is problematic since the population
distribution and demography are obtained mainly from the national census, where most
countries typically release such data sets in 10-year intervals. As a result, the population
growth in the in-between years is not captured by these censuses. Furthermore, the national
census registers do not usually capture the population dynamics at workplaces, schools,
hospitals, hospices, and other public localities. Hence, census data alone will not provide
the actual situation on the ground to estimate potentially affected populations during a
flooding situation. Hence, there is a need for local representatives to maintain a more
comprehensive database of their local populations in order to better respond to disasters.
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On the other hand, the accuracy of the predicted inundation scenario plays a vital role
in determining the affected population. Therefore, simulation models used during disaster
situations should be calibrated and validated well in advance to ensure the accuracy of
their outputs.

Even though social media and crowdsourcing techniques exist, these systems are
not standardised and well-recognised in disaster response plans at a local level [103].
Furthermore, at present, community participation is not actively encouraged to realise the
maximum benefit of these techniques. Although CDR technology has the potential to offer
active mobile SIM card locations and the movement of people at risk during a disaster [62],
such information is typically not available due to privacy issues. The exploitation of these
possibilities would require disaster management agencies to work closely with the mobile
service providers and integrate them with their current disaster response processes while
providing a legal framework for accessing such private data for emergency purposes.

4.3. Conceptual Model of Flood Impact on Infrastructure

Intelligence on physical properties such as housing, utilities, other infrastructure, and
road networks that could be affected by floods is required by authorities for optimum
risk management planning and response. These intelligence needs can be classified into
two categories: (i) pre-disaster intelligence on infrastructure that could potentially be
affected, and (ii) intelligence on the affected infrastructure both during a disaster and in the
post-disaster phase.

Figure 6 presents a layered approach that represents the relationship between the
impact of flood inundation on infrastructure and the potential technology that can be
used to derive intelligence to support decisions. As in the previous sections, the layered
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architecture is represented through the process layer, technology layer, intelligence layer,
and decision layer. The infrastructure that can potentially be impacted by floods is usually
identified through exposure analysis using the infrastructure data collected from various
government agencies together with the estimated inundation. This intelligence can be
used for advanced evacuation planning, safeguarding household items and livestock, and
building mitigation plans and business continuation plans for infrastructure (utility, public
services, government buildings, and economic centres).
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Although the above flood preparedness plans allow authorities to identify the potential
risks to infrastructure and implement mitigation measures using existing data, sources
such as social media, crowdsourcing technologies, and satellite imagery are important to
establish the actual situation on the ground during a disaster. However, the use of satellite
images for the response is still challenging as the acquisition and derivation of intelligence
from such sources requires considerable time [104].

4.4. Conceptual Model of Response Capabilities

Intelligence on the resources and capacities required for a successful response is neces-
sary for the authorities to make timely coordination with the relevant parties. For example,
situational intelligence on safe centre locations and their capacities, evacuation routes,
transport facilities, as well as the locations of affected people are essential for effective evac-
uation planning. Novel process models could optimise mass-scale evacuation planning by
efficiently coordinating resources with affected communities [105]. Furthermore, authori-
ties also require information on surge capacities for food, medical assistance, transportation,
and the availability of volunteers for the better coordination of evacuations. Hospital
evacuations need extra attention as patients are one of the most vulnerable groups during
flood emergencies. State-of-the-art hospital evacuation models can be used as potential
solutions to safeguard patients’ safety during floods [106].

Figure 7 illustrates the layered approach where intelligence on capacities and resources
can be obtained through numerous resource management databases and systems to assist in
the decision-making process. More specifically, during a flood emergency, authorities need
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to locate the nearest evacuation centres and health facilities with the appropriate capacities
that match the requirements to re-locate displaced or treat injured persons. Typically, local
flood preparedness plans identify such facilities and hosting capacities well in advance.
In addition, volunteers, volunteer agencies, and other resources such as transport, heavy
machines, and tools are required to respond on demand.
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5. Conclusions

The review of the literature presented in this paper identified twenty-eight types of
intelligence necessary during various stages of the FEWRS (pre-flood, during the flood,
and post-flood) to issue flood warnings in advance and to respond efficiently to safeguard
people and property. Over 54 published articles from several bodies of knowledge, includ-
ing information systems, disaster risk management, and hydrometeorology, have been
examined to establish a relationship between the flooding phenomena, the intelligence
required for evidence-based decision making, and the sources of technology that can be
used to extract such intelligence.

The precondition for extracting critical intelligence during a flood situation is the avail-
ability of exposure and vulnerability data of people and infrastructure in the flood-prone
area under consideration. As the flood situation begins to develop, real-time information re-
garding the flood hazard can be captured using numerous techniques and tools: citizens as
sensors, satellite remote sensing technology, IoT devices, and mobile devices. Information
from citizens can be captured through social media and crowdsourcing techniques. These
raw data can then be used by GIS, artificial intelligence (AI), or hydro-dynamic modelling
to extract critical intelligence such as the dynamic characteristics of the hazard (rainfall,
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river water level/flaw, flood arrival time), the population and infrastructure exposed or at
risk, and the capacities required during a response as presented in Table 1.

The conceptual architecture presented in this paper provided guidance for deploying
various advanced technology approaches for deriving the necessary intelligence required
by disaster management agencies as the floods begin to spread and impact the community
and the environment. The architecture presented in Figures 4–7 illustrated how the required
intelligence during the flood cycle needs to be managed in order to inform, evacuate, rescue,
and offer relief to citizens and promptly safeguard property.

Moving forward, the layered approach presented in this paper offers a foundation
for developing a technology platform that disaster management agencies can use to issue
early warnings with sufficient time for people to evacuate, better respond during floods,
and efficiently manage relief operations. Furthermore, the conceptual system architecture
presents a range of technology solutions that can be adopted by decision makers based
on the availability of the technology and offers a pathway to increase the accuracy and
efficiency of receiving the necessary intelligence as the resources become available. It shows
how information from sensors, databases, big data systems, GIS, hydrological simulations,
and satellite remote sensing can be combined to offer a rich set of data for decision making
and interventions by various agencies. The integration of these technologies has the
potential to increase the effectiveness, efficiencies, and accuracy of the overall approach to
flood monitoring and early warning, and evacuation.

The proposed integration will overcome the limitations of the present early warning
and response systems such as the unavailability of information and intelligence [9]; in-
sufficient information sharing [107–110]; lack of coordination among agencies [111,112];
false early warnings [113]; lack of allocation of resources for responses [111]; and delayed
responses [114], which often result in a crisis escalation and a higher numbers of causalities.

The authors acknowledge that the keyword combinations deployed in this research
for searching academic papers may have missed some important articles. As a result,
some important intelligence required for early warning and response systems, and novel
technologies that can offer such intelligence may have been omitted in this study.
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