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Abstract: To control the negative effects resulting from the disorderly development of aquaculture
ponds and promote the development of the aquaculture industry, rapid and accurate identification
and extraction techniques are essential. An aquaculture pond is a special net-like water body divided
by complex roads and dikes. Simple spectral features or spatial texture features are not sufficient to
accurately extract it, and the mixed feature rule set is more demanding on computer performance.
Supported by the GEE platform, and using the Landsat satellite data set and corresponding DEM
combined with field survey data, we constructed a decision-making model for the extraction of
aquaculture ponds in the coastal waters, and applied this method to the coastal waters of Southeast
China. This method combined the image spectral information, spatial features, and morphological
operations. The results showed that the total accuracy of this method was 93%, and the Kappa
coefficient was 0.86. The overlapping proportions of results between the automated extraction and
visual interpretation for test areas were all more than 90%, and the average was 92.5%, which reflected
the high precision and reliability of this extraction method. Furthermore, in 2020, the total area of
coastal aquaculture ponds in the study area was 6348.51 km2, which was distributed primarily in
the cities of Guangdong and Jiangsu. Kernel density analysis suggested that aquaculture ponds in
Guangdong and Jiangsu had the highest degree of concentration, which means that they face higher
regulatory pressure in the management of aquaculture ponds than other provinces. Therefore, this
method can be used to extract aquaculture ponds in coastal waters of the world, and holds great
significance to promote the orderly management and scientific development of fishery aquaculture.

Keywords: aquaculture pond area; threshold segmentation; spatial convolution; GEE platform

1. Introduction

According to the 2020 edition of statistics released by the Food and Agriculture
Organization of the United Nations, global fishery has been developing rapidly, with total
output increasing by 42% from 2000 to 2018 [1]. As the main driving force of fishery
growth, aquaculture had an average annual growth trend of 5.3% from 2000 to 2018, and
production peaked at 82.1 million tons in 2018 [1]. China is the largest aquaculture country
in the world [1]. In the past, catch production has occupied the dominant position in total
fishery production. With the growing population’s demand for food and nutrition, and the
growing need for the protection and sustainable development of fish germplasm resources,
the aquaculture industry has developed rapidly. After the reform and opening up, the
focus of China’s fisheries gradually shifted from fishing to aquaculture, and China became
one of the few countries in the world where aquaculture output is much higher than the
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amount of fishing [2–4]. Additionally, China has the highest aquaculture output, and is,
globally, the largest aquaculture exporter [1].

Aquaculture ponds in the coastal zone are the main bearing form of aquaculture.
With the rapid development of aquaculture, coastal aquaculture ponds have introduced
considerable economic benefits. As a transitional area between sea and land, these coastal
areas have valuable natural resources, and their ecosystems are vulnerable. Therefore, aqua-
culture not only brings economic benefits to coastal areas, but also brings environmental
protection problems to coastal ecosystems. The problems include increased management
difficulties, unreasonable layouts [5], overcapacity and overplanning of aquaculture sys-
tems [6], and aquaculture sewage discharge and carbon emissions, which have introduced
increasingly negative effects on the region’s environment. To control the negative effects
brought about by this disorganized development, and to promote the further development
of the aquaculture industry, it is essential to identify and extract aquaculture ponds quickly
and accurately.

Because of manpower limitations, material resources, and accessibility, traditional
fishery field investigation is time-consuming and laborious. The official fishery statistics
have only classified aquaculture areas, making it difficult to reflect the spatial distribu-
tion and spatiotemporal cooperative change trends of objects from a macro perspective.
Therefore, remote sensing technology, which can achieve high precision in a short period,
as well as large-area synchronous monitoring, has become a stable and reliable technical
means for fishery investigation. Visual interpretation is a classical method used to extract
aquaculture areas from remote sensing images [7–10], but its operation is subjective, and the
interpreter’s prior knowledge has a significant influence on extraction accuracy, resulting
in low efficiency. Using spectral features, some scholars have tried to automatically extract
aquaculture areas according to spectral classification [11–18], or by constructing a spectral
feature index [19–23]. Spectral classification, however, is susceptible to the phenomenon
of “same object different spectrum” and “foreign object in the same spectrum”, and the
spectral characteristic index is constructed primarily for a certain region or a certain sensor,
which has low portability and robustness. In recent years, object-oriented extraction meth-
ods have been used widely [24–31], and scholars usually use multiscale segmentation to
establish feature rule sets that combine shape, spectrum, and texture information to achieve
automatic extraction. This calculation, however, requires a lot of system resources and
has strict requirements on computer performance, as well as on the quantity and quality
of remote sensing images. Therefore, efficient, reliable, and accurate aquaculture pond
extraction schemes remain a major challenge.

Google Earth Engine (GEE) is a cloud-based platform that can efficiently process
large-scale geospatial data sets. Because GEE contains free public image data obtained from
various satellite sensors [32], it greatly reduces the threshold of a massive data analysis
system and breaks through the bottleneck of multisource remote sensing data acquisition.
Therefore, scholars have begun carrying out their research on the GEE platform [33–38]. It
is evident that the research on aquaculture ponds based on the GEE cloud platform has
broad application prospects.

To solve the problem of low efficiency, weak robustness, and strict requirements on
computer performance in the existing extraction methods, and to achieve the goal of more
efficient and accurate identification of aquaculture ponds, we proposed an automatic ex-
traction method for coastal aquaculture ponds combining spectral information, spatial
features, and morphological operation based on the GEE platform. This method can be
used to accurately identify and evaluate the aquaculture ponds and their spatial distri-
bution in southeast coastal areas, and provides theoretical reference and data support to
effectively reduce the difficulty of coastal breeding pond management, to significantly
control the negative impacts of aquaculture ponds on the environment, and to protect
marine water quality.
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2. Study Area and Data Sources
2.1. Study Area

The southeast coast of China stretches from Jiangsu in the north to Hainan in the south,
Guangxi in the west, and Taiwan in the east, which consists of eight provinces, two special
administrative regions, one autonomous region, and one municipality directly under the
central government. The north–south span is about 1800 km, and the east–west span is
about 1500 km. The region has abundant water resources and a developed river network,
forming coastal plains, such as the Yangtze River Delta and Pearl River Delta, as well as
abundant tidal flats and shallow water bays. Therefore, it offers a distinct advantage in
the large-scale construction of aquaculture ponds. The southeast coastal area has a long
coastline. Jiangsu, Zhejiang, Fujian, and Guangdong in the region are famous aquatic
provinces in China. In 2020, the total area of fishery farming was 27,028.80 km2, accounting
for 38.41% of China’s fishery farming. The total output value of the fishery economy was
1650.356 billion yuan, accounting for 59.92% of the national total output value of the fishery
economy, among which, the output value of fishery breeding was 611.337 billion yuan,
accounting for 45.23% of the national total output value of the fishery economy. The research
area included the coastal cities of five provinces (Jiangsu, Zhejiang, Fujian, Guangdong,
and Guangxi), one municipality directly under the central government (Shanghai), and
the main island of Hainan Island, which has coastal zone breeding conditions in southeast
China (Figure 1). We conducted aquaculture pond automatic recognition and extraction
algorithm research, and analyzed the spatial agglomeration features of this study area.
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Figure 1. Study area.

In this study, the extracted aquaculture pond refers to artificial or semi-artificial open
ponds that are distributed in coastal areas for aquaculture purposes. Ponds are bound by
roads or embankments with different widths, which, generally, are presented in the form of
regular or irregular grids in remote sensing images. Aquaculture pond water consists of
brackish or freshwater, and its spectral characteristics are similar to a water body. Google
images of typical aquaculture ponds and their corresponding field survey photos are shown
in Figure 2.
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2.2. Data Sources

In this study, we used data from Landsat series remote sensing images from the U.S.
Geological Survey (USGS), with a spatial resolution of 30 m and a reentry period of 16 d.
The GEE platform code can directly call the Landsat image covering the study area after
atmospheric correction (the code of GEE internal retrieval is Landsat /LC08/C02/T1_L2),
and the preprocessing processes, such as Mosaic and cutting, can also be completed on
this platform. As aquaculture ponds, generally, are drained and cleaned in spring and
winter [39], we set the image collection time between March and October 2020 to avoid the
dry pond period as much as possible [40,41]. Additionally, we used the quality assessment
band to eliminate the influence of clouds and cloud shadows, and finally, we obtained
Landsat-8 remote sensing images covering the study area.

In addition, we obtained the digital elevation model (DEM) data used in this study
from the National Aeronautics and Space Administration (NASA). NASA’s SRTM (Shuttle
Radar Probe Mission) V3 (SRTM Plus) offers a spatial resolution of 1 arc-second (approxi-
mately 30 m). It can be called directly from the GEE platform by code (the internal fetching
code of GEE is USGS/SRTMGL1_003). Other basic geographic data involved in the study
came from the National Geographic Information Center’s 1:400,000 map database.

3. Research Methods

Supported by the GEE platform and using the Landsat satellite data set and cor-
responding DEM in the study area combined with field survey data, we constructed a
decision-making model for the extraction of aquaculture ponds in the coastal waters of
the study area (Figure 3). The process can be summarized as follows: (1) delineation of
aquaculture coverage area supported by DEM; (2) elimination of non-water information
based on morphological and spectral features; (3) elimination of non-aquaculture water
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body information based on spatial convolution; and (4) postprocessing. In the study area,
we selected two typical aquaculture pond areas as test areas to show the process and effect
of step-by-step extraction.
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3.1. Delineation of Aquaculture Coverage Area Supported by DEM

Because offshore aquaculture ponds are distributed primarily along the gentle coastal
zone, SRTM elevation data could be used to mask the inland higher altitude areas, with
10 m as the threshold [42]. As a result, we could determine the potential coverage area
of the distribution of the aquaculture ponds. The objects acquired through this step are
composed of non-water information (such as buildings, vegetation, or tidal flats) in gentle
coastal zones, as well as water information, such as the surface of aquaculture ponds or
seawater. As shown in Figure 4, test areas A and B are composed mainly of the central water
system and the aquaculture ponds attached to the water system, and the surrounding areas
are covered with buildings, bare soil, and vegetation. After the SRTM elevation threshold
mask, only the hydrographic net, the water surface of aquaculture ponds, and a small
part of the low-elevation bare soil, vegetation, and building information were reserved
(Figure 4c,f).

3.2. Elimination of Non-Water Information Based on Morphological and Spectral Characteristics

After obtaining the coverage area of the aquaculture pond, we removed the remaining
non-water information, including bare soil, vegetation, and buildings in the low-altitude
area. Remote sensing water index has been the main technology used to extract water
surface information from remotely-sensed imagery, and to distinguish the boundary be-
tween land and water. According to the land use type and land cover characteristics of
the coastal zone, we used the Modified-Combined Index for Water Body Identification
(MCIWI) [43] to remove the non-water information in the aquaculture coverage area. We
used Otsu’s [44] method, an algorithm to determine the threshold of binary image seg-
mentation, which is also known as the maximum interclass variance method, to perform
automatic threshold segmentation.

The MCIWI index combines normalized difference building index (NDBI) and nor-
malized difference vegetation index (NDVI). NDVI is sensitive to vegetation, such as forest
land and arable land, and can eliminate some effects of thin clouds and radiation. NDBI
highlights the characteristics of construction land, and can enhance differences between
water bodies and non-water bodies, such as buildings and vegetation. The formula is
as follows:
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MCIWI = NDVI + NDBI =
(NIR − RED)

(NIR + RED)
+

(MIR − NIR)
(MIR + NIR)

, (1)

where RED is the reflectance of the red light band of the image, NIR is the reflectance of the
near-infrared band of the image, and MIR is the reflectance of the middle infrared band of
the image.
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Figure 4. Delineation of potential aquaculture coverage areas in test area A (B).

Figure 5 shows the ability of the MCIWI index to distinguish between water body and
non-water-body information in the study area. We selected 200 random points for each of
the surface cover types of the coastal zone, such as water bodies, vegetation, buildings, and
bare soil, and we extracted and counted the MCIWI values of random points. The MCIWI
values of most water bodies were in the range of (−1, 0). In contrast, MCIWI values of
non-water-body information, such as vegetation, buildings, and bare soil, were all greater
than 0, which reflected the separability and feasibility of automatic threshold segmentation
from water information.
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Otsu’s method is an automatic threshold segmentation algorithm based on the first-
order statistical characteristics of the gray histogram. This method is not affected by image
brightness and contrast, has fast operation speed and high storage efficiency, and is widely
used in the research of image threshold segmentation [45,46]. We used Otsu’s method
to obtain the optimal threshold of water and non-water segmentation in the test area.
The MCIWI results (Figure 6a,d) were binarized to determine the water–land boundary
(Figure 6b,e). We performed a morphological closure operation to remove the unconnected
cavities in the aquaculture water, and obtained the water coverage area (Figure 6c,f).

3.3. Information Elimination of Non-Aquaculture Water Body Based on Spatial Convolution

The water information obtained in the previous step included aquaculture pond water
and non-aquaculture water. The key aspect of this step was to distinguish between these
two types of water. The spectral reflectance of the water body was low, the spectral response
was weak, and the extraction accuracy was not high. It was more difficult to distinguish
one type of water body from another type of water body because this required a targeted
recognition method to enhance spectral differences to achieve effective separation.

Since the modified normalized difference water index (MNDWI) [47] was proposed, it
has been one of the most cited water indexes in practice and research because of its fine
water discrimination. The formula is as follows:

MNDWI =
(GREEN − MIR)
(GREEN + MIR)

(2)

where GREEN represents the reflectance of the green light band of the image, and MIR
represents the reflectance of the mid-infrared band of the image.

In this study, we used the MNDWI to enhance the low-reflection information of
aquaculture ponds, and to improve the clarity of the grid characteristics of aquaculture
ponds. We selected 200 random points from aquaculture and non-aquaculture water
bodies in the study area, and extracted and counted the MNDWI values of random points
(Figure 7). Under the action of the MNDWI, most aquaculture-related water bodies could be
distinguished from non-aquaculture-related water bodies, but within the MNDWI interval
of 0.1139–0.1194, it is still challenging to distinguish.



Water 2022, 14, 2089 8 of 19Water 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 6. Elimination of non-water-body information in test area A (B). 

3.3. Information Elimination of Non-aquaculture Water Body Based on Spatial Convolution 
The water information obtained in the previous step included aquaculture pond wa-

ter and non-aquaculture water. The key aspect of this step was to distinguish between 
these two types of water. The spectral reflectance of the water body was low, the spectral 
response was weak, and the extraction accuracy was not high. It was more difficult to 
distinguish one type of water body from another type of water body because this required 
a targeted recognition method to enhance spectral differences to achieve effective separa-
tion. 

Since the modified normalized difference water index (MNDWI) [47] was proposed, 
it has been one of the most cited water indexes in practice and research because of its fine 
water discrimination. The formula is as follows: 

)(
)(

MIRGREEN
MIRGREENMNDWI

+
−=  (2)

where GREEN represents the reflectance of the green light band of the image, and MIR 
represents the reflectance of the mid-infrared band of the image. 

Figure 6. Elimination of non-water-body information in test area A (B).

Water 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

In this study, we used the MNDWI to enhance the low-reflection information of aq-
uaculture ponds, and to improve the clarity of the grid characteristics of aquaculture 
ponds. We selected 200 random points from aquaculture and non-aquaculture water bod-
ies in the study area, and extracted and counted the MNDWI values of random points 
(Figure 7). Under the action of the MNDWI, most aquaculture-related water bodies could 
be distinguished from non-aquaculture-related water bodies, but within the MNDWI in-
terval of 0.1139–0.1194, it is still challenging to distinguish. 

 
Figure 7. Comparison of MNDWI values between aquaculture and non-aquaculture water bodies 
in the study area. 

To completely distinguish between aquaculture and non-aquaculture water bodies, 
we used spatial convolution to further increase the spectral differences between these two 
types of water bodies. We used a 5 × 5 convolution kernel (Formula 3) to carry out a spatial 
convolution operation of low-pass filtering on the MNDWI exponential image. As with 
the previous verification, we selected 400 random points for the two types of water bodies 
from the convolution operation image for numerical statistical analysis (Figure 8). The 
convolution values of 90% of the aquaculture water bodies were between 0.1212 and 
2.4288, and the convolution values of 90% non-aquaculture water bodies were between 
2.7676 and 4.4280, effectively separating the two types of water bodies. 























=

11111
11111
11011
11111
11111

Kernel
 

(3)

Figure 7. Comparison of MNDWI values between aquaculture and non-aquaculture water bodies in
the study area.



Water 2022, 14, 2089 9 of 19

To completely distinguish between aquaculture and non-aquaculture water bodies,
we used spatial convolution to further increase the spectral differences between these two
types of water bodies. We used a 5 × 5 convolution kernel (Formula (3)) to carry out a
spatial convolution operation of low-pass filtering on the MNDWI exponential image. As
with the previous verification, we selected 400 random points for the two types of water
bodies from the convolution operation image for numerical statistical analysis (Figure 8).
The convolution values of 90% of the aquaculture water bodies were between 0.1212 and
2.4288, and the convolution values of 90% non-aquaculture water bodies were between
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As shown in Figure 9, after MNDWI processing, the detailed features of the two types
of water were highlighted (Figure 9a,d). The MNDWI operation after the convolutional
operation further enhanced the low-frequency information of the aquaculture pond, and
weakened the internal details of the water, while also obtaining a clear water boundary
(Figure 9b,e). The image after convolution was binarized, and the non-aquaculture water
area was segmented by the threshold, leaving only the aquaculture water area (the best
threshold in the test area was 2.0) (Figure 9c,f).

3.4. Postprocessing

Among the previous recognition results, some aquaculture water body regions not
filled by morphological closure operation were missing (marked by rectangular boxes
in Figure 10a,d). Some non-target redundant water bodies, such as small tributaries or
drainage ditches, were mistakenly classified as aquaculture water bodies (marked by
circular boxes in Figure 10a,d).
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In response to our first research question (i.e., to discover by examination and com-
parison), the missing holes in the aquaculture water bodies were not attached to the
non-aquaculture water bodies. We resolved this issue by turning these holes into entities,
and then separating and adding them back to the aquaculture water body areas. Using
image spatial difference technology, we could obtain the different images of the water body
covering area (Figure 6c,f) and the aquaculture water body covering area (Figure 9c,f) to
identify the missing aquaculture water body entities (the rectangular boxes in Figure 10b,e).
To address the problem of redundant water bodies, such as tributaries and drainage ditches
connected to aquaculture water bodies, we combined visual interpretation and elimination
with Google high-resolution images.

After the postprocessing of the recognition result image was completed, we obtained
the final range of the aquaculture area (Figure 10c,f).
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4. Results and Analysis
4.1. Extraction Results and Accuracy Evaluation of Aquaculture Area

We used these methods to identify and extract aquaculture ponds in the coastal areas
of southeast China and the main island of Hainan, and obtained a regional distribution
map of aquaculture ponds in the coastal areas of southeast China (Figure 11). As shown
in Figure 11, the aquaculture ponds in the study area are densely distributed, but their
spatial distribution is uneven. The aquaculture ponds in Jiangsu and Guangdong are
more distributed and larger in area, and most of the aquaculture areas have a certain
scale. In Fujian, Guangxi, and Zhejiang, there are more aquaculture ponds and large-scale
concentrated aquaculture zones, but the number is slightly lower than that of Jiangsu
and Guangdong. The aquaculture areas in Hainan are small and evenly distributed.
Furthermore, the aquaculture areas in the northeast of Hainan have a high degree of
agglomeration and scale, whereas the aquaculture ponds in other directions are small in
scale. Aquaculture ponds in Shanghai are small in area, are concentrated in distribution
and small in scale, and belong to low-density aquaculture areas.
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To evaluate and test the extraction results, pixels are usually binarized and divided
into cultured pond and non-cultured pond areas. Then, verification points are randomly
generated, and the accuracy is verified using the confusion matrix and Kappa coefficient.
The extraction errors of aquaculture pond areas usually occur at the boundary between
water and land, or the junction of different water bodies. If too many random verification
points are distributed in the land part that is away from the aquaculture pond areas,
it is not possible for the data to play an effective inspection and control role, and it is
easy to overestimate the inspection accuracy. Therefore, we designed a restricted random
verification point sampling method to replace completely random sampling, and added a
typical region stacking comparison test process.

First, random sampling points were generated based on water body information
extraction results, and the actual measured points were combined to form a validation data
set with a 500-point capacity. Then, we calculated a confusion matrix based on Google’s
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high-resolution satellite images and field sampling data (Table 1). The test results showed
that the extraction method of the aquaculture pond areas in coastal waters combined with
spectral features and spatial convolution had high accuracy: the total extraction accuracy
reached 93%, and the Kappa coefficient was 0.86.

Table 1. Confusion matrix of extraction results.

Attribute Data
Validation Data

User’s AccuracyAquaculture Pond
Areas

Nonaquaculture
Pond Areas

Aquaculture pond
areas 205 27 0.88

Non-aquaculture
pond areas 8 260 0.97

Producer’s accuracy 0.96 0.91

Total accuracy = 93% Kappa = 0.86

To further test the effectiveness of the extraction method, we added a typical regional
overlay comparison test process. Additionally, to calculate the proportion of overlapping
areas, based on Google’s high-resolution images, we visually interpreted the aquaculture
pond areas in test area A (Figure 12c) and test area B (Figure 12b), and conducted a spatial
overlay comparison between the visual interpretation results and the automatic extraction
results (Figure 12). Test area A is located in Zhangzhou Zhao’an Bay Gongkou port, and
test area B is located in Zhangzhou Qianhu Bay. The results showed that the overlap ratio
of the automatic extraction results and the visual interpretation results was more than
90% in the two test areas, among which, the overlap ratio of Zhao’an Bay Gongkou port
was 91%, and the overlap ratio of Qianhu Bay was 94%. These results further verified the
accuracy of the extraction method.

4.2. Spatial Distribution and Density Analysis of Aquaculture Area

According to the extraction results, the total area of aquaculture ponds in the coastal
waters of southeast China is 6348.51 km2. The area of aquaculture ponds in Guangdong was
the largest (2458.60 km2), accounting for 38.73% of the total area of aquaculture ponds in
the study area. The second-largest area is Jiangsu, with 1858.96 km2, accounting for 29.28%.
The total area of the two provinces accounted for more than 68% of the total study area. The
third largest is Fujian, with an aquaculture pond area of 552.59 km2, accounting for 8.70%.
Ranked fourth largest is Guangxi, with an aquaculture pond area of 522.87 km2, accounting
for 8.24%. Zhejiang ranked the fifth largest, with an aquaculture pond area of 490.59 km2,
accounting for 7.73%. Hainan ranked the sixth largest, with an aquaculture pond area of
402.67 km2, accounting for 6.34%. Shanghai was the smallest, with an aquaculture pond
area of 62.23 km2, accounting for 0.98% (Table 2).

Table 2. Aquaculture pond extraction area.

Region * Extraction Area/km2 Percentage/%

Jiangsu 1858.96 29.28
Shanghai 62.23 0.98
Zhejiang 490.59 7.73

Fujian 552.59 8.70
Guangdong 2458.60 38.73

Guangxi 522.87 8.24
Hainan 402.67 6.34

Total 6348.51 100
* The regions listed in the table are arranged from north to south geographically in the study area’s map (Figure 1).
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To more intuitively display the spatial concentration degree of aquaculture ponds in
the coastal waters of southeast China, we adopted kernel density analysis to represent the
density level of each grid in the extraction results by evaluating neighborhood changes
(Figure 13). The darker the color was in the image, the higher the spatial concentration
degree and density of the aquaculture ponds. Combined with the extraction results of
the area of the aquaculture ponds in the coastal waters of southeast China, we found
that many areas had high kernel density along the coastline of Jiangsu, indicating that
the aquaculture ponds in Jiangsu are densely distributed and large in area. Guangdong
has a long coastline, and more than half of the coastline areas belong to the high core
density area, indicating that Guangdong has a high concentration of aquaculture ponds
and a large area. Therefore, Jiangsu and Guangdong must pay more attention to coastal
aquaculture ponds and strengthen aquaculture management. Compared with Guangdong
and Jiangsu, Zhejiang, Fujian, Guangxi, and Hainan have lower nuclear density values.
Zhejiang has only one high kernel density area, and the rest have low values, indicating
that the distribution of aquaculture ponds in Zhejiang is concentrated. Therefore, the
management of aquaculture ponds should be strengthened in the high kernel density area.
The kernel density values in Fujian are all at the medium level, indicating that aquaculture
ponds are widely distributed in Fujian. The extracted area of aquaculture ponds in Guangxi
is not significantly different from that in Fujian, but the coastline length of Guangxi is lower
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than that of Fujian. Therefore, aquaculture ponds in Guangxi are more concentrated than
in Fujian. As shown in Figure 13a, the kernel density value of Guangxi is higher than that
of Fujian. Aquaculture ponds are widely distributed in Hainan, but the aggregation degree
is low, and the total area is also small. Only one medium kernel density area exists in the
northeast region of Hainan, and the rest have low values. Aquaculture ponds in Shanghai
are small in area and low in concentration.
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5. Discussion

Based on the extraction results, spatial distribution, and density analysis of the aqua-
culture area, the management strategy was proposed. It is suggested in the strategy that in
the future, in regions such as Guangdong and Jiangsu, the construction of centralized aqua-
culture tail water treatment facilities is highly recommended, as well as the construction of
complete aquaculture facilities, but aquaculture pollution might require more attention.
For other regions where the distribution of aquaculture is relatively scattered, it is sug-
gested to integrate the distribution of aquaculture ponds, which should combine with local
aquaculture development policies, and to build standard high-quality aquaculture ponds.

Remote sensing technology has become a stable and reliable means of identification
and statistics in fishery surveys. An aquaculture pond is the main carrying form of coastal
aquaculture. At present, remote sensing recognition and extraction methods can be catego-
rized into three types: visual interpretation, spectral feature, and object-oriented methods.
Each method has shortcomings in recognition efficiency, extraction accuracy, data source
and operation platform, portability, and robustness. Unlike the remote sensing recognition
method that targeted only a single feature category or implemented a single means in
previous studies, we proposed a decision-making model for the extraction of aquaculture
ponds in coastal waters that combined image spectral information, spatial features, and
morphological operations. The main features of this model are as follows:
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1. Replace individual extraction with whole recognition. Under the 30 m spatial reso-
lution of Landsat series satellites, the relatively fragmented land patches along the
coast, small-scale aquaculture ponds, and dikes constituted a large number of mixed
pixels. Thus, it was unrealistic to extract each pit and pond. The extraction of the
aquaculture pond area as a whole not only improved the identification accuracy, but
also conformed to the attributes of aquaculture land use type. This method met the
management needs of the fishery survey on spatial distribution and change statistics
of aquaculture ponds at a specific scale.

2. Combine double water spectral indices. In essence, an aquaculture pond is a special
water body divided by complex roads and dikes. Therefore, a water spectral index
can theoretically realize the identification and extraction of an aquaculture pond, but
it was difficult for the traditional single spectral index to achieve large-scale effective
separation. MCIWI offered the advantage of distinguishing the land–water bound-
ary and highlighting large areas of water (Figure 5), whereas MNDWI offered the
advantage of distinguishing fine water and highlighting the grid characteristics of
aquaculture ponds (Figure 7). The combination of indices made up for the shortcom-
ing of a single spectral index, and effectively realized the separation of aquaculture
and non-aquaculture water bodies.

3. Conduct spatial convolution filtering. Spectral characteristics and threshold process-
ing alone cannot distinguish between aquaculture and non-aquaculture water bodies.
Based on the network characteristics of aquaculture ponds, which are segmented by
roads and dikes, we tested a texture index and a spatial index, and found that after
low-pass filtering convolution of the MNDWI image, the differences in characteristics
between the two types of water bodies can be significantly stretched (Figures 8 and 9).
Therefore, this provided good extraction for the aquaculture pond.

This research method addressed the shortcomings of visual interpretation and single
spectral features. It can be easily applied to aquaculture pond identification scenarios in
other regions with the help of the GEE platform’s computing power and massive data
sources. It does, however, have the following shortcomings:

1. Under the spatial resolution of the Landsat image and the perspective of provincial
scale, the aquaculture pond identified as a whole by region inevitably contains sub-
pixel-scale channels and dikes in the region. The width of such ground objects is
between 3 m and 10 m. This area is included in the extraction results of the aquaculture
pond, which is one of the sources of error.

2. Scattered or small scattered aquaculture ponds interspersed between tidal flats and
seawater forms mixed pixels with surrounding features, resulting in misclassification
or missing classifications, which is the second source of error.

3. Objective reasons, such as fishermen’s irregular pond-clearing behavior and the influ-
ence of cloud cover in the optimal collection phase, can lead to the partial probability
of a dry pond, and such information is misclassified as land, which is the third source
of error.

6. Conclusions

In this study, we proposed an automatic extraction method for aquaculture ponds in
coastal waters based on image spectral information, spatial features, and morphological
operation. This method combined two water spectral indices (MCIWI and MNDWI) with
space convolution to achieve the layered recognition of the land–water boundary and
grid characteristics of aquaculture ponds. Replacing individual extraction with overall
identification of aquaculture ponds has not only improved the identification accuracy, but
also conformed to the attributes of aquaculture land use type. The results of the application
in the southeast coastal region of China reflected the high precision and reliability of the
extraction method.

With the help of the GEE platform, this method could be applied to other areas in
China, providing theoretical reference and data support to reduce both the difficulty of
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coastal aquaculture pond management and its negative impact on the environment, and to
protect marine water quality.
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