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Abstract: Assessing the spatiotemporal dynamics of land use land cover (LULC) change on water
resources is vital for watershed sustainability and developing proper management strategies. Eval-
uating LULC scenarios synergistically with hydrologic modeling affords substantial evidence of
factors that govern hydrologic processes. Hence, this study assessed the spatiotemporal effects and
implications of LULC dynamics on groundwater recharge and surface runoff in Gilgel Gibe, an East
African watershed, using the Soil and Water Assessment Tool (SWAT) model. Three different LULC
maps (2000, 2010, and 2020) were derived from Landsat images, and the comparisons pointed out that
the land-use pattern had changed significantly. The agricultural land and grassland cover increased
by 3.76% and 1.36%, respectively, from 2000 to 2020. The implications acquired for 2000 show that
forested land covers decreased by 5.49% in 2020. The SWAT simulation process was executed using
a digital elevation model, soil, LULC, and weather data. The model was calibrated and validated
using streamflow data to understand the surface runoff and groundwater recharge responses of
each Hydrologic Response Units on reference simulation periods using the Calibration and Uncer-
tainty Program (SWAT-CUP), Sequential Uncertainty Fitting (SUFI-2) algorithm. The observed and
simulated streamflows were checked for performance indices of coefficient of determination (R2),
Nash–Sutcliffe model efficiency (NSE), and percent bias (PBIAS) on monthly time steps. The results
show that there is good agreement for all LULC simulations, both calibration and validation periods
(R2 & NSE ≥ 0.84, −15 < PBIAS < +15). This reveals that for the LULC assessment of any hydrologi-
cal modeling, the simulation of each reference period should be calibrated to have reasonable outputs.
The study indicated that surface runoff has increased while groundwater decreased over the last two
decades. The temporal variation revealed that the highest recharge and runoff occurred during the
wet seasons. Thus, the study can support maximizing water management strategies and reducing
adverse driving environmental forces.

Keywords: groundwater recharge; Gilgel Gibe watershed; LULC; Soil and Water Assessment Tool
(SWAT); SWAT-CUP; surface runoff

1. Introduction

Land and water resources are dynamically hindered by uncertainties of climate and
land use land cover (LULC) changes, aggravating the water crisis worldwide [1,2]. Inap-
propriate exploitation and poor management systems increasingly threaten land and water
resources, changing the natural landscapes for human use [3–5]. Examining the possible
effects of LULC change on the hydrologic cycle under natural and human activities is
required to manage available resources properly [6]. However, LULC change responses to
environmental and socio-economic drivers continue to be a significant scientific hindrance
in assessing its effect on water availability [7]. In different climate regions, groundwater
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is the main fresh water supply; its utilization and management are thoroughly associated
with the Sustainable Development Goals [8–10]. Conversely, in most African countries,
the salient use of groundwater for domestic and agricultural purposes significantly affects
groundwater recharge and food security [5,8,11].

Human activities incur massive changes in the terrestrial environment, but the possible
effects and implications of such changes on groundwater recharge and surface runoff (GR-
SURQ) are poorly understood. In Africa, the influence of LULC is much larger than climate
variability [12]. The spatiotemporal variability of groundwater recharge and streamflow is
essential in understanding the abstraction scenarios of water management [13,14]. Ground-
water is a preferable water supply over surface water, while the extreme inter-annual
rainfall variations stress surface water availability [15]. However, the impacts of LULC
change on groundwater recharge are not sufficiently recognized, though it is a substantial
freshwater source for domestic, agricultural, and commercial uses, which results in ground-
water depletion [16]. The main implications are overexploitation of natural resources [17],
ecosystem service [18], erosion, land degradation, and deforestation [19,20], which affect
ecological and economic sustainability [21].

In developing countries such as Ethiopia, estimating GRSURQ is challenging because
of the scarcity of relevant data [13]. Ethiopia has significant land and water resources,
playing a minimum role in developing the national economy. It is being affected by various
environmental challenges in order to enhance agricultural productivity for food security.
Over the past decades, an extensive LULC change has been observed mainly from man-
made and natural forces [22,23]. Both natural and anthropogenic activities adversely affect
watershed hydrology, causing water stress, which shifts ecosystem biodiversity. Many
studies have assessed drivers of LULC change affecting environmental resources [24]. Of
which, cutting of trees for fuelwood and charcoal [25,26], resettlement, land tenure policy,
population growth, poverty, intensive agricultural practice [27,28], and drought occur-
rence [29,30] have been recognized as primary drivers in different parts of the country. Poor
LULC practices in highland areas have resulted in substantial soil loss, reduced agricultural
production, and groundwater depletion [31]. This adversely affects essential aspects of
the environment, geomorphologic patterns, flora and fauna [32], habitat fragmentation,
depletion of biodiversity [33], and changes in climatic conditions [34]. Where many drivers
can potentially conceal, reducing the impacts of LULC change on groundwater recharge is
paramount [35].

LULC change affects spatiotemporal scales of land surfaces, changing surface runoff,
groundwater recharge, evapotranspiration, and river flow [36–38]. However, critical water
stress has been faced due to information gaps in the decision-making process in most devel-
oping countries, including Ethiopia [13]. Understanding the hydrologic cycle to establish a
suitable model for a watershed is crucial in planning and utilizing water resources. Never-
theless, analyzing and quantifying hydrologic components require a realistic hydrologic
model representing watershed processes [39]. Watershed models have been used as a
dynamic mechanism to address a comprehensive spectrum of environmental problems,
advancing estimates’ predictive accuracy [28,40,41]. The Soil and Water Assessment Tool
(SWAT) [42] is a vigorous hydrologic model to estimate hydrologic fluxes in combating wa-
ter scarcity issues [43–46]. The model integrates multiple ecological processes supporting
management and decision-making scenarios worldwide [39,41,47–53].

The heterogeneity of variations in hydrological fluxes with LULC change over the
years challenges how to realize the possible effects [54]. Qualifying and quantifying the
spatiotemporal variations of groundwater recharge based on updated spatial information
are indispensable for watershed sustainability [13,55]. Nonetheless, basic information on
the spatiotemporal patterns of LULC change and its effect on GRSURQ in Ethiopia is rarely
understood, while water and food security are central issues. GRSURQ is challenging
because of drastic changes in vast anthropogenic activities. Controlling undesirable surface
runoff in watersheds preserves soil nutrients and water availability, maximizing crop yields
to reduce food security issues [56]. Furthermore, surface runoff is the driving energy of
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soil erosion to reservoirs [57], which might result in sediment deposition, directly affecting
groundwater recharge if not adequately regulated.

In the Gilgel Gibe watershed, where the surface water is intermittent due to the erratic
nature of rainfall, groundwater is becoming a critical source of fresh water, as locating
sustainable and productive aquifers is challenging [58]. Hence, modeling efforts in LULC
change are fundamental to developing water infrastructure supporting sustainable water-
shed management strategies in data-sparse environments. Sustainable water resources
management requires a significant understanding of the effects and implications of LULC
and watershed monitoring strategies. However, no exclusive evidence exists on how
changes to LULC affect GRSURQ in the Gilgel Gibe watershed. Thus, the present study
aims to assess the spatiotemporal effects and implications of LULC dynamics on ground-
water recharge and surface runoff in the Gilgel Gibe watershed, Ethiopia, in East Africa,
using the SWAT model over the past two decades. The SWAT model was successfully
applied to assess the exclusive effects of LULC changes on GRSURQ to verify the viabil-
ity of predicting streamflow with independent calibration and validation for each LULC
period simulation. This study is robustly helpful in promoting sustainable watershed
management and resource development programs under data-scarce conditions. This will
enable planners and policy-makers to apply effective management strategies to diminish
the undesirable effects of natural and uncontrolled human activities.

2. Materials and Methods
2.1. Description of Study Area

The Gilgel Gibe watershed is situated in Eastern Africa, the Omo-Gibe River Basin,
and a semi-arid southwestern region of Ethiopia. The watershed reaches through the
Addis Ababa–Jimma–Gambella asphalt road to the west of the Main Ethiopian Rift. The
dominant soil types are alisols (45.11%), vertisols (40.79%), nitisols (13.73%), and leptosols
(0.37%), with textures ranging from clay to sandy loam [58]. The areal coverage of slope in
percentage is 0–5 (15.41%), 5–10 (15.63%), 10–15 (16.55%), 15–35 (40.75%), and 11.65% for
slopes above 35 degrees [58]. The geological structures are columnar joints in basalts and
flow bands in trachytes and rhyolites. The area reveals Tertiary volcanic rocks, Precambrian
basements, Mesozoic rocks, Pliocene age volcanics, quaternary pyroclastics, and alluvial
sediments [59].

2.2. SWAT Model Description

The Soil and Water Assessment Tool (SWAT) [42] is a continuous, physically based,
and lumped model capable of simulating water management environments [45,60]. The
model is developed to simulate runoff and nutrient losses with readily available input
data to assess management practices [42,61]. SWAT has usually been used to evaluate
the impacts and implications of LULC change on watershed hydrology [17,23,36,48,62]. It
simulates a shallow unconfined aquifer that donates water to the mainstream or reaches
the sub-basin and a confined deep aquifer [61]. This enhances the precision of the water
balance, providing robust physical meaning. In addition, SWAT simulates the hydrological
cycle [43,63] using the water balance Equation (1).

SWt = SWo +
t

∑
i=1

(
Rday − Qsur f − Ea − Wseep − Qgw

)
(1)

where: SWt final water content (mmH2O), SWo initial soil water content (mmH2O), t
time (days), Rday precipitation amount (mmH2O), Qsur f surface runoff (mmH2O), Ea
actual evapotranspiration (mmH2O), Wseep water entering vadose zone from soil profile
(mmH2O), Qgw return flow amount (mmH2O).
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2.3. Model Input Data Preparation

The SWAT model needs topography, LULC, soil, and daily weather data to simulate
hydrologic processes. Digital elevation model (DEM) represents watershed topography at-
tained from the Shuttle Radar Topography Mission of the US Geological Survey (Figure 1a).
The soil data were acquired from Food and Agriculture Organization (FAO), Harmonized
World Soil Database (HWSD) [64]. HWSD Viewer Version 1.21 [65] was used to generate a
code for soil properties. Different types of soil texture and physical-chemical properties of
soils are required for SWAT simulations [61,66]. The dominant soil groups were identified,
the soil map was attached to the soil database (Figure 1b), and a lookup table was prepared
that links the soil class and input soil map to the SWAT model database.
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Figure 1. Study area maps of (a) digital elevation model (DEM), and (b) soil.

LULC data were retrieved from accurate and high-resolution Landsat images [67],
Global Land Cover Datasets of GlobeLand30 [68]. This study considered LULC of the years
2000 (Figure 2a), 2010 (Figure 2b), and 2020 (Figure 2c). LULC accuracy assessment was
executed using Semi-Automatic Classification Plugin (SCP) for the Quantum Geographic
Information System (QGIS) environment. It was accomplished by comparing a sample of
points (ground truth) to assess the dependability and precision of the classified map. A
confusion matrix was used to categorize the accuracy derived from the user’s accuracy,
producer’s accuracy, and the kappa information. A kappa distribution rate of more than
zero is considered to be good agreement [69]. Kappa coefficient measures how the classifi-
cation results compare to values assigned randomly. If the kappa coefficient equals one, the
classified and ground truth images are identical. Finally, the accuracy of LULC maps was
checked to gain confidence for test applications.

The GlobeLand30 Classification System has specifically given details for each LULC
type. Cultivated land (AGRC) is used to produce crops; it comprises irrigated upland,
vegetable land, cultivated pasture, and coffee garden. Forest (FRST) is land covered with
trees, mixed forests, and sparse woodland, occupying a maximum density of over 30%.
Grassland (RNGE) is land protected by natural grass with a cover density of over 10%.
Shrubland (SHRB) is the land covered with shrubs, and the cover density is over 30%.
Wetland (WETN) denotes the junction of land and water areas covered by hygrophyte and
wet soils. In contrast, water bodies (WATR) refer to the area’s liquid water-covered river,
reservoirs, and pit-pond. Artificial surfaces (URBN) denote surfaces made by man-built
activities in urban and rural areas and industrial and transportation facilities. Bare land
(RNGB) includes naturally covered lands such as desert, sand, gravel ground, bare rocks,
saline, and alkaline lands with a cover density lower than 10%. SWAT uses these codes
to link the LULC of the study watershed to the SWAT land use database. Subsequently, a
user lookup table was prepared that identifies SWAT code (AGRC, FRST, RNGE, SHRB,
WATR, URBN, and RNGB) for each LULC category to simulate the model. Finally, each
LULC (2000, 2010, and 2020) period map was used for a separate SWAT model (1988–2018)
simulation of hydrologic processes.
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2.4. SWAT Model Setup and Simulation

SWAT model setup was developed to simulate the watershed hydrological process and
evaluate GRSURQ. First, the stream definition was carefully determined by selecting the
threshold required to form the origin of streams. In this present study, the slope map was
produced from DEM data. The study established the multiple slope option, considering
different slope classes to create hydrologic response units (HRUs). Then, the land area
was distributed into HRUs with exclusive evidence related to various features of land use,
management, and soil attributes [61,70]. HRUs are defined in the QSWAT [71] interface
of the QGIS environment. QSWAT is written in a robust programming language, Python,
with anticipated supporting code readability [71]. HRUs increase accuracy in predicting
loadings from the sub-basin. The LULC and soil data are used to delimit HRUs and tie the
DEM with the crop and soil databases. A 5–10% threshold value is used to avoid small
HRUs, reduce the total number of HRUs, and increase model efficiency [61]. All soil water
balance constituents are computed on an HRU basis as comparable HRUs would have
analogous hydrologic features [42].

Weather data definition is an essential requirement for SWAT simulation. The SWAT
2012 requires daily precipitation (mm), temperature (◦C), relative humidity (percentage),
solar radiation (MJ/m2), and wind speed (m/s) of meteorological stations inside and in the
buffer zone of the watershed. The present study used Jimma, Sekoru, Shebe, Assendabo,
Busa, Dedo, and Omo Nada weather stations collected from the National Meteorological
Agency to simulate the hydrology of the watershed. The streamflow data were collected
from the Ministry of Water, Irrigation, and Electricity. Weather Generator (WGN) Pa-
rameters Estimation Tool interpolates missing data from the synoptic stations for specific
simulation periods. Hence, WGN provided all necessary statistical information of synthetic
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daily meteorological records to fill in missing data appropriately. WGN generates wind
speed, solar radiation, and relative humidity from precipitation and temperature [61]. After
computing the WGN parameter, the corresponding lookup table was prepared according to
the SWAT model format, including the two-year warmup periods. The warmup period was
taken to ensure no effects from the initial conditions. Then, the LULC, soil, and slope layers
were overlaid, basin-wise HRUs were created, weather data were defined, and SWAT2012
was simulated with the total simulation period from 1988 to 2018. The general outline of
the workflow structure used in this assessment is shown in Figure 3.
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2.5. Model Calibration and Validation

SWAT is a sophisticated, robust, and interdisciplinary watershed modeling tool. How-
ever, the practical application of the hydrologic model to predict streamflow is determined
by calibration and validation techniques [72–75]. It is helpful to find optimal parameters
set with the optimum objective functions [74,76]. In the calibration process, parameters
transferred from gauged to ungauged sites in data-scarce conditions could be affected
by human activities [77]. Correct parameters make model calibration faster, more ac-
curate, with low prediction uncertainty [66], and describe comprehensive hydrological
processes [78]. However, model applications in different climatic regions are still challenged
by a lack of historical data through the most commonly used watershed response variable
in performance evaluation [44].

The SWAT Calibration and Uncertainty Program (SWAT-CUP) was developed to
quantify SWAT model calibration, validation, and sensitivity analysis [63]. The capability
of the SWAT-CUP encompasses an automated approach to conduct performance analysis
more rigorously [66,72]. SWAT-CUP integrates various techniques in one interface that is
easy to use and efficient [79]. The SWAT-CUP is an open-access program that connects the
Sequential Uncertainty Fitting Version 2 (SUFI-2) algorithm to the SWAT model output [44].
The SUFI-2 accounts for all causes of uncertainty driving factors in water resources [72,79].
Sensitivity analysis determines model output changes regarding model input changes [65].
This study supported the auto analysis using SWAT-CUP and SUFI-2. An auto analysis
attains suitable parameter estimates consistent with historical data to decide and refine
estimates [80].

A sensitivity analysis affords reflections that limit output variances due to input vari-
ability [72]. The t-stat measures the sensitivity, and the p-values decide the implications [75].
A p-value close to zero has a meaningful value: the larger the t-stat value, the lesser the
p-value, and the more sensitive the parameter [72]. The practical optimized value within
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a given bound minimizes the relative error [66]. Model validation indicates that a given
model can produce accurate predictions without changing parameter values during calibra-
tion [81]. The observed and simulated annual streamflow was used to calibrate (1997–2006)
and validate the (2007–2014) effects of LULC changes on GRSURQ. After calibration and
validation, the impacts and implications of LULC change on GRSURQ have been analyzed.

2.6. Estimation of Model Predictive Accuracy

Statistical indicators were evaluated using SWAT-CUP to measure the best parame-
ter [77]. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE),
and percent bias (PBIAS) were used to define the dependability of forecasts compared to
experimental values of SWAT model performance. R2 describes the percentage of variance
to indicate the correlations between simulated and observed values. R2 ranges from 0
to 1, where close to 1 and 0 show excellent and poor data presentation [80,82–84]. NSE
assesses the predictive power and overall agreement of simulated and observed hydro-
graphs. For acceptable model performance, NSE should be close to 1. PBIAS measures
the normal tendency of simulated data with observed data [80]. The model performance
ratings were evaluated based on a range of values for R2, NSE, and PBIAS, as shown by
Equations (2), (3), and (4), respectively.

R2 =

[
∑n

i=1
(
Qsi − Qsi

) (
Qoi − Qo

)]2

∑n
i=1 (Qsi − Qsi)

2
∑n

i=1 (Qoi − Qo)
2 (2)

NSE = 1 − ∑n
i=1 (Qoi − Qsi)

2

∑n
i=1 (Qoi − Qoi)

2 (3)

PBIAS =

[
∑n

i=1 Qoi − ∑n
i=1 Qsi

∑n
i=1 Qoi

]
× 100 (4)

where: Qsi (simulated value),
Qoi (measured value), Q si and Q oi (mean of simulated and observed discharge,

respectively).

3. Results and Discussion
3.1. SWAT Model Sensitivity Analysis

Hydrologic modeling and simulation were performed using the QSWAT in the QGIS
environment. After preparing all model inputs, the model was simulated. Then, the
sensitivity analysis was performed at the Asendabo station of the main Gilgel Gibe River.
The sensitivity analysis identifies the most responsive hydrological parameters that signifi-
cantly influence specific model output to enhance the reliability of results. The monthly
streamflow data simulation was performed for 12 years, from 1997 to 2006. The sensitivity
was determined using the t-stat and p-values provided by the SUFI-2 program. In these
statistics, the higher the t-stat values, the greater the relative sensitivity. The p-values were
used to fix the sensitivity implication so that the closer the p-values to zero, the more critical
the parameters become. Before calibration and validation, many more parameters were
used to identify the most sensitive parameters that govern streamflow generation. Then,
the 14 most sensitive parameters were selected to calibrate and validate model predictive
capability based on sensitivity evaluation criteria. The parameter values were adjusted
by changing parameters at a time within acceptable ranges until the best simulation was
attained [70]. The selected most sensitive parameters and their relatively optimized values
are indicated in Table 1 with qualifiers. The parameter qualifier (R_) refers to the default
value multiplied by (1 plus an optimized value), and (V_) refers to the replacement of the
default value with an optimized one. The extensions .hru, .mgt, .bsn, .gw, .sol, and .rte
indicate the SWAT parameter family of HRU, management, basin, groundwater, soil, and
route, respectively.
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Table 1. Sensitive model calibration parameters and optimized values for LULC-2000 simulation.

Parameter Name Description Range Optimized Value

R_CN2.mgt Curve number for moisture condition II −0.02–0.2 0.077
V_ALPHA_BF.gw Coefficient of depletion of groundwater 0.01–1 0.120

V_ESCO.hru Soil evaporation compensation factor 0–1 0.069
V_GW_DELAY.gw Groundwater delay 0–350 195.650
V_GW_REVAP.gw Groundwater “revap” coefficient 0.02–0.2 0.091

V_CANMX.hru Maximum canopy storage 10–100 70.570
V_EPCO.hru Plant uptake compensation factor 0–1 0.649
V_CH_K2.rte Effective hydraulic conductivity 0.01–150 118.052

R_SOL_AWC().sol Available water capacity of the soil −0.5–0.5 0.403
R_SOL_K().sol Saturated hydraulic conductivity −0.5–0.5 −0.443

V_SURLAG.bsn Surface runoff lag coefficient 0–24 12.744
V_SHALLST.gw Initial depth of the shallow aquifer 0–500 404.450
R_SOL_Z().sol Soil depth 0.5–1 0.681

R_GWQMN.gw Threshold depth of shallow water aquifer 0–2 0.242

The model was calibrated and validated to evaluate model simulation performance
in the watershed under changing environments due to extensive human-induced factors.
LULC change uncertainty substantially influences hydrologic cycles, complicating ground-
water recharge and surface runoff modeling outputs [8]. Model parameters are usually
calibrated under one LULC scenario, and are then supposed to be time-invariant while
simulating different hydrological LULC scenarios. However, other variables of LULC
affect simulations to quantify streamflow variability for a new LULC scenario. Through
anthropogenic activities, ensuing changes in the watershed feature that model parameters
are not appropriate for other LULC situations [5,8,17]. As calibration parameters differ
while LULC changes, using the same parameters may not always be feasible. The simu-
lations change when LULC adjustments affect HRU configurations; this no longer affects
the new LULC simulation. The attributes of HRUs are the significant influences affecting
streamflow and other hydrologic components.

Consequently, in the present study, simulations of each reference LULC period were
calibrated using an auto-calibration technique to optimize the values of sensitive parame-
ters. In addition, new parameters were included to check whether the previously applied
parameter could represent the hydrologic simulation process or not. Nevertheless, optimal
values and parameter substitutions were observed regardless of the similarity of parameters
for the 2010 and 2020 LULC simulation periods. Hence, the calibration for simulation of
2010 and 2020 LULC indicates that CN2, GW_DELAY, GW_REVAP, ALPHA_BF, ESCO,
EPCO, CH_K2, RCHRG_DP, SOL_AWC, SOL_K, and GWQMN were newly optimized best
parameters with replacement and multiplication of actual simulation results. This might
support reliable land and water resource development plans.

3.2. Assessing Hydrological Model Performance on Streamflow

SWAT-CUP application with SUFI-2 set of rules has been employed for calibration,
validation, and uncertainty assessment of SWAT output. This study calibrated the model
to make the simulation result more realistic for the independent calibration time steps.
The statistically significant model performance among time intervals was judged based
on recommendations given in Moriasi et al. [75,76], the coefficient of determination (R2),
Nash and Sutcliffe’s model efficiency (NSE), and percentage bias (PBIAS). The hydrology is
well-simulated and is considered representative of the watershed if the statistical indicators
R2, NSE, PBIAS, and graphical fitness are satisfied. The calibration period of the SWAT
model was (1997–2006), excluding two years of model warmup periods and its validation
period (2007–2014). R2, NSE, and PBIAS compared the model’s applicability. R2 suggests
that the observed and simulated values are in good agreement as it is close to one. PBIAS
characterizes the error among the experimental and simulated values as a percentage. The
objective functions were within the acceptable range of goodness of fit tests [75]. The
model performance showed that statistical values simulating monthly streamflow were R2,
NSE, and PBIAS of 0.88, 0.87, and −7.9%, respectively, during the calibration time steps
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of the 2000 land use simulation. Model validation results should increase user confidence
in model predictive capabilities [76]. The model was validated with observed flow data
for eight years (2007–2014) without further adjusting calibration parameters. The SWAT
overall performance for the 2000 LULC simulation during validation was 0.85, 0.85, and
−4.0% for R2, NSE, and PBIAS, respectively.

As depicted in Figure 4a–c, the hydrographs indicated that the results were in good
agreement with measured and simulated streamflow data. The selected statistical perfor-
mance indicators show that there is good agreement for both calibration and validation
periods (R2 & NSE > 0.84, −15 < PBIAS < +15), which are in reasonably acceptable ranges
as in [75,76]. The positive and negative results of PBIAS showed underestimation and
overestimation, respectively. Hence, during the model’s second simulation, the model
overestimated (1%, 3%) calibration and validation time steps, respectively. Moreover, the
PBIAS (−7.9% and −4.0%) for calibration and validation, respectively, indicates that the
model was underestimated by (7.9%, 4.0%) for 2000 and (14.3%, 9.3%) for 2020 land use
periods (Table 2) during calibration and validation time steps. As revealed in Figure 5a–c for
calibration and Figure 5d–f for validation, the scattered plot of the observed and simulated
streamflow, the best-fit line’s correlation coefficient of (0.88, 0.86, 0.87) during calibration
and (0.85, 0.85, 0.86) during validation time steps is observed for 2000, 2010, and 2020
land use periods, respectively. The statistical performance evaluation results have been
statistically accurate for all calibration and validation time steps.

Table 2. Statistical performance indicators during calibration and validation LULC periods.

Variable
2000 2010 2020

Calibration Validation Calibration Validation Calibration Validation

R2 0.88 0.85 0.86 0.85 0.87 0.86
NSE 0.87 0.85 0.86 0.85 0.84 0.85

PBIAS −7.9 −4.0 1.0 3.0 −14.3 −9.3

Statistical values (Table 2) indicate that objective functions were acceptable for model
evaluation [75,76]. Several authors [14,23,36,40,57,62] calibrated the SWAT model in other
Ethiopian watersheds. They mainly reported statistical performance indicators of R2, NSE,
and PBIAS based on [75], comparable with the present findings. The resulting statistics
were comparable to other worldwide studies [35,48–53,77]. The SURQ relies upon overall
precipitation, evaporation, and soil water storage. The most considerable SURQ is derived
from high precipitation and elevation. The most increased flows are typical from July to
September, and the lowest flows occur during February and May. A regular correlation
between rainfall and runoff was observed (Figure 4a–c). Accordingly, the applicability of
the simulated SWAT model was found to be in agreement with regional and global studies
and was reasonably acceptable in the Gilgel Gibe watershed.

SWAT was found to be reasonably appropriate for estimating the spatiotemporal
variability of GRSURQ in the Gilgel Gibe watershed. Therefore, the simulated hydrological
parameters can be helpful in the planning and management of water resource projects. The
SWAT model was simulated, properly calibrated, validated, and confirmed to assess the im-
pact of LULC on the watershed’s hydrology. The performance of simulated and measured
results suggests that SWAT properly represents the streamflow modeling. Furthermore,
the results indicated that the SWAT model performs well. Hence, the calibrated model
can be used to analyze the effect of climate and LULC change on groundwater abstraction
and drought extremes. Thus, this can be improved with integrated surface water and
groundwater interaction of abstraction scenarios to assess the impact on rivers drying up
or groundwater depletion. Consequently, the model output can support the water resource
decision-making process.
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3.3. Effects and Implications of LULC Change

In watershed hydrology, understanding LULC change will empower planners and
policy-makers to reduce adverse effects. The forest covers have undergone deforestation
and decreased by 5.4936%. The barren land has been entirely transformed by 0.001%
of other activities. The urban/built-up land classes have increased by 0.4511% over the
last two decades. Agricultural land covered about 77.6760%, 80.8945%, and 81.4319%
of the entire watershed in 2000, 2010, and 2020. Assessment of LULC over a long time
confirmed continuous agricultural activity and deforestation. The agricultural land use
was augmented by 3.2184% from 2000 to 2010 and 0.5374% from 2010 to 2020. During the
last two decades, agricultural land has increased significantly by 3.7558% from 2000 to 2020.
The artificial surfaces have proven to be 0.0416% from 2000 to 2010, 0.4094% from 2010 to
2020, and 0.4510% from 2000 to 2020. An increase in agricultural land results in a reduction
of forested areas and grassland. Accordingly, the forested land area changed by −5.6942%,
+0.2006%, and −5.4936% from 2000–2010, 2010–2020, and 2000–2020. The grassland change
was observed to be +2.5079%, −1.1485%, and +1.3594% from 2000–2010, 2010–2020, and
2000–2020, respectively. The available bare lands in 2000 have completely transformed into
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other LULC types. The implications acquired for 2000 show that forested area land covers
were 9.8708% but decreased by 5.6942% in 2010 and 5.4936% in 2020.

Similarly, grassland cover was 13.360% in 2000, increased by 2.5079% in 2010, but
decreased by 1.1485% in 2020. Numerous anthropogenic activities associated with socio-
economic and biophysical environments reduced forested areas. The effects showed sig-
nificant variations in LULC that occurred from 2000 to 2010. From a political atmosphere
point of view, it could be regarded that poor development policy, globalization, and market
forces of multi-national initiatives drive LULC changes. It has been hypothesized that
LULC change results from favorable economic and institutional conditions triggered by
the expansion of agriculture and rangelands.

LULC disturbs water budgets by reducing infiltration and increasing surface runoff
in the watershed. Human activities in the biophysical environment increase reliance on
agriculture. The expansion of cultivation is to produce a crop at the expense of forests and
grazing lands. This increases land susceptibility to erosion and sedimentation of water
bodies and reservoirs. This is attributed to the loss of fertile topsoil, soil degradation, the
decline in organic matter, decreased plant-available water, and nutrient loss, reducing crop
yields. Agricultural land increases as the population increases, which is the reason for
the cultivation of farming products. LULC changes in the watershed have been altered
extensively because of human activities. There is a change in vegetation and forestlands due
to agriculture-affected water bodies in the ecosystem and land surfaces. The agricultural
land use practice encourages more surface runoff than infiltration. Hence, LULC change
impact on spatiotemporal assessment is substantial for socio-economic and environmental
development. The findings are in agreement with studies conducted by [6,17,20–23,29,56].
Similar studies confirmed that LULC changed from forest to agricultural land, waterbody,
industrial farmland, and built-up areas.

3.4. Effects and Implications of LULC Change on Surface Runoff

LULC change usually induces significant changes in flood peak and infiltration prop-
erties, thus affecting the entire hydrological condition of the watershed. Assessing the
spatiotemporal variability, the effect, and the implications of LULC changes is essential
to estimating water balances. Computational reliability of hydrological model simulation
increases with well-calibrated model simulation. In the present study, the SWAT model was
initially calibrated using the LULC map of 2000, then updated to 2010 and 2020 to examine
the effect of LULC changes on GRSURQ. For the first LULC-2000 period, the watershed
has a total mean annual value of actual evapotranspiration of 608.61 mm, groundwater
contribution to streamflow of 313.28 mm, lateral flow of 75.9 mm, recharge of 348.16 mm,
SURQ 347.9 mm, and water yield 754.52 mm. The simulated annual water balances indi-
cated that actual evapotranspiration loses 44% of the yearly precipitation and 56% of the
rainfall in the watershed contributes to the streamflow during the simulation period. The
average annual contribution of groundwater relative to rainfall is 22.7%. Therefore, 25.22%
of precipitation is lost as groundwater recharge.

Surface runoff is the primary integral part of streamflow and is essential in estimating
groundwater recharge potential. LULC is a significant characteristic of the surface runoff
process that affects soil water content, water yield, infiltration rate, and groundwater
flow. In watershed hydrology, surface runoff is the prime streamflow contribution to
aquifers. The simulated total average surface runoff in 2000, 2010, and 2020 was 347.9 mm,
599.36 mm, and 282.99 mm, respectively. The results of the LULC changes indicated that
surface runoff increased in 2010 and decreased in 2020. In the second decade, a decrease
in surface runoff and water yield increased groundwater recharge. In high slope areas,
there is no infiltration, and precipitation cannot recharge, resulting in an increased volume
of surface runoff. The other reason for reducing surface runoff is the excellent watershed
management practice promoted by the government and local administration in the last
decade. If not adequately managed, the time to peak flow is reduced, causing flooding and
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affecting lives and property. The model simulated high water yield from June to September
as precipitation increased from June to August in the summer.

Consequently, excess water flows can be stored and used during low flow conditions.
The simulated streamflow accounts for the LULC change scenarios classified into moist
(August to October) and dry months (February to April). As a result, surface runoff was
very high during the wet season and low during the dry. This evaluation showed that
the increment of cultivated land causes a direct runoff throughout the wettest months.
The increase in surface runoff simulated during the wet season due to LULC changes has
broader ecological resource development implications. The increase in runoff may have
broader implications for growing soil erosion and sedimentation, if proper control is not
implemented. It also removes the top productive soil and causes degradation, affecting
agricultural land, natural river banks, and low plain areas. This reduces crop yield and
leads to food insecurity and sediment inflow to downstream reservoirs, decreasing the
life span of service reservoirs and hydraulic structures. The SURQ map suggests that
sub-basins with high rainfall correspond to extreme runoff (Figure 6a–c). For all LULC
reference periods, the sub-basin numbers (8, 19, 22, and 39) in 2000, (50–53) in 2010, and
2020 were highly attributed to the surface runoff of 104.29 mm to 905.39 mm annually.
High annual surface runoff is observed in the highland elevation areas, attributed to the
high rainfall and steep slope topography. In flat-sloping regions of low lands, surface
runoff is also higher on cultivated land, resulting in human activities in the watershed
and significant driving factors for LULC change. These findings agree with other similar
efforts [5,14,34–36,38,85].
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3.5. Effects and Implications of LULC Change on Groundwater Recharge

Groundwater recharge is a vital hydrologic cycle for sustaining aquifers recharged
through precipitation and recharged artificially through human activity. Hence, developing
the best management scenarios would help conserve stream biotas within the ecosystems
by increasing recharge and decreasing surface runoff [18]. Best management scenarios
increase groundwater recharge and decrease surface runoff, reducing erosion as in-stream
sediment loads decrease. For example, converting agricultural land back to natural land
cover decreased surface runoff. In addition, it decreased in-stream sediment loads due to
reduced erosion. It has been observed that from 2010 to 2020, soils recovering to natural land
conditions had a lower bulk density, higher saturated hydraulic conductivity, and decreased
surface runoff. In addition, surface runoff was affected by LULC change and increased
when the interception decreased as forest cover decreased. Poor land-use practices alter
soil structure and porosity, reduce infiltration rate, and increase surface runoff. However,
intensive agricultural practices removing vegetation covers exposed dense soils to erosion,
decreasing groundwater recharge in the aquifer.

LULC strongly influences groundwater recharge, and it is essential to understand its
interactions with increasing natural and human activities. The calibrated SWAT model
estimated that the simulated groundwater recharge for the LULC reference periods 2000,
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2010, and 2020 averages 348.16 mm, 13.59 mm, and 76.37 mm, respectively. At the sub-
basin scale, groundwater recharge varies from 0 to 704.31, 0 to 27.8, and 0 to 190.79 mm
for 2000, 2010, and 2020, respectively. The sub-basin numbers (35, 50–53), (50–53), and
(35, 27, 44, 51) for 2000, 2010, and 2020 were attributed to high groundwater recharge.
Rangeland and sandy, loamy soil allow alluvial deposits to infiltrate the sub-surface. The
spatial pattern of GRSURQ showed the direct effects of surface runoff reducing the recharge
rate (Figures 6a–c and 7a–c). The lowest recharge values are observed in forest-dominated
sub-basins. The decline in streamflow is attributed to lower surface runoff due to increasing
forestland, which advances the water holding capacity of the soil, reducing infiltration and
recharge conditions. The low recharge estimates in the flat areas could be due to heavy
clay soils with low infiltration. The decrease in groundwater recharge could be attributed
to high evapotranspiration. It increases recharge and runoff for water resource control
strategies tailored to the watershed.
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The variabilities of mean yearly groundwater recharge found in the three reference
periods of this study were lower than other watershed recharge rates [13]. Moreover,
the 2010 LULC simulation groundwater recharge was much lower than the estimated
rate [86]. The temporal variation of groundwater recharge showed that the highest value
occurred during the wet months (June to August). The LULC simulation scenarios dry
season flow (December to April) had shown lowering responses of groundwater recharge
during dry periods. Therefore, the study deduced that the SWAT model underestimated
and overestimated the high flow rate during low flow. The main reason for reducing the
average annual groundwater recharge is the long dry season from December to May, before
the wet season. These changes improved the wet seasonal flow and decreased dry seasonal
flow. The findings revealed increasing wet flow (June–September) and lower dry flow due
to alteration of vegetation cover in agricultural lands over study periods.

Similar efforts in Ethiopia reported that expansion of agricultural land diminishing
forest, shrubland, and grasslands increased runoff, decreasing recharge [14,23,26,36,54].
This produces flooding during the rainy season, decreasing low flow during the dry
period. Therefore, reduced recharge due to LULC change revealed a probable recurrent
hydrological drought. Understanding its effect on GRSURQ is essential to knowing the
flow regimes of wet and dry seasons in the watershed. Hence, there should be an effort
to enhance watershed management practices for efficient use of resources for national
socio-economic development. Hence, sustainable land and water management is crucial to
safeguard the environmental and riverine ecosystems.

4. Conclusions

The present study examined spatiotemporal effects and implications of LULC changes
on groundwater recharge and surface runoff (GRSURQ) under three reference scenarios
in the Gilgel Gibe, an East African watershed. The SWAT model was built and simulated
using DEM, LULC, soil, weather, and hydrological data to understand GRSURQ over the
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watershed. LULC changes derived from satellite images showed an increase in agricultural
lands (3.76%) and a decline in forestland (5.49%) and grassland (2.51%) due to population
growth and associated human activities. The effects reveal that the forests have undergone
deforestation and were reduced due to a change in the considerable agricultural activity in
the watershed.

The ability of the SWAT model to satisfactorily simulate stream flows was evaluated
using SWAT-CUP, SUFI-2. The coefficient of determination (R2), Nash–Sutcliffe efficiency
(NSE), and percent bias (PBIAS) for calibration and validation showed excellent agreement
between observed and simulated hydrographs. The results found that R2, NSE, and
PBIAS values were in acceptable ranges for all LULC simulations. The results suggest
that LULC changes substantially affect the watershed GRSURQ. The calibrated model
confirmed an increase in runoff and a decline in recharge because of changes in LULC.
The study scrutinized the impact of LULC changes on GRSURQ, which is mainly due to
intensive agricultural expansion and withdrawal of the forestlands. In addition, the increase
in agricultural land practice is related to water abstraction for household consumption,
resulting in reduction in ground recharge. The increase in surface runoff and the decline of
groundwater recharge during the wet season could lead to water scarcity during the dry
season, bringing about an aquifer drought. Therefore, developing watershed management
scenarios is indispensable in reducing the adverse effect of LULC changes on GRSURQ.

Therefore, an enormous concern with LULC response is imperative for planners and
policy-makers of water resource projects to ensure ecosystem sustainability. Furthermore,
if adequately assessed, the effects of human-induced LULC changes are indispensable in
understanding hydrologic dynamics. Hence, it was found that providing insights into
calibrated results helps to contribute to a concrete plan for future management strategies
on watershed hydrology. Therefore, the calibrated model setup can be an ensemble for
further assessment, integrating with groundwater flow modeling under different scenarios
and driving factors that might influence groundwater storage.
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