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Abstract: The Straits of Messina (Southern Italy, Mediterranean Sea) are a very complex area: they
connect two basins (Tyrrhenian and Ionian) with different hydrographic features and is characterised
by upwelling and mixing phenomena. The aim of the study was to evaluate if and how the physical
and chemical water conditions and hydrodynamics influenced the phytoplankton and bacterial
patterns and the functioning of this ecosystem. During a late winter survey, size-fractionated phy-
toplankton (from 0.2 to 200 µm) biomass (chlorophyll a), cell densities and species composition as
well as total picoplankton abundances, morphotype composition, and activity levels of the enzymes
leucine aminopeptidase, β-glucosidase, and alkaline phosphatase were investigated. The obtained
results showed a marked diversification among the water masses identified within the Straits area.
The analyses of the phytoplankton diversity indices, particularly those based on phylogenetic rela-
tionships between species (indices of taxonomic diversity and distinctness), confirmed our findings.
In conclusion, the patterns of phytoplankton and bacterial communities provide a suitable approach
to evaluate how microbial communities respond to changing environmental scenarios. This tool
could be applied to other temperate Mediterranean ecosystems.

Keywords: phytoplankton; chlorophyll a; distribution; taxonomic diversity; functional diversity;
enzymatic activity; primary production; mixing; Straits of Messina; Mediterranean Sea

1. Introduction

The Straits of Messina are characterised by great hydrographic complexity, even on
a short spatial scale (20 km length). They are located in the centre of the Mediterranean
Sea and connect two basins, the Ionian and the Tyrrhenian, with different hydrographic
features. The occurrence of the upwelling and mixing phenomena, consequent of strong
tidal currents, mixes warmer Tyrrhenian Surface Waters (TSW) with cooler nutrient-rich
Levantine Intermediate Waters (LIW) [1]. However, the high turbulence and relevant
dynamics of the Straits do not allow the establishment of a well-structured phytoplankton
community [2]. The development of phytoplankton is fostered by the nutrient enrichment
of the rising waters: it is directly linked to the residence time of the organisms in the
euphotic layer and inversely correlated to the mixing of the water column [3]. Several
studies concerning the influence of the divergence (which pumps nutrient-rich waters into
the euphotic layer) on large-sized biota as well as on the primary production process were
also performed [3–7]. Conversely, the pelagic microbial community and its dynamics and
functioning were scarcely considered [8].

Microorganisms include a huge number of functional types, from phytoplankton to
prokaryotes (bacteria, archaea, and cyanobacteria), which are now considered the most
abundant living component; they are highly involved in ecosystem functioning, especially
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in oligotrophic environments where changes in their structure and functioning are expected
to have significant relevance in processes like primary production, enzymatic hydrolysis,
and remineralization [9–11]. Furthermore, it is well known that microbial communities’
biogeography is correlated to different water masses in the whole Mediterranean Sea [12].
According to these considerations, hydrodynamic phenomena, such as upwelling occurring
in the Straits of Messina, were expected to significantly affect the phytoplankton and
bacterial abundances and metabolism, thus suggesting the possible use of this ecosystem
as a natural mesocosm where the effects of water dynamics on microbes-organic matter
interactions can be observed.

Previous studies described microbial communities as potential descriptors of environ-
mental quality [13–16]. As heterotrophic bacteria utilise the available organic carbon sub-
strates [9], both microbial abundance and functions undergo significant changes in response
to environmental variability [17–19]. Variations in environmental and biological forcings
have been related to those in cell morphological traits [20]. Moreover, specific physiological
activities can be associated with the distribution of specific morphotypes [21]. Significant
relationships between water trophism and cell morphology were also observed [22–24],
pointing out that microbial morphology can be a suitable marker of changes in the trophic
conditions of aquatic ecosystems [20].

Marine phytoplankton organisms are one of the key players in the coastal and open
waters as they serve as the basis for marine food webs and contribute approximately 50%
to global primary production [25]. The size fractions of the phytoplankton community
provide information on the biogeochemical cycles [26,27]. Phytoplankton is characterised
by high diversity and encompasses microorganisms highly distant from an evolutionary
point of view [28]. It is well known that phytoplankton diversity and community structure
influence the functioning of ecosystems [29,30]. However, more information is needed to im-
prove knowledge on relations between phytoplankton diversity and upwelling ecosystem
functioning [31].

Phytoplankton responds quickly to environmental forcing [32] and provides effective
information on water quality, hydrography, and climate changes [33], and is considered a
better indicator of trophic status than nutrient and chlorophyll a contents in water [34]. The
most relevant feature of the distribution of phytoplankton communities is their patchiness
linked to the variability of growth, predation, buoyancy (sinking), and vertical displace-
ments due to advective processes such as water mixing. The latter affects the nutrient and
microorganism distribution and, together with solar radiation, creates suitable conditions
for sustaining primary production and diversity [35]. In nutrient-rich upwelling regions
productivity is usually very high, although phytoplankton is subjected to contrasting
effects: nutrient enrichment and light condition variability through vertical mixing [36].

Metabolic interactions between primary producing photoautotrophic organisms (phy-
toplankton and cyanobacteria) and heterotrophic organisms (prokaryotes including bacteria
and archaea) are crucial to understanding ecosystem functioning [37]. Taking into account
that about 50% of the carbon fixed by photosynthesis is processed by bacteria [38], to get
a general overview of the interactions among the biological components of the trophic
web in the Straits, both phytoplankton and bacterial communities were considered in this
study. Particularly, the objective of this research was to evaluate if and how the physical
and chemical conditions and hydrodynamics influenced the phytoplankton and bacterial
patterns and the ecosystems’ functioning. Specifically, we aimed to describe (1) the abun-
dance and spatial distribution patterns of bacterial and phytoplankton communities in the
Straits and neighbouring areas; (2) picoplankton morphotypes and phytoplankton species
composition and biodiversity; (3) the autotrophic and heterotrophic processes and their
relationships by considering photosynthetic production and microbial decomposition.
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2. Materials and Methods
2.1. Study Area

The distinctive trait in the Straits of Messina area is the interaction between the tidal
currents and the morpho-bathymetric characteristics [39]. In particular, the presence of
a transversal sill at about 80 m depth generates very strong pulsating horizontal cur-
rents (max > 2 m s−1, [40]), the formation of turbulent advective gyres [41], and massive
upwelling of the Ionian Intermediate Waters (IIW) [7].

Turbulent mixing of the water column is the dominating oceanographic feature in
the Straits of Messina, thus a stable seasonal thermocline cannot develop [5,6]. Rather, a
two-layer structure develops with the less dense TSW located above that flows southwards
and mixes with the upwelled IIW. A peculiar water mass is generated in the Straits (called
Messina Mixing Waters, MMW): it exits to the south and can be tracked along the Ionian
coast of Sicily up to 150 km of distance [42]. Conversely, the northward residual flow along
the Sicilian coast beyond the sill favours the spreading of the just-upwelled IIW towards
the Southern Tyrrhenian, where they adjust their depth according to their density [43].
Concentrations and distribution patterns of nutrients reflect the origin and history of
water masses.

Plankton communities in the Straits are directly influenced by the above described
physical–chemical upwelling features that produce a high concentration of chlorophyll
a and primary production in the surrounding waters [7]. The strong contribution of the
pico-sized fraction to primary production indicates that these microorganisms are best
adapted to the mixing conditions [3,44].

2.2. Sampling

A sampling cruise (SAMCA IV Project) was conducted on board the R/V Urania (from
15–23 February 2004) at 25 hydrographic stations located on transects laying in the South-
ern Tyrrhenian Sea, Northern Ionian Sea, and the Straits of Messina (37◦ N–14.0◦ E and
39◦ N–16.0◦ E, Figure 1). Moreover, 81 vertical CTD casts were performed to better charac-
terise the water masses in the area. The sampling was designed to get a snapshot of the
microbial structure and functioning under similar tidal conditions in the different basins.
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More details on the sampling stations are reported in Table S1.

2.3. Physical–Chemical Parameters

Vertical profiles of temperature (T) and salinity (S) were recorded by a SeaBird 911plus
CTD-O-Fl profiler equipped with a Scufa (Turner) fluorometer; CTD was mounted on a
Rosette sampler hosting 24 × 10 L Niskin bottles.

Analyses for nutrients (ammonia, nitrite, nitrate, and orthophosphate concentrations)
were carried out in triplicates following conventional laboratory methods [45,46].

2.4. Total and Size-Fractionated Chlorophyll a and Primary Production Rates

Chlorophyll a (chla) and phaeopigment (phaeo) concentrations were measured with a
Varian (mod. Cary Eclipse) spectrofluorometer according to the methods described in [42].
Sample aliquots (1.5–2.0 L) were sequentially filtered on polycarbonate (10.0 and 2.0 µm)
and on Whatman GF/F filters to separate the micro- (>10.0 µm), nano- (2.0–10.0 µm),
and pico-sized phytoplankton (0.2–2.0 µm) fractions. The chla and phaeo pigments were
extracted in a 90% acetone solution for 24 h in the dark at 4 ◦C and total and size-fractionated
primary production (PP) were estimated by using the standard 14C labelling technique [47].
Samples (three replicates) were incubated (for 4 h) in an on-deck continuous-seawater-
flow incubator equipped with a set of neutral density screens, in order to reproduce the
irradiance intensities at the sampling depth. Details of the procedure are reported in [16].

2.5. Prokaryotic Abundance and Morphotypes

Water samples were preserved with formaldehyde at a 2% final concentration and
kept at 4 ◦C until their counting, which was made within four weeks using a Zeiss Standard
Axioplan epifluorescence microscope equipped with a mercury vapour (Hg 100) lamp at
1000×magnification.

Photoautotrophic picoplankton (picophytoplankton, PPA) abundance was evaluated
by filtering onto 0.2 µm pore-size Millipore black membranes 10 mL volumes in duplicate.
Right Under blue light excitation, cyanobacterial cells fluoresced yellow-orange whereas
eukaryotic algae fluoresced deep red. A BP 485/20 exciting filter, a FT 510 chromatic beam
splitter, and an LP 520 barrier filter were utilised.

Total picoplankton (PPT) concentration was assessed by filtering onto a 0.2 µm pore-
size Millipore filter 1 mL in duplicate and staining the filter with DAPI (4,6-diamidino-2
phenyl-indole) [48]. A G 365 exciting filter, an FT 395 chromatic beam splitter, and an
LP 420 barrier filter were utilised. The counted PPT cells were distinguished into eight
different size classes: three size classes of cocci (0.5, 0.85, and 1.0 µm) and five size classes
of rods (1.0, 1.5, 2.0, 2.5, and 3.0 µm).

A minimum of 200 PPA and PPT cells were counted per filter within at least 20 randomly
selected fields or more to ensure ±10% confidence levels. The abundance of the het-
erotrophic picoplankton (PPH) was obtained from the difference between PPT and PPA.

2.6. Larger Phytoplankton Abundance and Species Composition

Water samples (500 mL) were fixed with an acid Lugol’s iodine solution at a 1.0%
final dilution, stored at 4 ◦C, and processed within four weeks. Identification and counting
were performed using an inverted microscope (Labovert FS Leitz) equipped with phase
contrast following the Utermöhl method [49]. With the term “Larger phytoplankton” we
considered the “Utermöhl phytoplankton”, which comprises the nano- (2–20 µm) and micro-
(20–200 µm) sized phytoplankton taxa recognizable under light microscopy. Following
a preliminary evaluation of phytoplankton cell densities, a variable volume of sample
(50–100 mL) was settled in an Utermöhl chamber and analysed at magnifications of 400×
and 630×. Phytoplankton cells were counted within 30–60 randomly selected fields or
along 1–4 transects; in addition, half of the chamber was examined at 200×magnification to
better determine the less abundant species. A minimum of 200 cells was counted per sample
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to ensure a confidence limit of 14% [50], which is a generally accepted limit, especially for
samples collected in oligotrophic waters [51].

2.7. Extracellular Enzyme Activity Rates (EEA)

Total extracellular enzymatic activity (EEA) measurements in terms of leucine aminopep-
tidase (LAP) alkaline phosphatase (AP) and β-glucosidase (GLU) activity rates were per-
formed according to Hoppe’s method [52] based on the use of fluorogenic substrates. Methy-
lumbelliferyl (MUF)-derived compounds MUF-phosphate and MUF-ß-Glucopyranoside
(Sigma-Aldrich Corporate, Merck Life Science, Milan, Italy) for AP and GLU, respectively,
and the methylcoumarine (MCA)-derived compound L-leucine-7-amido-4-methylcoumarin
hydrochloride (Sigma-Aldrich) for LAP were added to triplicate 10 mL water samples.
Five increasing concentrations (from 0.1 to 20 µM) of each fluorogenic substrate were
used, according to a multi-concentration method [53], whereas for the blank tube sterile
prefiltered seawater was added. After incubation at in situ temperature for 3 h, the fluores-
cence released from the hydrolysis of the fluorogenic substrate was recorded with a Turner
TD 700 fluorometer, equipped with 380–440 and 365–445 nm filters (excitation-emission
wavelengths) for Leu-MCA and MUF substrates, respectively. A standard curve with
known concentrations of MUF and MCA allowed us to convert the increase in fluorescence
into the hydrolysis velocity, reported as Vmax [54].

2.8. Data Processing
2.8.1. Statistical Analysis

CTD data were processed with Ocean Data View (ODV) software [55] to obtain the
T/S diagram and the sections of density anomalies and chla from the fluorescence sensor.
The agglomeration distance plot of salinity values at different depths guided the formation
of four clusters from the 129 pairs of available observations. These four clusters were
named according to the dominant water masses: Tyrrhenian Surface Waters—TSW; Mixed
Messina Waters—MMW; Intermediate Ionian Waters—IIW; Deep Waters—DW.

To test for significant differences between and within groups of data, one-way ANOVA
and parametric (Fisher’s LSD on means) or non-parametric (Kruskal–Wallis on medians, in
case of non-homogeneity of variances) tests were used.

The Pearson’s correlations were used to detect relevant pairwise relations, if any [56].
Multivariate SIMPER analysis was applied to compare microbial structure and ac-

tivities. Compared with common Spearman’s and Pearson’s correlations, multivariate
analyses are more suitable approaches to assess links between structure and process in
studies focused on the whole microbial community, being the correlation analyses unable
to estimate microbial interactions and non-linear responses [57].

2.8.2. Phytoplankton Community Structure and Biodiversity

The spatial distribution of the phytoplankton community was analysed using the
PRIMER v.7 software package [58] (Primer-E). The initial matrix comprised all the detected
species/morphospecies (N = 106), including the pico-sized Synechococcus/Cyanobium, the
phytoflagellates, and the rare taxa (i.e., those with a low relative abundance and low
frequency of occurrence) [58]. Bi-dimensional representations of the statistical comparisons
among water masses were obtained by non-parametric multidimensional scaling (nMDS)
performed on Bray–Curtis similarity matrices (log-transformed data) [58]. The choice
of the best level of transformation has been already described in [16]. To evaluate the
differences in the phytoplankton community assemblages between different water masses
a one-way analysis of similarities (ANOSIM) was applied. In addition, a one-way similarity
percentage procedure (SIMPER routine) was used to obtain the percentage contribution of
each species/morphospecies to the Bray–Curtis similarity between the groups of samples
in three water masses (TSW, MMW, and IIW).

As regards phytoplankton diversity indices, the species richness (S), the Margalef’s
species richness index (d) [59], the Shannon–Wiener diversity index (H′ [60], and Pielou’s
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species evenness index (J′) [61] were determined. Moreover, to evaluate the taxonomic
relatedness of different taxa in the communities, the average taxonomic diversity (∆) and
the average taxonomic distinctness (∆*) were estimated [62] following the AlgaeBase Listing
the World’s Algae classification (https://www.algaebase.org, accessed on March 2022). The
∆ is defined as the path length through a standard Linnaean phylogenetic tree connecting
species whereas the ∆* is the mean taxonomic distance through the tree of all species within
a sample [58]. Specimens identified at different taxonomic levels (species, genera, family,
order, class, subphylum, phylum, kingdom, and empire) were weighted from 1 to 9, to put
more weight in the shorter branch lengths between species [63].

3. Results
3.1. Physical–Chemical Variables

Physical–chemical variables in the different water masses are displayed in Table 1.
T/S diagram (Figure 2a) shows the different water masses that occupy the investigated

area in which IIW mix with TSW due to tidal currents. The mixing of these two dissimilar
water masses produces the MMW [39].
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Figure 2. Physical–chemical variables: (a) T/S diagram of the CTD casts in the study area with
indication of the sample position of chemical, bio-chemical and biological parameters in the water
masses: TSW (blue), MMW (green), IIW (red), and DW (orange); (b) vertical profiles along the transect
Ganzirri–P.ta Pezzo (see Figure 1) of water density (sigma-0) and chlorophyll a (by fluorescence probe).

On the basis of the water’s conservative parameters (T and S), the individual sam-
ples, taken for the determination of the microbial component, were assigned to the four
water masses, so that the number of samples was different for each of them (Table 1).
Three of these water masses corresponded to the above water masses whereas the fourth
identified the Deep Waters (DW). The latter included both Tyrrhenian and Ionian deep
waters and were distinguished in the lower and upper extremes of salinity (see Figure 2a),
corresponding to Tyrrhenian and Ionian waters, respectively.

https://www.algaebase.org
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Table 1. Average (Avg), standard deviation (SD), and number of cases (n) of chemical–physical and biotic parameters measured in the TSW (Tyrrhenian Surface
Waters), MMW (Messina Mixed Waters), IIW (Ionian Intermediate Waters), and DW (Deep Waters) in the Straits of Messina area.

System

TSW MMW IIW DW

Parameter * Fraction/Species Unit Avg SD n Avg SD n Avg SD n Avg SD n

T ◦C 13.90 0.05 35 14.09 0.06 23 14.25 0.11 113 13.72 0.19 10

S 37.78 0.08 35 38.06 0.15 23 38.61 0.16 113 38.70 0.10 10

O2 mL L−1 5.50 0.05 35 5.24 0.11 23 4.85 0.26 113 4.36 0.10 10

Fluorescence µg L−1 0.075 0.017 35 0.050 0.020 23 0.030 0.016 113 0.013 0.001 10

PO4

Concentration µM

0.206 0.071 34 0.263 0.101 23 0.255 0.114 104 0.294 0.060 10

NH4 0.907 0.648 34 0.938 0.535 23 1.030 0.590 104 1.027 0.570 10

NO2 + NO3 1.160 0.440 34 1.600 0.420 23 2.244 1.116 104 8.408 3.475 10

Si(OH)4 2.077 1.470 34 2.518 1.536 23 2.856 1.139 104 6.314 1.622 10

chla

Total

µg L−1

0.228 0.095 33 0.122 0.076 20 0.065 0.059 76

>10 µm 0.013 0.006 12 0.007 0.002 6 0.010 0.012 10

2–10 µm 0.034 0.017 12 0.020 0.013 6 0.028 0.019 10

0.5–2 µm 0.098 0.054 12 0.056 0.046 6 0.071 0.055 10

phaeo

Total

µg L−1

0.137 0.065 33 0.102 0.049 20 0.052 0.029 76

>10 µm 0.031 0.014 12 0.052 0.057 6 0.028 0.017 10

2–10 µm 0.040 0.036 12 0.019 0.014 6 0.013 0.008 10

0.5–2 µm 0.035 0.022 12 0.030 0.010 6 0.030 0.010 10

PP

Total

µgC L−1 h−1

0.442 0.302 9 1.069 1 0.603 0.446 10

>10 µm 0.028 0.019 9 0.054 1 0.026 0.012 10

2–10 µm 0.073 0.094 9 0.302 1 0.134 0.134 10

0.5–2 µm 0.341 0.206 9 0.713 1 0.443 0.308 10
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Table 1. Cont.

System

TSW MMW IIW DW

LAP
nmol L−1 h−1

2.759 2.305 18 1.279 0.828 15 0.847 0.619 60 0.707 0.831 7

AP 378.99 119.36 18 160.26 120.62 15 72.357 73.227 60 52.029 115.42 7

GLU 14.760 8.533 18 13.134 11.957 15 11.726 14.620 60 4.507 2.197 7

PPA
Abundance

cells × 106 L−1 19.516 3.619 18 13.213 5.943 12 7.812 3.913 44

PPT cells × 108 L−1 3.867 1.788 19 2.699 0.824 16 2.051 0.710 64 0.594 0.178 7

Cocci 0.5 µm 1.806 0.895 10 1.417 0.445 6 0.994 0.452 29 0.343 0.117 4

Cocci 0.85 µm 0.324 0.308 10 0.543 0.306 6 0.223 0.143 29 0.026 0.023 4

Cocci 1.0 µm 0.023 0.044 10 0.071 0.090 6 0.015 0.023 29 0.000 0.000 4

PPT Rods 1.0 µm cells × 108 L−1 1.411 0.877 10 0.830 0.251 6 0.545 0.236 29 0.163 0.070 4

Rods 1.5 µm 0.245 0.194 10 0.243 0.198 6 0.143 0.103 29 0.031 0.024 4

Rods 2.0 µm 0.165 0.160 10 0.160 0.098 6 0.081 0.075 29 0.004 0.007 4

Rods 2.5 µm 0.048 0.107 10 0.049 0.071 6 0.017 0.039 29 0.000 0.000 4

Rods 3.0 µm 0.013 0.042 10 0.008 0.015 6 0.006 0.015 29 0.004 0.007 4

Larger
Phytoplankton

Total 69.102 40.590 18 39.580 18.002 13 44.783 21.547 42

Diatoms 6.585 5.414 18 4.825 2.982 13 3.595 2.770 42

Dinoflagellates cells × 103 L−1 3.424 1.826 18 1.992 1.425 13 2.214 1.798 42

Coccolithophorids 4.599 3.683 18 2.160 2.108 13 3.568 4.756 42

Others 54.495 35.758 18 30.603 15.792 13 35.406 16.480 42

* Acronyms: T = temperature; S = salinity; O2 = dissolved oxygen; PO4 = phosphate; NO2 = nitrite; NO3 = nitrate; Si(OH)4 = silicate; chla = chlorophyll a; phaeo = phaeopigments;
PP = primary production; LAP = leucine aminopeptidase; AP = alkaline phosphatase; GLU = beta-glucosidase; PPA = autotrophic picoplankton; PPT = total picoplankton.
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The average concentration of orthophosphates in the study area was 0.25± 0.10 µM with
the highest value in MMW (0.26 ± 0.10 µM) and the lowest value in TSW (0.21 ± 0.07 µM)
(Table 1). Their concentrations in TSW were significantly lower than in IIW, MMW, and
DW (ANOVA, F = 2.90, p < 0.05). For ammonia nitrogen, the overall average concentration
was 0.99 ± 0.59 µM, with maxima in the IIW layer (1.03 ± 0.59 µM) and in the MMW
(0.94± 0.54 µM) without significant differences among the water masses (ANOVA, F = 0.45,
p > 0.05). The average concentration of nitric + nitrous nitrogen was 2.30 ± 1.99 µM, with
the range spanning from 1.16 ± 0.44 µM in TSW and 2.24 ± 1.11 µM in IIW. DW exhibited
significantly and markedly higher concentrations with respect to the other water masses
(8.41 ± 3.48 µM). A significantly increasing gradient was found from TSW to IIW, with
MMW in between (ANOVA, Kruskal–Wallis test on medians, F = 67.86, p < 0.05). The
lowest average concentration of silicates was observed in the TSW (2.08 ± 1.47 µM) and the
highest in the DW (6.31 ± 1.62 µM), whereas the overall average concentration in the study
area was 2.86 ± 1.58 µM. Similarly to nitric + nitrous nitrogen, for silicates significantly
higher values were found in DW than in TSW, MMW, and IIW whereas TSW showed
significantly lower values than IIW (ANOVA, F = 28.35, p < 0.05).

As an example of the high hydrodynamism of the area, we reported the vertical profile
of the transect between Sicily and Calabria placed on the shallower part (“sill”), where the
phenomena were very evident. Figure 2b describes the distribution of water density in
the Ganzirri–P. Pezzo transect (see Figure 1); here it is possible to highlight how the IIW,
with higher density, upwelled along the Sicilian shore up to 30 m depth. The TSW, in part
already mixed to form the MMW, occupied the Calabrian side and the central part of the
Strait in the layer of about 40 m depth. Chlorophyll a distribution (from probe fluorescence)
displayed an opposite trend to that of water density, with lower concentrations in IIW and
higher in TSW, with maxima located at the surface layer along the Calabrian coast.

3.2. Distribution of Size-Fractionated Chlorophyll A, Phaeo-Pigments, and Primary Production

The average chlorophyll a concentration in the study area was 0.115 ± 0.100 µg-chla L−1

with the minimum in IIW (0.065 ± 0.059 µg-chla L−1) and maximum in TSW (0.228± 0.095
µg-chla L−1) (Table 1, Figure 3a). Differences among the medians in three water masses were
significant (ANOVA, Kruskal–Wallis F = 58.86, p < 0.05, n = 129). Conversely, dimensional
spectra did not exhibit significant differences (ANOVA on size fractions, p > 0.05, n = 28)
with the picoplankton component contributing on average 62% of the total followed by the
nano fraction with 24%.

The functional state of the phytoplankton community expressed by the ratio between
chla and phaeo was on average greater than 1 in TSW and IIW (Figure 3b) indicating
stronger activity than in MMW (n = 33). This ratio was significantly higher in TSW
(ANOVA, F = 13.52, p < 0.01) than in MMW and IIW, which were not significantly different
from each other. In particular, although the pico fraction appeared to be the most active
in all water masses, it was not significantly different among the water masses, differently
from the nano fraction which appeared to be more relatively active in IIW (n = 76).

The average primary production rate in the area was 0.554 ± 0.392 µgC L−1 h−1

with higher and more dispersed values in IIW (0.603 ± 0.446 µgC L−1 h−1) than in TSW
(0.442 ± 0.302 µgC L−1 h−1) (Table 1, Figure 3c). Likewise, for chla even the size fraction-
ated production did not exhibit significant differences (ANOVA, p > 0.05, n = 20) with a
predominating pico component (77% and 67% in MMW and TSW, respectively).

The specific production (Pb = PP normalised in respect to chla), which expressed the
activity of the phytoplankton, indicated that the IIW communities were more active than
the TSW ones (Figure 3d), though not significantly (ANOVA, F = 0.98, p > 0.05, n = 17). The
Pb of the size fractions showed higher activity of pico and nano components in IIW due to
the lower biomass per organism, whereas the Pb of pico and micro fractions prevailed in
TSW (pico-sized fraction: 6.3 and micro-sized fraction: 2.6 [µg C (µg chla)−1 h−1]).
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Figure 3. Box plots of the total chlorophyll a concentration (a) and ratio with phaeopigments (b);
primary production rates (c) and specific production Pb (d) in the TSW (Tyrrhenian Surface Waters),
MMW (Messina Mixed Waters), and IIW (Ionian Intermediate Waters).

3.3. Total Picoplankton Community

PPT showed a mean value of 2.4 ± 1.3 × 108 cells L−1 with values significantly higher
in TSW compared with IIW (Table 1); moreover, DW were significantly lower with respect
to all the other water masses (ANOVA, Kruskal–Wallis F = 44.87, p < 0.001) (Figure 4a).

From a qualitative point of view (Figure 4b), PPT was mainly represented by the
smallest components of the community: cocci (0.5 µm, accounting for 48.5%; 0.85 µm,
10.7% of the total abundances) and rods (1.0 µm, 28.4%; 1.5 µm, 6.8%; 2.0 µm, 3.6% of
the total abundances). Significant differences were found for the cocci 0.5 µm (ANOVA,
Kruskal–Wallis F = 17.71, p < 0.05) and cocci 0.85 µm (ANOVA, Kruskal–Wallis F = 6.15,
p < 0.005) which were both higher in MMW than in IIW. Rods 1.0 µm (ANOVA, Kruskal–
Wallis F = 27.16, p < 0.0001) and rods 2.0 µm (ANOVA, Kruskal–Wallis F = 3.6, p < 0.05)
were more abundant in TSW than in IIW. DW always showed abundances lower than in
other water masses (data not shown). Finally, the abundances of the morphotypes cocci
1.0 µm, rods 1.5, 2.5, and 3.0 µm displayed similar values in all four water masses.

SIMPER analysis confirmed that TSW were significantly different from DW, MMW, and
IIW, as shown by the values of squared distance D2 (47.59, 37.25, and 37.20%, respectively),
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whereas IIW were more similar to DW and MMW (D2 = 10.91 and 23.07% respectively,
data not shown).
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3.4. Phytoplankton Communities

PPA values were on average 11.5 ± 6.5 × 106 cells L−1 with abundances significantly
higher in TSW than in MMW and IIW (TSW > MMW > IIW) (ANOVA, Bonferroni, F = 48.91
p < 0.01) (Table 1, Figure 5a). Intense orange fluorescent round to rod-shaped cells of
Synechococcus/Cyanobium type accounted for 99% of the PPA abundances in TSW, MMW,
and IIW. The presence of red fluorescent cells, presumably referred to as eukaryotic PPA,
was negligible.
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Larger phytoplankton abundances ranged between 18.2 and 171.0 × 103 cells L−1,
with average values of 49.9 ± 28.9 × 103 cells L−1. Significantly higher concentrations
were detected in the TSW (p < 0.005), in respect to the other water masses (Figure 5b).
Concerning the phytoplankton groups, they did not show significant differences among
the three water masses (p > 0.05), except for dinoflagellates that displayed significantly
higher abundances (p < 0.05) in TSW with respect to MMW and IIW.

The phytoplankton community was dominated by “other phytoflagellates” that rep-
resented on average 78.1 ± 9.8% of the total abundances. They mainly included chloro
(40.3%), prasino (11.8%), crypto (7.8%), chryso (4.8%), euglenophyceae (3.9%), and small
forms (<10 µm) of uncertain taxonomic identification (10.1%). Diatoms and dinoflagellates
averaged 9.6 ± 7.0% and 5.4 ± 3.7%, respectively. Coccolithophore abundances corre-
sponded on average to 6.9 ± 5.2% with the nano-sized Emiliania huxleyi as the dominant
species (98.7%).

A total of 106 taxa including 57 diatoms, 43 dinoflagellates, 2 coccolithophores,
3 species classified in the group “other phytoflagellates” and 1 prokaryotic type were
identified. Their distribution in all three water masses is shown in Table S2.

Concerning the phytoplankton species distribution, a significant partitioning in all the
water masses was found (ANOSIM, R = 0.199, p = 0.1%).

SIMPER analysis revealed that more than 70% of cumulative similarity was only due
to three species/morphospecies: Synechococcus/Cyanobium type, nano-sized phytoflagel-
lates and Emiliania huxleyi. Moreover, even if with lower abundances, other taxa were
identified in the entire study area. They were mainly represented by diatoms (25 out of
37) with the following species in decreasing order of abundance: Thalassionema bacillare,
Asterionellopsis glacialis, Chaetoceros spp., Cylindrotheca closterium, Proboscia alata, Pseudo-
nitzschia spp., Rhizosolenia styliformis, Tenuicylindrus belgicus, Thalassiosira sp. In addition,
dinoflagellates (Diplopsalis group, Gymnodinium marinum, Gymnodinium spp., Gyrodinium
fusiforme, Prorocentrum cordatum) and the silicoflagellate Dictyocha fibula were present in all
the water masses (Table S2).

As regards the “distinctive” taxa between the water masses, sixteen species (seven
diatoms and nine dinoflagellates) were detected only in the TSW. Among them, the more
abundant species were the diatoms Chaetoceros danicus, C. eibenii, C. throndsenii, and Guinar-
dia flaccida, and the dinoflagellates Azadinium caudatum, Lingulodinium polyedra, Oxytoxum
mediterraneum, Pentapharsodinium tyrrhenicum, and Tripos spp.

Only seven taxa (four diatoms and three dinoflagellates) were identified exclusively
in the MMW: Chaetoceros neglectus, C. similis, C. wighami, Rhizosolenia hebetata f. semispina,
Gyrodinium heterostriatum, Katodinium glaucum and Lebouridinium glaucum.

Twenty-two taxa (nine diatoms and thirteen dinoflagellates) were found only in the IIW.
In these waters, the more abundant diatoms were Asterolampra grevillei, Bacteriastrum spp.,
Cerataulina pelagica, Lioloma pacificum, Nitzschia longissima, Rhizosolenia decipiens, Skeletonema
costatum complex. The number of dinoflagellates was high with Alexandrium minutum
complex, Gymnodinium spp., Pronoctiluca spinifera, Scrippsiella acuminata, Ornithocercus
magnificus and Warnowia sp. as representative of the group.

The analysis of the diversity indices evidenced that species richness and Margalef’s
and Shannon’s indices exhibited significantly higher values in TSW than in IIW (Figure 6,
Table 2), (ANOVA, pd = 0.0123 and pH = 0.025, respectively). On the contrary, average
taxonomic diversity and average taxonomic distinctness showed significantly higher values
in IIW than in TSW (ANOVA, p∆ = 0.0219 and p∆* = 0.0889, respectively). There were no
significant differences in Pielou’s evenness among the three water masses. Moreover, no
significant difference in all the considered diversity indices was detected in MMW.
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Figure 6. Species richness (S), ∆ = average taxonomic diversity, and ∆* = average taxonomic dis-
tinctness observed at the TSW (Tyrrhenian Surface Waters), MMW (Messina Mixed Waters) and IIW
(Ionian Intermediate Waters).

Table 2. Diversity indices in Tyrrhenian Surface Waters (TSW), Messina Mixed Waters (MMW) and
Ionian Intermediate Waters (IIW) during the sampling period; S = number of species/morphotypes,
d = Margalef’s index, J’ = Pielou’s evenness, H’ = Shannon’s index, ∆ = average taxonomic diversity,
and ∆* = average taxonomic distinctness. Average ± standard deviation [min, max values].

TSW MMW IIW

S 13.89 ± 3.92 [6, 20] 12.23 ± 4.07 [4, 18] 8.83 ± 1.98 [6, 12]
d 2.73 ± 0.71 [1.26, 3.78] 2.44 ± 0.77 [0.82, 3.49] 2.17 ± 0.61 [1.05, 3.65]
J’ 0.98 ± 0.01 [0.95, 0.98] 0.97 ± 0.02 [0.93, 0.98] 0.98 ± 0.01 [0.96, 0.99]
H’ 2.53 ± 0.35 [1.71, 2.95] 2.38 ± 0.43 [1.29, 2.84] 2.27 ± 0.31 [1.55, 2.90]
∆ 60.54 ± 2.67 [56.21, 65.95] 60.80 ± 2.77 [56.25, 65.65] 62.16 ± 1.88 [58.09, 65.69]
∆* 66.18 ± 5.65 [59.12, 80.01] 68.03 ± 7.71 [60.23, 87.72] 69.59 ± 4.49 [61.43, 80.17]

3.5. Functional Patterns

The microbial metabolism was measured in terms of enzyme activity rates; these were
in the magnitude order AP > GLU > LAP. Proteolytic activity values ranged from 0.71 to
2.76 nmol L−1 h−1; whereas phosphatasic activity rates were about one order of magnitude
higher, being comprised between 52.03 and 378.99 nmol L−1 h−1. Glycolytic activity values
ranged from 4.51 to 14.76 nmol L−1 h−1 (Table 1, Figure 7). Decreasing LAP and AP activity
levels were observed from TSW towards IIW whereas, as expected, the lowest metabolic
rates were recorded in the Deep Waters (DW). An abrupt decrease in GLU activity rates was
also found in DW. Larger variability was observed in AP distribution patterns compared
with GLU ones; LAP values were characterised by the lowest spatial variability.
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Significant differences were found between TSW and IIW for LAP (ANOVA, F = 14.79,
p < 0.005), and AP (ANOVA, F = 51.78, p < 0.0001), but not for GLU (ANOVA, F = 1.16,
p > 0.05).

4. Discussion
4.1. Role of the Straits as a Biodiversity Mixer

The high variability of the chemical and biological data measured in the Messina
Straits was affected by the complex hydrographic conditions of the study area.

The phytoplankton composition observed in this study reflected that typical of the
oligotrophic Mediterranean Sea [32,64–67]. The dominance of the smallest phytoplankton
size fractions (pico- and nano-sized autotrophs) was responsible for the low chlorophyll a
values detected in the Straits and it has been already described in the Tyrrhenian Sea [68,69]
as well as in the Ionian Sea [70–74] throughout the year. In addition, the prevalence of the
nano-sized coccolithophore Emiliania huxleyi, which is commonly monitored in winter in
the Ionian and Tyrrhenian Seas, was probably linked to the hydrographic features of these
areas resembling open ocean waters [75].

However, even if our data and statistical evaluations demonstrated the dominance
of the smallest component of phytoplankton in the entire study area, micro-sized diatoms
and dinoflagellates allow us to distinguish different assemblages in the investigated water
masses and in particular, in the TSW and IIW. Diatoms are fast-growing species typical
of upwelling regions where they are favored for the higher capacity of using intermittent
nutrient inputs with respect to other taxa of the same dimension [76]. However, dinoflagel-
lates can also be detected in upwelling areas during transition periods like winter when
phytoplankton biomass is low, e.g., [77]. Moreover, the presence of dinoflagellates in
this period is supported by their well-known ability to tolerate the vertical velocities of
upwelling, offshore, and frontal zones [78].

In the TSW, higher phytoplankton abundances in respect to the other water masses
were observed, associated to low levels of nutrients, probably used for their growth.
Particularly, dinoflagellates showed abundances slightly higher than in MMW and IIW.
Diatoms, significantly correlated with the chla of the micro fraction (r = 0.627), were
important components of the assemblages. In fact, their presence seemed to be a prelude to
the bloom they sustain and which usually begins in late winter (February–March) [79], as
long-term studies [80] have demonstrated.

The available non-limiting light and the nutrient-rich freshwater inputs in this period
usually favor the increase in the phytoplankton biomass [80]. In the TSW, the detected taxa
mainly belonged to the first stages of succession sensu Margalef [81]. There were small
and medium-sized colonial diatoms and numerous dinoflagellates. The most abundant
diatom was Thalassionema bacillare, which together with other colonial taxa such as many
Chaetoceros species and Pseudo-nitzschia delicatissima group characterises the nearby Gulf of
Naples (Southern Tyrrhenian Sea) in the same period [80]. In addition, dinoflagellates were
represented by a number of taxa such as Lingulodinium polyedra, Oxytoxum mediterraneum,
Pentapharsodinium tyrrhenicum, Prorocentrum micans, Scrippsiella acuminata, Tripos longipes,
T. macroceros, and T. trichoceros) [81]. Finally, other taxa, originally described in the Gulf
of Naples, such as the diatoms Chaetoceros throndsenii, Tenuicylindrus belgicus, and the
dinoflagellates Azadinium cf. dexteroporum and Scrippsiella precaria [80] were found in the
study area.

The hydrographic features of the IIW (higher temperature, salinity, and nutrient levels,
as well as lower light than in the TSW) were suitable for a great number of species increas-
ing phytoplankton diversity. These findings are in agreement with the high biodiversity of
the Ionian and other Eastern Mediterranean basins despite their extreme oligotrophy [82].
Similarly to the TSW, in these waters we found many taxa of the first stages of succes-
sion [81]. Besides many diatoms, several dinoflagellates typical of winter temperate open
waters, such as those belonging to the orders of Gymnodiniales, Peridiniales and, Prorocen-
trales [78], were present.
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An interesting tool to discriminate the water masses could be the diversity measures,
even if in this study their evaluation was controversial because the unidentified smallest
components of phytoplankton are numerically dominant with respect to the identified taxa.
In these cases, different approaches could be followed: (i) to consider only identified taxa;
(ii) to include all data into higher taxonomic levels; (iii) to use all the data with different
levels of identification. As already suggested in other studies, e.g., [83], we chose the
third possibility, which allowed us to preserve all information on the biodiversity of the
assemblages, considering diversity indices as a complementary tool in the characterization
of the different water masses.

We analyzed six different diversity indices (number of species, species richness and
diversity, evenness, average taxonomic diversity index, and average taxonomic distinctness
index) to compare their values in the examined water masses. In our case, the main
advantage of using taxonomic diversity index (∆) and distinctness (∆*) was related to their
lower sensibility to variability in sample size, given that many of the collected samples in
the study area were classified as belonging to the IIW. In addition, these indices provide a
more intuitive measure of biodiversity than traditional indices because they derive not just
from the species abundances but also from the taxonomic distance based on the Linnean
phylogenetic tree [58].

All diversity measures were significantly different in TSW and IIW, except the evenness
which showed similar values in all three water masses, including MMW. The results demon-
strated that larger phytoplankton taxa were in equilibrium and dominance phenomena—
like those occurring during bloom events when opportunistic species (i.e., diatoms) tend
to dominate over other phytoplankton taxa—were not observed. As evenness (distribu-
tion of taxa) responds more quickly than richness (number of taxa) to variation in the
environmental conditions [31], this suggests that the MMW were in a “transition phase”.

The significantly higher values of the conventional measures of diversity (number
of species, species richness, and Margalef’s index) and the lower values of the taxonomic
diversity (∆) and distinctness (∆*) indices in the TSW suggest that communities were
composed of a high number of very closely-related taxa. The high environmental variability
of TSW, due to an increase in nutrients and light, could favor only taxa able to tolerate such
conditions. On the contrary, the lower values of the conventional measures of diversity
and higher values of the taxonomic diversity (∆) and distinctness (∆*) indices in the IIW
indicated that this water mass was dominated by species highly diverse from a phylogenetic
point of view. The IIW was characterised by a high content of nutrients transported by
upwelling phenomena. This feature could have favored the presence of rare species
and diversification of ecological niches where phytoplankton taxa less closely related
could develop.

Moreover, the analyses of our data demonstrated that MMW were not significantly
different from TSW and IIW in terms of species composition as well as diversity measures,
suggesting that in late winter this water mass represents a mixer of species coming from
very different and diverse water masses, thus promoting diversity. Even if MMW did not
show peculiar phytoplankton features, the equilibrium and distribution of taxa evidenced
their capacity to cope and exploit the hydrographic perturbations of the Straits area.

In addition to phytoplankton, the prokaryotic community was investigated in this
study. Different bacterial morphotypes are known to coexist in pelagic ecosystems [84,85],
with a predominance of coccal-shaped bacteria [84–86], as in the Strait area. The reason
could probably be due to a high surface-to-volume ratio [87] of the cocci-shaped bacteria,
which are the morphotype most adapted to low substrate concentrations and predominate
in oligotrophic conditions [86]. The Straits of Messina was characterised by a widespread
occurrence of small cocci, which were dispersed in the entire study area by the continuous
hydrodynamic changes and tidal mixing of Tyrrhenian and Ionian waters. Moreover, in the
MMW the occurrence of upwelling waters from the deep introduces additional complexity
to this water mass that could mask possible tracing of water masses using the bacterial
assemblage. Generally, in upwelling ecosystems, prokaryotic assemblages show a high
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spatial variability suggesting the importance of oceanographic features and anthropogenic
impacts in shaping bacterial community structure [88].

Like in our study, in the Ionian Sea cocci were an important component, as they
accounted for 54% of the total bacterial community, reaching percentages of 71% together
with coccobacilli [85]. Conversely, in the Northern Adriatic Sea rods and vibrio-like forms
were the prevailing morphotypes [89].

Prokaryotic abundances depend on the relative balance between cell growth and fre-
quency of division, which is affected by temperature as well as by nature and composition
of the substrates supporting bacterial growth [90]. Small-sized morphotypes dominated in
the Straits area and particularly in the TSW where a higher enzymatic activity was recorded
with respect to the other water masses, as discussed below.

4.2. Organic Matter Photosynthetic Production and Microbial Decomposition Processes

Other than taxonomic diversity (as estimated by species richness), functional diversity
is an important feature of the microbial community.

The specific primary production (Pb) highlighted how in the IIW higher production
rates were associated with lower phytoplankton biomass (chla) mainly composed of pi-
coplankton organisms that are better adapted to turbulent conditions [2]. Conversely, in
TSW the lower average specific production was related to the presence of larger organisms
(nano- and micro-sized autotrophs). The phytoplankton community in the study area
showed higher production rates than the poor observations reported by other authors in a
different seasonal period. The TSW and IIW systems showed rates about 10 times higher
than measured in summer and winter in the Southern Tyrrhenian Sea [72] and in spring
and summer in the easternmost Ionian Sea [74]. The MMW displayed a higher rate than
that generally measured in this area [2]. Data available in the literature confirmed that the
smallest fraction was responsible for approximately 70% of the total PP rates.

The variability of the functional diversity of the microbial assemblage was observed.
In the TSW, enhanced enzyme activities were recorded for all the measured enzymes,
especially for AP, showing that the heterotrophic metabolism was very active in decompos-
ing proteinaceous and polysaccharidic polymers and especially in mineralizing organic
phosphates into PO4. The high AP activity rates suggested that this enzyme provided
a source of carbon other than phosphorus, confirming its dual role in the cycles of both
elements [53,54]. Enzyme activity rates measured in the Straits were 1–2 magnitude orders
higher than AP levels recorded in the Tyrrhenian Sea in the same seasonal period and
1 magnitude lower for LAP [8,91]. Conversely, in the IIW an abrupt decrease in all the
assayed enzymes suggests that the microbial metabolism was limited. Although our values
were similar to those measured for LAP [92], they exceeded by 1–2 magnitude orders those
previously reported in other Ionian areas for AP [19,92,93] and by 3 or 4 times those of
GLU [94].

Intermediate levels of microbial activity characterised the MMW, thus confirming that
water mixing between two adjacent basins even drove microbial metabolism.

In the DW the enzymatic activity rates decreased significantly, highlighting that the
organic polymers were mostly decomposed at surface layers and no organic inputs were
provided through lateral advection, as observed in other Mediterranean ecosystems [93,95,96].

A comparative view of the bacterial morphotypes and their metabolic activities for
each water mass was provided by SIMPER analysis (Figure 8). In all the water masses GLU
predominated compared with LAP; however, in MMW and IIW, substrates of polysaccha-
ridic nature were preferentially decomposed, in contrast with TSW where proteinaceous
polymers were actively hydrolysed. Moreover, in the DW the high percentage contribu-
tion of LAP and AP to total variability agreed with the relevant role played by microbial
decomposition and remineralization processes in deep environments [93].
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Figure 8. Heat map distribution of the percentage contribution of different size classes of morphotypes
(cocci and rods) and enzymatic activities to the total variability in the TSW (Tyrrhenian Surface
Waters), MMW (Messina Mixed Waters), IIW (Ionian Intermediate Waters) and DW (Deep Waters).
Within TSW, LAP accounts for high percentages (12.4%) like medium-sized rods (27.5%); AP, GLU,
and large-sized cocci contributions are similar. In MMW, the role of GLU and AP is comparable
whereas that of LAP is marginal like large-sized rods. In the IIW, GLU is a major determinant (up to
24.9%); similar contributions for LAP and large cocci and for AP and small rods are found. In the
DW, AP and LAP contribute 50.2 and 35.6% respectively.

4.3. Links between Autotrophic and Heterotrophic Microbial Processes

The processes of primary production (PP) and organic matter hydrolysis (LAP + GLU)
were compared in this context to evaluate the reciprocal role of the auto- and heterotrophic
members of the microbial community within the overall ecosystem functioning.

Figure 9 shows that in IIW the hydrolysis process tends to remain unchanged even
at high PP rates, highlighting the uncoupling of these two processes. This behavior indi-
cates that during the sampling period the organic matter was being synthesized, whereas
hydrolysis occurred on the organic matter already available in the waters. A different
condition was observed in TSW where, as photosynthetic activity increased, the hydrolysis
process tended to decrease, indicating an inverse relationship between the two processes.
A possible explanation for these different conditions relies on the seasonal lag between the
two ecosystems: in the IIW late winter stability was a still present condition, whereas in
the TSW the spring phase had already started, supported by an increasing abundance of
larger phytoplankton.

The rates of PP and hydrolysis by LAP + GLU measured by the same authors in late
spring in the Southern Adriatic Sea [16] and in early spring from the Western and Eastern
Mediterranean Sea [97] are used to compare the two functional processes estimated in the
Straits of Messina with other Mediterranean areas. As observed in the IIW, in general the
two processes appeared to be uncoupled although both act at higher levels due to different
considered seasonality and trophic conditions.
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5. Conclusions

The results obtained during this study demonstrated that the hydrographic features
of a complex and highly dynamic area like the Straits of Messina affected microbial taxo-
nomic and function diversity. Moreover, the integrated evaluation of the quali-quantitative
characteristics of total picoplankton and phytoplankton allowed us to discriminate dif-
ferent water masses that identified interconnected sub-systems independently of their
geographical location.

The common feature observed in the entire study area was high phytoplankton produc-
tivity and biodiversity. However, noticeable differences were evidenced from the analyses
of the microbial communities living in the waters of the two basins (Tyrrhenian and Io-
nian) connected by the Straits. The former basin hosted a productive and metabolically
active microbial community composed by many phytoplankton species which seemed to
anticipate the spring bloom. On the other hand, the nutrient-rich Ionian waters indicated a
typical Mediterranean winter condition, characterised by low metabolic activities and by
an autotrophic assemblage consisting of species rather distant from a phylogenetic point
of view.

The intermediate levels of diversity and metabolism found in the Straits depicted this
ecosystem as an exchange region where the microbial community was not significantly
different from that observed in the adjacent basins displaying contrasting patterns. In addi-
tion, the different trends of productive to hydrolytic processes observed in the Tyrrhenian
and Ionian waters suggest that the microbial function reflected the differences observed in
the community composition.

The Straits of Messina therefore held a crucial role as an intermediate area between two
sub-basins, also shaping a water mass structure that did not strictly reflect the geographic
position: in other words, it favoured the invasion of the Southern Tyrrhenian sub-domain
by Ionian waters and the consequent spill-over of species, whereas the southward outflow
of nutrient-rich MMW remained confined in the narrow Ionian shelf.

Finally, this study confirms the responsiveness of the microbial community composi-
tion and functions to changing environmental scenarios in this upwelling system as well as
in similar environments.
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