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Abstract: Dissolved iron (Fe) isotopes in river water have a pivotal role in understanding the Fe cycle
in the surficial environment. A total of 13 samples of river water were collected from the Mun River to
analyze the Fe isotopes and their controlling factors in river water, such as dissolved organic carbon
(DOC) and different supply sources. The results showed that dissolved Fe (DFe) concentrations
ranged from 21.49 µg/L to 232.34 µg/L in the dry season and ranged from 10.48 µg/L to 135.27 µg/L
in the wet season, which might be ascribed to the dilution effect. The δ56Fe of the dry season (−0.34
to 0.57‰, with an average 0.09‰) was lower than that of the wet season (−0.15 to 0.48‰, with
an average 0.14‰). Combined with the δ56Fe and DFe/DAl ratios, the end-members of DFe were
identified, including rock weathering (high δ56Fe and low DFe/DAl ratio), anthropogenic inputs
(high δ56Fe and high DFe/DAl ratio) and groundwater inputs (low δ56Fe and low DFe/DAl ratio).
The relationship between δ56Fe and DOC concentrations suggested that the chelation of organic
matter with heavy Fe isotopes was one of the important sources of heavy Fe isotopes in river water.

Keywords: dissolved Fe; Fe isotopes; seasonal variation; Mun River; Northeast Thailand

1. Introduction

Iron (Fe) is abundant in the continental crust [1,2] and is an essential trace element for
biology [3,4]. In freshwater systems, the availability of Fe is also an important factor for the
survival of cyanobacterial [5]. Moreover, Fe might be important to climate change by influ-
encing biological productivity and carbon sequestration rates [6–8]. Rivers are important
channels for the continent to transport Fe to the ocean, and the filtrable Fe (<0.45 µm) from
riverine flux to the marine is approximately 140 Gg/yr [9]. Fe occurs as Fe(0), Fe(II) and
Fe(III), and Fe’s valence state mainly depends on environmental conditions [10]. The most
stable state is the oxidation state, Fe(III), because the atmosphere is mainly in an oxidizing
state [11]. Combined with the redox chemistry of Fe and the abundance of this element
in the river, further investigation of Fe in rivers is crucial to understanding continental
erosional/weathering mechanisms [12,13].

In modern oxidizing Earth surface conditions, continental weathering preferentially re-
leases light Fe isotope compositions, which is transported in rivers to marine areas [14–17].
According to the study on the Seine River, dissolved Fe is derived from anthropogenic inputs
(δ56Fe = −0.60‰) and natural inputs (δ56Fe > 0.00‰) [18]. Based on the study of estuaries,
particulate Fe sources were determined by Fe isotopes [19]. Hence, Fe isotopes can be used
to trace Fe sources in hydrologic environments. Because of the strong complexation capacity
of Fe, Fe(III) organic complexation is an important form of Fe [20]. The coordination bond
Fe-O-C of the organic Fe complex is stronger than the Fe-O-Fe bond of Fe hydroxide, and
the enrichment of heavy Fe isotopes in the Fe(III) organic complex is stronger than that of
Fe oxyhydroxides [21,22]. In addition, the dissolved Fe isotope compositions have seasonal
variations in the rivers. In the Amazon River Basin, the Fe isotope compositions of bulk water
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vary little throughout the year [12], but the Fe isotope compositions of particulate matter in
organic-rich rivers show seasonal effects [23–25]. Hence, the results may be canceled out by the
variations in the dissolved Fe isotopes’ compositions. The dissolved Fe isotope compositions in
small organic-rich streams change significantly with time in the Arctic and subarctic regions [26].

The dissolved Fe and its isotopes in the Mun River (MR) were investigated in this study.
The MR has important significance to the ecosystems of the Mekong River Basin, which
is the largest tributary on the right bank of Mekong River [27], because local industrial
development and intensive agricultural activities may bring environmental issues in the
MR [28–30]. In addition, the seasonal variation and the influence of organic matter on
dissolved Fe isotopes are unclear in the MR. The aims of this study are to explore (1) the
seasonal characteristics and comparison of Fe isotopes in the dry and wet seasons of the
MR, (2) the sources of dissolved Fe and (3) the influence of dissolved organic carbon (DOC)
concentrations on Fe isotopes.

2. Materials and Methods
2.1. Study Region

The Mun River Basin (MRB) (14◦00′–16◦00′ N, 101◦30′–105◦30′ E) is located on the
Korat Plateau, Northeast Thailand (Figure 1). According to Akter and Babel [31], the MR
is divided into upper (101◦30′–102◦30′ E), middle (102◦30′–104◦30′ E) and lower (104◦30′–
105◦30′ E) reaches. The total length of the MR is 673 km, with a landmass of 82,000 km2 [32].
The MRB has a tropical savannah climate, which is mainly controlled by the southwest
monsoon (March to October) and the northeast monsoon (October to February) [33,34]. The
average annual temperature is 24–30 ◦C, and the perennial temperature is no less than 18 ◦C.
During the dry season, the rainfall variation is 40 to 120 mm. On the contrary, the rainfall
in the wet season is from 800 mm to 1800 mm [35]. The average annual precipitation in
MRB is 1300 to 1500 mm [36]. Thailand has a large population and its economy dependents
on agriculture. The main type of land use is arable land [37], most of which is paddy
fields [38,39]. The main rock types of the MRB are clastic rocks and clastic rocks with
evaporite, and sporadic igneous rocks existed only in the southern of the MRB [37].
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Han, Liu, Song, Zhang, Yang and Liu [37].

2.2. Sampling and Analytical Methods
2.2.1. Field Sampling

In March 2018 (dry season), 13 samples were collected at a depth of approximately
10 cm in the MR [29]. The samples in the wet season (August 2017) were analyzed in a
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previous study [40]. Among them, four sampling sites were located in the upper stream (S1,
S2, S3 and S4), four sampling sites were in the middle stream (S5, S6, S7 and S8) and five
samples were collected in the lower stream (S9, S10, S11, S12 and S13). Water samples were
collected by LDPE bottles, which were retouched three times with the water samples at
the sampling point. After that, the samples were filtered by 0.22 µm cellulose acetate filter
membrane and were then collected in pre-cleaned HDPE bottles [41]. In order to prevent
metal cations from adhering to the inner wall of the bottle, it is necessary to acidify the
water samples with ultrapure concentrated nitric acid (HNO3) to pH < 2. Before analysis,
they were stored in a dark refrigerator.

2.2.2. Water Parameter and Elemental Analysis

The pH and dissolved oxygen (DO) were determined by a YSI multi-parameter before
filtration, according to previous studies [26,28,35]. The concentrations of Fe and aluminum
(Al) were measured by ICP-MS (Elan 9000, Perkin Elmer Optima, Waltham, MA, USA) in
the Institute of Geographic Sciences and Nature Resources Research, Chinese Academy of
Sciences (CAS). The standard reference (GSB 04-1767-2004) was used for quality control
and method validation. The uncertainty was below 0.7%, and the percentage recoveries
ranged from 97.21% to 109.80%.

2.3. Iron Isotope Analyses
2.3.1. Pretreatment of Iron

The iron isotope pretreatment was conducted in a class 100 fume hood in a class 1000
metal-free ultra clean laboratory at the Surficial Environment and Hydrological Geochem-
istry Laboratory (SEHGL), China University of Geosciences Beijing (CUGB). In this study,
the reagents (HNO3 and HCl, BVIII grade) were purchased from the Beijing Institute of
Chemical Reagents. The experimental labware was cleaned with double distilled ultrapure
acid and ultrapure water (18.2 MΩ·cm, Pall, New York, NY, USA) [42]. For Fe separation,
the AG MP-1M resin (1.6 mL, 100–200 mesh, Bio-Rad, Hercules, CA, USA) was filled in
the polypropylene column to obtain an anion-exchange chromatography. The column was
cleaned three times with 10 mL 0.5N HNO3 and 2 mL water. After this, 5 mL 7N HCl +
0.001% H2O2 and 5 mL water were used to further clean the column alternately. Then, 2 mL
7N HCl + 0.001%H2O2 was used to complete the acidification of the resin. The sample
loading amount was typically 25 µg Fe. According to Fe concentrations in the samples,
a certain amount of the samples were taken into Teflon beakers and dried on the heating
plate. After that, the residue was treated with 1 mL concentrated HNO3 to remove organic
matter. Finally, the solutions were dried at 80 ◦C and re-dissolved three times in 7 N HCl
+ 0.001% H2O2 before separation. Following this, 1 ml solution (sample which had been
dried and re-dissolved) was loaded onto the column until it was fully absorbed by the resin.
The 40 mL 7N HCl + 0.001% H2O2 were used to eliminate the interference of the matrix.
After that, 20 mL 2N HCl + 0.001% H2O2 were used to elute the eluent of Fe, which was
collected with a 30 mL Teflon container. All samples were purified twice to separate Fe
from the matrix completely. After purification process, the Teflon container containing the
eluent of Fe was evaporated on the heating plate (80 ◦C) until they were moist. In order to
convert HCl medium into HNO3 medium, concentrated HNO3 (0.1 mL) was added into all
samples; then, they were evaporated until dry (repeated three times) [43]. Afterwards, the
purified Fe was re-dissolved in 2% HNO3 solution to be analyzed on the instrument. The
specific experimental details can be found in our previous studies [40,44].

2.3.2. Mass Spectrometry Analysis

The Fe isotope compositions were completed on MC-ICP-MS (Nu Plasma III) at the
SEHGL. Before Fe isotopes analysis, the Fe concentration in solution was calculated through
the intensity of ion beams to ensure that the loss of Fe was less than 1% in the chemical
separation and purification. The average Fe content of the procedural blank was < 10
ng. During the analysis, the wet plasma method was used to measure the Fe isotopes
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value. In order to eliminate the interference of spectral peaks of other plasmas, such as
40Ar14N to 54Fe, 40Ar16O to 56Fe and 40Ar16O1H to 57Fe, medium-resolution mode was
adopted. In addition, the potential interference of 54Cr still existed, the interference of
40Ar12C+ was eliminated by measuring the left shoulder of 52Cr+ spectral peak to monitor
the interference of 54Cr+. In order to redress the error caused by the instrument itself, the
“standard-sample bracketing” (SSB) was used for the analysis of Fe isotopes. In addition,
the analysis results were affected by the concentration effect, so the standard-sample
concentrations matched within 5% to reduce the effect. IRMM-014 was used in this analysis
as the standard, which is a metallic Fe standard distributed by the IRMM (Institute for
Reference Materials and Methods). For specific details of Fe isotope measurement, refer to
our previous research [40,44].

In this study, all the δ56Fe and δ57Fe values obtained followed the theoretical mass-
dependent fractionation line, so only the δ56Fe were discussed. δ56Fe was defined by
micrometer deviation relative to the Fe standard IRMM-014, as the following relationship:

δ56Fe = [(56Fe/54Fe) sample/(56Fe/54Fe) IRMM-014 − 1] × 1000

The long-term external reproducibility of Fe isotopes analysis was better than 0.07‰.
The δ56Fe IRMM-014 of reference standard BCR-2 was 0.08 ± 0.04 ‰ (n = 2), within the range
reported in previous studies [40].

2.4. Software

The map of sampling sites and rock types of the MR was drawn by CorelDRAW
2021. Other figures were made by Adobe Illustrator 2015 and Origin 2018. In order to
determine the influencing factors of dissolved Fe concentrations and Fe isotopes, all data
were performed using SPSS 26.0 for Pearson correlation analysis, with two-tailed detection
and the level of significance below 0.05.

3. Results and Discussion
3.1. Variations in Iron Concentrations in River Water
3.1.1. Temporal and Spatial Variations in pH, DO and DOC

The pH in the dry season ranged from 6.1 to 7.7, with an average of 7.0 [45], and
the pH in the midstream (6.6) was lower than upstream (7.1) and downstream (7.1). The
pH in the wet season varied from 6.4 to 7.7, with an average of 6.9 [29], and the pH in
the midstream (6.6) was lower than upstream (7.4) and downstream (6.7). The DO in
the dry season displayed a uniform variation of 3.3–10.3 mg/L, and the mean DO in
the upstream, midstream and downstream showed no significant change, approximately
6.6 mg/L. The DO also displayed a uniform variation of 3.0–7.1 mg/L in the wet season,
which was lower than that in the dry season. The DO in the upstream (5.8 mg/L) and
downstream (5.3 mg/L) was higher than that in midstream (4.4 mg/L) (Figure 2). The
DOC in the dry season varied from 5.7 to 12.6 mg/L (average 8.8 mg/L). In the dry season,
The DOC in upstream (9.5 mg/L) was higher than that in the midstream (8.7 mg/L) and
downstream (8.3 mg/L). The DOC varied from 1.7 to 35.8 mg/L in the wet season (average
12.5 mg/L). The DOC of the wet season in the upstream (3.5 mg/L) was lower than that in
the midstream (14.6 mg/L) and downstream (18.1 mg/L). The rainfall in the wet season
accounted for about 85% of the annual rainfall [34]. However, rainfall shows no dilution
effects on the DOC because the DOC in the dry season was lower than that in the wet
season. Intensive agricultural activities in the middle and lower reaches might increase
DOC concentrations [29]. Furthermore, the increase in riverine DOC in the wet season
might be ascribed to the vast humic substance from high rainfall in the forest area [40,46].
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3.1.2. Variations in Dissolved Iron and Aluminum

The dissolved iron (DFe) concentration in the dry season varied from 21.49 to 232.34 µg/L
(Figure 3 and Table S1), with an average 94.70 µg/L. Compared with the Fe concentration of the
marine area of 5.6 to 56 ng/L [18,47], the DFe concentration in MR was particularly high, and
this may be related to anthropogenic input and rock weathering. The mean DFe concentrations
in the dry season from the upstream to the downstream were 118.64, 67.09 and 97.64 µg/L. The
DFe concentration in the middle reaches was the lowest. From upstream to downstream, there
was a downward and then upward trend (Figure 3). The concentration of DFe during the wet
season was from 10.48 to 135.27 µg/L (mean concentration 36.54 µg/L). Compared with DFe
concentration in the wet and dry seasons, the DFe concentration in the wet season was lower
than that in the dry season. It indicated that DFe concentration was diluted by river water. The
trend of DFe concentration in the wet season was opposite to that in the dry season. The DFe
concentration in the midstream was highest in the wet season (Figure 3).
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Aluminum is often used as a tracer due to its high content and relative immobility in
the crust [48–50]. Based on the ratio of DFe/DAl, the dilution effect of DFe concentrations
was eliminated. The concentration of dissolved aluminum (DAl) in the dry season varied
from 1.77 to 167.42 µg/L (average 41.97 µg/L). The average concentrations of DAl from
the upstream to the downstream were 45.08, 44.69 and 20.26 µg/L. The DAl concentration
in the wet season was 0–177.77 µg/L, with a mean of 44.05 µg/L [30]. The average DAl
concentrations from upstream to downstream were 2.84, 82.07 and 28.67 µg/L, which was
highest in the middle reach. In the dry and wet seasons, the DAl concentrations showed a
significant increase, which was probably attributed to humic-type colloids [51].

3.1.3. Influence Factors of DFe Concentration

The Fe in natural water was mainly soluble Fe (ionic Fe, Fe complexes and colloidal
Fe) and insoluble Fe (suspended Fe, biological Fe and terrigenous clastic Fe). The solubility
of Fe in water was affected by various factors (pH, DO, DOC, etc.) [52]. The relationship
between dissolved aluminum (DAl) and dissolved Fe (DFe) concentrations (Figure 4a)
(r = 0.66, p < 0.05 in the dry season and r = 0.9, p < 0.01 in the wet season) indicated that
there was little correlation between DFe concentrations and DAl concentrations in the
dry season and strong correlation between DFe concentrations and DAl concentrations
in the wet season. In the dry season, there was an apparent correlation between DFe and
DFe/DOC (r = 0.95, p < 0.01), but in the wet season, there was no correlation between DFe
and Dfe/DOC (Figure 4b). Therefore, the DOC concentrations were more associated with
the DFe concentrations in the dry season than those in the wet season. In the dry season,
the DFe concentrations correlated with Si/Al ratio in the MR (Figure 5), indicating higher
DFe concentrations in congruent weathering systems and lower DFe concentrations in
incongruent weathering systems. In incongruent weathering systems, the Fe may be fixed
in secondary mineral phases.
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3.2. Iron Isotope Compositions of River Water
3.2.1. Variation in Iron Isotopes

The δ56Fe of MR varied from −0.34‰ to 0.57‰ (Table S1 and Figures 3 and 6), with
an average of 0.09‰. The average δ56Fe of the upper, middle and lower reaches in the MR
were 0.17‰, 0.12‰ and 0.00‰, respectively. The δ56Fe in the continental crust was 0.06 ±
0.03‰ [54,55]. The δ56Fe in sedimentary clastic rocks and igneous rocks were similar to
the continental crust [19]. The bedrocks of the MRB are mainly clastic rocks and sporadic
igneous rocks in the south of the MRB, and the δ56Fe of the MR is consistent with that of
bedrocks. Compared to Arctic rivers (e.g., Copper River, average δ56Fe = −0.01‰; Lena
River, average δ56Fe = −0.11‰; and Ob’ River, average δ56Fe = −0.11‰) (Figure 6) [26]
and the tropical river (Amazon River, δ56Fe = −0.17‰) (Figure 6) [56], the δ56Fe in the MR
was higher. However, compared to the Negro River, an organic-rich river (average δ56Fe =
0.28‰), the δ56Fe in the Mun River was lower.
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3.2.2. Seasonal Variation in the DFe Isotope

In the Arctic and sub-arctic regions, the DFe isotope of a small organic-rich river
varied significantly with time (−1.7–1.6‰); in the wet season, low molecular weight
organic colloids preferentially complexed heavy DFe isotopes, while light DFe isotopes
were enriched in the dry season [26]. The δ56Fe of the subglacial fluvial iron from the same
site in Greenland varied slightly [57]. However, for a typical tropical river—such as the
Mun River—the Fe isotope was different across different seasons. The average δ56Fe of the
MR in the dry season (0.09‰) was lower than that in the wet season (0.14‰) (Figure 3).

The main recharge source of the MR in the wet season was precipitation, and that in
the dry season was groundwater [58]. A previous study reported δ56Fe of atmospheric
aerosols (0.08–0.12‰) [59], which were approximate to δ56Fe of continental crust (0.06 ±
0.03‰). However, the Fe isotopes in groundwater were lighter than that in the continental
crust [60,61]. Furthermore, the groundwater usually had low oxidation-reduction potential
(ORP) and high concentrations of Fe (II) [61], which will slowly oxidize and settle, resulting
in lighter dissolved Fe isotopes in river water and heavier Fe isotopes in suspended
particulate matter (SPM) [16,23,24]. This process made the DFe isotopes of rivers lighter
in the dry season. Therefore, precipitation and groundwater were the recharge sources of
MR in the wet and dry seasons, respectively, resulting in the difference in the dissolved Fe
isotopes in the MR.

3.2.3. The Source of Dissolved Fe

Dissolved Fe in river water had different sources, mainly including rock weathering,
anthropogenic sources (agriculture and industry activities) and other potential sources
(groundwater and precipitation, etc.) [59,62–64]. According to Han, Yang, Zeng and
Zhao [40], the end-member of rock weathering had the highest Fe isotopes and a lower
DFe/DAl ratio, the end-member of the anthropogenic source had a moderate Fe isotopes
value (δ56Fe > 0) and the highest DFe/DAl ratio (anthropogenic input introduces extra Fe
in river water) and the end-member of other potential sources had the lowest Fe isotopes
value and a low DFe/DAl ratio (Chi River). However, in this study, only the end-members
of rock weathering and anthropogenic inputs in Han, Yang, Zeng and Zhao [40] were
used. Groundwater and precipitation were regard as the third end-member. As mentioned
above, the δ56Fe of atmospheric aerosols was similar to that of the continental crust, so
the end-member of precipitation was summarized as that of rock weathering. For the
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end-member of groundwater, the δ56Fe of groundwater of the basin whose lithology was
mainly sandstone and Quaternary sediments was used to approximate (median δ56Fe =
−1.14‰) [61]. For the DFe/DAl ratio in groundwater, the DFe and DAl concentrations
in the groundwater in northeast Thailand were used (DFe/DAl = 10.74) [65]. In Figure 7,
sample points in dry and wet seasons were near the end-member of rock weathering,
indicating that the DFe mainly came from rock weathering. However, compared with the
wet season, DFe in the dry season was more influenced by anthropogenic source. During
the dry season, some samples in the midstream and downstream were obviously located
between the end-members of natural sources and anthropogenic sources (Figure 7). The
δ56Fe of S2 was lowest in the dry season. This may be related to bedrock and external
inputs. The bedrock of S2 was limestone, which had a low δ56Fe (−0.95–−0.21‰) [66]. The
S2 was located in the forest area, where rivers in the forest took away the light Fe from
the forest to reduce δ56Fe, and this process also increased the concentration of DFe in the
river compared to natural rivers [67]. Therefore, the DFe of S2 may be mainly from forest
and rock weathering. In general, in the dry season, the DFe of the upstream was mainly
from rock weathering, while the DFe of the midstream and downstream was obviously
influenced by anthropogenic activities.
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3.3. Influence of DOC on the DFe Isotopes

The Dfe isotopes were mainly affected by redox conditions, organic matter and biolog-
ical activities. Experimental research showed that Fe3+ organic complexes were enriched
with heavier Fe isotopes than Fe hydroxide or Fe2+ [21]. The study of Arctic rivers indicated
that heavy Fe isotopes was enriched by the combination of Fe and organic ligands [26]. Ilina,
Poitrasson, Lapitskiy, Alekhin, Viers and Pokrovsky [22] found that Dfe was more enriched
heavy Fe isotopes than Fe of suspended particulate matter in the organic rich rivers. These
finds were consistent with the quantum mechanical calculations, which suggested that the
heavier isotope concentrates in the most tightly bound species [68]. The complexation of
other metals with organic matter also proved this point [69,70].

In order to determine the influence of organic matter on DFe isotopes in rivers, the
relationships between δ56Fe and DOC concentrations of frigid rivers (Severnaya Dvina
and Gulf of Alaska Basin) [26,67], a temperate river (Seine River) [18] and a tropical
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river (Mun River) were compared. The strong positive correlation between δ56Fe and
DOC concentrations of the MR in the dry season suggested that the chelation of Fe and
organic matter results in the enrichment of heavy Fe isotopes (Figure 8). A previous
study showed that the DOC in the MR was influenced by human activities [29]; thus, the
anthropogenic end-member of heavy Fe isotopes was carried by DOC in the MR. However,
there was no correlation between the δ56Fe and DOC concentrations of the MR in the wet
season (Figure 8). It was possible that the uptake of plants caused the decomposition
of organic matter in soil and then release light Fe isotopes to rivers [71]. As mentioned
above, heavy precipitation will cause the increase in DOC concentration in the wet season
(Section 3.1.1). The relationship between the δ56Fe and DOC concentrations in boreal
forested rivers and glacierized rivers also suggest that forested rivers may carry light Fe
isotopes (Figure 8). For the Seine River, whose DOC concentrations were similar to the
world riverine average (5.35 mg/L) [72], there was a strong positive correlation between
δ56Fe and DOC concentrations (Figure 8). The natural end-member of Fe had heavy Fe
isotopes in the Seine River [18]; hence, according to the relationship between δ56Fe and
DOC concentrations, it can be determined that natural Fe was carried by organic matter.
Similar to the above rivers, there was also a positive correlation between δ56Fe and DOC
concentrations in the organic-rich Severnaya Dvina (Figure 8). In summary, the chelation
of organic matter with heavy Fe isotopes was one of the important sources of heavy Fe
isotopes in river water in different climate zones.
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4. Conclusions

This study reported the DFe isotope compositions of the tropical river MR in the dry
season. The δ56Fe of the MR was similar to those of the continental upper crust. The
δ56Fe ranged from −0.34 to 0.57‰, and the average δ56Fe of the upstream, midstream and
downstream of the MR were 0.17‰, 0.12‰ and 0.00‰. From upstream to downstream,
the δ56Fe showed a downward trend as a whole. Compared with the δ56Fe in the wet
season of the MR, the δ56Fe in the dry season was slightly lower than that in the wet season,
which may be ascribed to the great influx of groundwater in the dry season. The δ56Fe
of groundwater was lower than that in the continental crust. In addition, the oxidation
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and precipitation of Fe in groundwater will lead to the lightening of DFe isotopes in river
water. The relationship between DAl and DFe concentrations suggested that there was
little correlation between DFe concentrations and DAl concentrations in the dry season and
a strong correlation between DFe concentrations and DAl concentrations in the wet season.
According to the relationship between δ56Fe and DFe/DAl ratio, the sources of DFe in MR
were rock weathering, anthropogenic inputs and groundwater inputs. The DFe in upstream
was mainly from rock weathering, and anthropogenic activities obviously influenced the
DFe in the midstream and downstream. Furthermore, the relationship between the δ56Fe
and DOC concentrations of rivers in different climate zones showed that the heavy Fe
isotopes were carried by organic matter.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14132038/s1, Table S1: The data of DFe concentrations and
DFe isotope compositions in the dry and wet seasons of the Mun River.
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