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Abstract: Urban stormwater has become a persistent concern on a global scale due to its adverse
environmental implications. It is the prime vector of aquatic contaminants worldwide that causes
pollutants when water bodies drain. Bioretention systems are increasingly used to alleviate setbacks
associated with stormwater run-off in urban locales. It has played a substantial role in the implemen-
tation of low impact development (LID), a concept that addresses urban stormwater problems caused
by land changes and development. The use of LID technologies is an innovative approach. However,
it is beset with challenges, such as the insufficiency of data on rainfall distribution and difficulty in
interpreting data. To address these research gaps, the present study developed a fuzzy rough set
data algorithm for bioretention systems. Event mean concentration calculations and fuzzification
of rainfall were performed to produce a rough set-based decision rule. Using the Weibull proba-
bility distribution, fuzzification of rainfall and parameter data, rule induction, and Preece testing,
bioretention design considerations were determined. The bioretention characterizations generated
evident pollutants present in the catch basin before and after filtration. In addition, the bioretention
characterization conducted in this study was able to reduce the number of tests needed for rainfall
identification based on the different attributes.

Keywords: bioretention; EMC parameters; rainfall analysis; Weibull distribution; rule induction;
fuzzy rough set algorithm; rough set theory; Preece test

1. Introduction

The advent of urbanization has brought forth a multitude of advantages manifested
through the creation of employment opportunities, modernization, and better access to
education and other life-enhancing facilities. While well-planned and efficiently managed
urban centers have stood as a cradle for economic growth and better living conditions, they
have also instigated environmental setbacks [1]. To sustain the ever-increasing population
in urban areas, natural areas have been converted into hard, impervious surfaces, such as
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roads, driveways, and parking lots [2]. Water-resistant materials, such as concrete, asphalt,
and brick stone, cover these hard surfaces rendering them impermeable to water, which
in turn, translate into serious environmental implications, such as watershed hydrology
alteration, increased risk of flooding, pollution of water bodies, increased rate and peak
flow of stormwater run-off [3–5], and reduced time to peak flow during flash flood events.
Among these setbacks, stormwater run-off has become a persistent global concern, being
the leading vector of aquatic pollutants worldwide [3,6,7]. Due to its adverse impacts
and the pressing need for sounder use of this water source, various stormwater treatment
technologies and management strategies have been developed, including rain gardens,
bioswales, permeable pavements, green roofs, and bioretention cells [7].

Bioretention has emerged as one of the most widely used stormwater management
strategies in urban locales [4,7,8]. Its underpinnings lie in the early 1990s when it was
established as a component of the low impact development (LID) concept, which addresses
urban stormwater problems associated with land changes and development [5,9]. Bioreten-
tion systems are situated in strategic locations, so as to receive the first-surge run-off from
any rainfall event, allowing the system to hold a sizeable volume of run-off from rainfall
episodes transpiring for several hours. As applied in urban watersheds, bioretention has
been beneficial in reducing loads of pollutants, such as nutrients, heavy metals, suspended
solids, hydrocarbons, and pathogenic bacteria [10–12]. Other evenly significant advantages
have also been documented, including: (1) improved groundwater recharge and baseflow;
(2) decreased peak volume; (3) stream channel protection; (4) thermal pollution reduction;
(5) protection of ecosystem integrity; (6) facilitation of nutrient cycling; (7) air quality
enhancement; (8) urban climate change mitigation [8,11,13].

Local rainfall distribution largely influences the performance of bioretention systems.
In order to design a functional and efficient bioretention system, rigorous collection, analysis
and proper interpretation of localized data on total rainfall depth, rainfall intensity, and
run-off quality over the years have to be carried out. Categorization and fuzzification of
the rainfall data will be useful in simplifying LID studies, making data interpretation more
accessible. The fuzzy optimization model normalizes the component data information and
generates a model of the operation, which allows for the data to be comparable to other
studies [14].

To improve the water system in urban areas and manage the increasing concerns re-
garding urban stormwater run-off, the concept of LID is also applied in the Philippines [15].
The basic management design includes controlling excess water in the form of surface
run-off, using it for alternative purposes and improving the water quality. The use of LID
technologies has been an innovative approach. However, a paucity of needed informa-
tion, such as rainfall distribution, difficulty in data interpretation, and the number of tests
needed to be carried out, limit the implementation and application of this technology.

1.1. The Growing Concern about Urban Stormwater Run-Off

The sprawl of population in urban centers has brought forth massive development in
infrastructures, with the conversion of natural areas into impervious surfaces as one of the
main upshots [2]. Concomitant with the expansion of impervious cover is the increase in
quantity and rate of stormwater run-off. The increase in the extent of impervious surfaces
renders the precipitate incapable of infiltrating into the ground, making urban run-off a
prime contributor to non-point source pollution [3]. With the shifting context of urban-
ization and policies on climate and management, pollution associated with stormwater
discharge varies from area to area, based on volume and quality. In a naturally functioning
environment, only a trivial proportion of precipitation contributes to surface run-off, but
as urbanization amplifies, this percentage considerably increases. This run-off typically
drains to the nearest river or stream, which in turn, causes the following adverse impacts
to the receiving water bodies: altered streamflow [1], disruption of normal hydrologic pro-
cesses [8], changes in the natural drainage path, increased flood volumes and stormwater
run-off, amplified amount of wash-off pollutants affecting water quality [2], water body
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alteration and biodiversity problems [5]. Other aftereffects of urban run-off have been
documented, including stream bank erosion, contamination of drinking water sources,
exposure of humans to pathogenic bacteria, and adverse impact on the economy due to
beach closures [8]. In view of the mayhem associated with urban run-off, attention has been
focused on developing stormwater management strategies, such as bioretention systems.

1.2. Bioretention: Its Concept and Underpinnings

Bioretention, also recognized as bioinfiltration or biofilters, is defined as land-based
water quality and water quantity management practice that uses physical, chemical, and
biological properties of soils, plants, and microbes for the elimination of pollutants from
stormwater run-off [16]. It was first developed in the early 1990s by Prince George’s
County, Department of Environmental Resources as a component of the low impact de-
velopment (LID) concept [4,9]. To compensate for the environmental consequences of
land development on hydrological processes and water quality, the LID approach inte-
grates a hydrologically functional site design with pollution deterrence measures. This
concept administers stormwater run-off in small, economical landscape features situated
on each lot incorporating natural processes, such as infiltration, filtration, sedimentation,
adsorption, volatilization, ion exchange, decomposition, phytoremediation, and storage
facility [9,11,16]. Examples of LID techniques are rain gardens, bioswales, green roofs,
permeable pavements, and bioretention cells [15].

Among the LID practices, bioretention has gained much impetus as more areas grapple
with the ecological impacts of urbanization [10]. Bioretention systems draw inspiration
from the natural system’s ability to treat waste as a resource. It maximizes the existing
physical, chemical, and biological pollutant removal processes found in the soil and flora
component of a terrestrial vegetated community [4].

1.3. Bioretention Systems: Design and Function

Bioretention uses soil media and woody and herbaceous plants to reduce pollutant
loads from stormwater run-off coming from urban areas [4]. This system is engineered to
receive the first-surge run-off from any rainfall event, with an adept capacity to take hold
of a sizeable volume of run-off from rainfall episodes persisting over several hours [4,17].
The water that passes through the facility enters either of these routes: (1) infiltrates deeper
for groundwater recharge, and (2) collected in subsurface perforated pipes and passed to
conventional storm drains [17].

With the linking goal to reduce the quantity and improve the quality of run-off in ur-
ban areas, bioretention systems use shallow storage, landscaping, and soil media to collect
stormwater before draining to the watershed and adjacent water bodies [4]. The basic de-
sign consists of three distinctive layers—filtration, transition, and drainage layers—which
mimic the function of the natural environment [11,18]. The initial bioretention system
design is much like a depression backfilled with planting soil lined by a thin layer of sand
underneath and planted with native grass, shrubs, and various kinds of trees as treatment
media [17]. The soil characteristically has a high sand content to facilitate rapid infiltration,
with low proportions of silt and clay to render faster attenuation of pollutant loads during
infiltration. A thin layer of wood mulch overlays the soil, intended to prevent erosion and
excessive desiccation of the soil layer. The system is also installed with grasses, shrubs, and
other plant species for water removal through evapotranspiration, effectual infiltration,
and pollutant conversion [17]. Plant species utilized in bioretention are chosen based on
the following attributes: (1) well-suited to the existing soil and climatic conditions of the
area; (2) tolerant to urban disturbance, such as water and air pollutants, fluctuating soil
moisture, ponding variations; (3) nutrient removal efficiency [17,19]. Bioretention systems
are useful in commercial, industrial, and residential settings. They can also be applied in
other functions, such as roadway and institutional developments, community redevelop-
ment, streetscape projects, trailways and parks, which can be designed in accordance with
individual areas and site-specific conditions [9]. The expansion of impermeable surfaces
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in urban locales has led to increased flood volumes, stormwater peak surges and intensi-
fied pollutant wash-off, which could drastically degrade the water quality of run-off [12].
Stormwater run-off serves as a vector of pollutants transporting contaminants, such as
organic matter, suspended solids, nitrogen, phosphorus, heavy metals, hydrocarbons, sedi-
ments, pesticides, and fertilizer effluents, to the receiving watersheds. Bioretention systems
have been found to cleanse pollutants of various sorts from infiltrating run-off. Several
studies have demonstrated its ability to remove nutrients such as Kjeldahl nitrogen, total
nitrogen, phosphorus [12,17], and ammonium [10]. Heavy metals such as copper, lead, zinc,
and other contaminants such as oil and grease, suspended solids, hydrocarbons, motor oil,
and pathogenic bacteria were also found to be efficiently removed by bioretention facili-
ties [9–11]. Despite its proven efficacy, the full potential of bioretention systems is limited
by setbacks in data management, such as insufficient and/or imprecise data [16]. This
challenge can be addressed by adapting statistical methods to simulate various scenarios in
a locale.

1.4. Rough Set Theory: Concept and Uses

The origin of rough set theory dates back to 1982 when Zdzislaw Palwak introduced it
as a contemporary mathematical approach to deal with imprecise knowledge [20,21]. It
offers efficient methods, tools, and algorithms for establishing covert patterns in data. The
concept of a rough set is grounded on the supposition that, contrary to the classical set
theory, additional information, knowledge, and data about elements of a set exist [22]. Since
its inception, rough set theory has demonstrated the ability to develop computationally
efficient and mathematically sound systems to deal with issues of finding patterns from
databases, creation of decision rules, data reduction, principal component analysis, and
interpretation of inference on the basis of existing data [20]. The first part of the rough
set theory is to establish concepts and rules through the categorization of the relational
database. The second component is to discover knowledge through sorting the equivalence
relation and classification for the target approximation [23].

The advantages of the rough set approach to data analysis have been established,
which include: (1) provision of efficient algorithms to find hidden patterns in data; (2) iden-
tifying of relationships that would not be established using statistical procedures; (3) finding
of minimal sets of data reduction; (4) allowing for the use of both qualitative and quanti-
tative data; (5) assessing data significance; (6) generation of decision rules from available
data; (7) easy to understand; (8) offers a forthright interpretation of gathered results [21].

1.5. Rough Set Data Explorer

Rough Set Data Explorer is a software system based on rough set theory and other
methods for rule discovery [20] which was developed by the Laboratory of Intelligent
Decision Support Systems of the Institute of Computing Science in Poznan [24]. This
system is a descendant of RoughDAS and RoughClass systems, which are considered one
of the first successful implementations of the rough set theory. The software allows for the
application of the variable prediction rough set and the classical model designed by Pawlak
to construct approximations. Rough Set Data Explorer is basically comprised of a graphical
user interface and a collection of separate computational modules. It is devised to be a
user-friendly tool that can be implemented in data exploration and analysis. It is equally
useful for beginners and experts, as well as for occasional users who want to perform data
analysis [25].

Fuzzy rough set theory as a new and alternate way for processing bioretention data
is one of the goals of this study. With numerous rainfall data and various stormwater
pollutants prevalent in LID systems, this novel method aims to produce a design char-
acterization model for bioretention areas. The present study mainly seeks to develop a
fuzzy rough set data algorithm that can be used in a bioretention system. It also addresses
the following specific aims: to develop a design characterization model for the following
bioretention areas: Eco-biofilter (EBF), Green Eco-tree filter 1 (GEF1), Green Eco-tree filter 2
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(GEF2), Small Constructed Wetlands 1 (SCW1), and Small Constructed Wetlands 2 (SCW2);
to utilize Weibull distribution and rough set theory in the data analysis and rules generation
of bioretention parameters and rainfall events; to apply the principles of empirical testing
to validate the rules generated.

2. Materials and Methods
2.1. Methodological Framework

The framework of this research is based on the paper of Sumalatha et. al. [26]. To
generate reducts and produce decision rules for forecasting the decision class, researchers
employed a rough set-based approach. Figure 1 depicts how decision rules were formulated
in the study as the basis for the bioretention design considerations. The data set was derived
from the daily records of rainfall amount over thirty years for Cheonan City, Korea. With
this range of rainfall values, the fuzzy classifiers method was assigned for the class label [27].
Weibull (Equation (1)) percentages with related precipitation depth were used to assign
fuzzy classifiers to rainfall events depending on their intensity. The percentile occurrence
frequency of rainfall, which was dependent on the class label, was the object to forecast in
the study. The bioretention areas were monitored distinctively resulting in 43, 15, 33, 31,
and 26 event mean concentrations for EBF, GEF1, GEF2, SCW1, and SCW2 bioretention,
respectively. The entire depth of each rainfall observation event was classified uniquely by
assigning a fuzzy value to it. The decision rules were examined using empirical testing.

Weibull formula, P(X > xm) = (m)/(n + 1) (1)

where: P = percentile ranking, n = total number of the values to be plotted, m = rank of a
value in a list ordered by descending magnitude.
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2.2. Research Site Facility

The rainfall data of Kongju National University, Cheonan City, South Chungcheong
Province, South Korea (Korean Meteorological Association, 2022 [28]) were one of the
study’s inputs, which were constructed in 2014. Rainfall was measured by a local weather
station at a regular interval of 1 min, and the weather station data was summed for annual
rainfall. For characterization, the rainfall was summed together and shown as annual
rainfall data. The percentile occurrence frequency of the rainfall studied ranged from 1st
to 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, and 91st to 100th percentile over a
normal rainfall, which was analyzed separately using Weibull distribution. The thirty-
year (from the year 1990 to 2020) rainfall data was then represented by the average of the
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percentile occurrence frequency plots for each year. The percentile ranges were recorded
and fuzzified by assigning values to each range. There is one percentile difference below
the 10th percentile and above the 90th percentile, wherein the ranges were based on the
large diversity of rainfall intensities. Additionally, the data were chosen in 10% increments
between the 10th and the 90th. The rainfall intensities in the LID systems were fuzzified by
assigning values previously obtained by the thirty-year rainfall data. The bioretention rain
events were easily classified and processed for use in a fuzzy rough set model. In analyzing
the parameters, the manual collection of samples considering the first flush rainwater for
analysis at inflow and outflow of each bioretention area was carried out. The sampling
frequency was matched to the hydrograph for the rate of water flow in relation to time
using a short interval time during the first hour (0, 5, 10, 15, 30, 60 min) and more samples
hourly thereafter. The rainwater samples were collected in the EBF bioretention at a specific
time interval for both IN and OUT events [27].

2.3. EMC Calculations

Event mean concentration (EMC) attributes and 32 parameters from the Eco-biofilter
(EBF), Green Eco-tree filter 1 (GEF1), Green Eco-tree filter 2 (GEF2), Small Constructed
Wetlands 1 (SCW1), and Small Constructed Wetlands 2 (SCW2) bioretention areas were
measured. EMC characteristics were classified as nutrients, solids, and heavy metals.
The parameters determined for each bioretention area were as follows: pH, conductivity,
turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD5), chemical
oxygen demand chromium (CODCr), chemical oxygen demand manganese (CODMn),
total organic carbon (TOC), total nitrogen (TN), nitrogen dioxide (NO2), nitrate (NO3),
ammonium (NH4), total Kjeldahl nitrogen (TKN), total phosphorus (TP), phosphate (PO4-
P), oil and grease (O&G), chromium (Cr), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn),
cadmium (Cd), lead (Pb), total chromium (TCr), total iron (TFe), total nickel (TNi), total
copper (TCu), total zinc (TZn), total cadmium (TCd), total lead (TPb), arsenic (As), and
total arsenic (TAs).

Table 1 depicts the equipment used in the collection of data for the different parameters.
Turbidity, expressed in NTU, was measured using a portable turbidimeter, while total
suspended solids (TSS) was determined using a drying oven. Biochemical oxygen demand
(BOD5) for each site was measured using an incubator, whereas concentrations of total
nitrogen (TN) and total phosphorus (TP) were obtained through the UV/VIS spectrometer.
The bioretention areas were also measured for their total Kjeldahl nitrogen (TKN) content
using the Kjeldahl machine, and heavy metals through a sequential plasma spectrometer.
TOC-5000A by Shimadzu Co. (Shimadzu Corporation, Kyoto, Japan) was used to analyze
TOC. Organic and oxidizable inorganic substances in an aqueous sample are oxidized by
potassium dichromate solution in sulfuric acid solution. The excess dichromate is titrated
with standard ferrous ammonium sulfate using orthophenanthroline ferrous complex
(ferroin) as an indicator. Stormwater run-off samples were collected throughout the storm
events and taken to the laboratory for analytical analyses to determine concentrations of
common water quality elements in stormwater run-off. The standard test methods for the
examination of water and wastewater were used to assess all stormwater run-off samples.

Table 2 summarizes the five bioretention characteristics. It includes the land use/run-
off source, infiltration capability, vegetation, catchment area, ground slope, aspect ratio,
surface area, total volume, storage volume, and the total cost. The five bioretention areas
vary in terms of land use and run-off source, infiltration capability, presence of vegetation,
catchment area, ground slope, surface area, total volume, storage volume, and total cost.
The Eco-biofilter (EBF) site has a total catchment area of 520 m2, surface area of 5 m2, total
volume and storage volume of 6.5 m3 and 3.85 m3, respectively. The area is a road devoid
of vegetation, able to infiltrate run-off due to its 2.5 ± 1.5% ground slope. The total cost of
EBF amounted to USD 12,200. The second area, the Green Eco-tree filter 1 (GEF1) has the
largest catchment area of 880 m2, with a ground slope of 1.3 ± 0.7%. It has a surface area
of 2.25 m2, able to hold 2.9 m3, and with a storage volume of 1.76 m3. GEF1 is a parking
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lot costing USD 7650, surrounded by vegetation allowing it to infiltrate run-off. The third
area is the Green Eco-tree filter 2 (GEF2), resembling many attributes of GEF1, except for its
smaller catchment area of 450 m2 and ground slope of 0.5 ± 0.5 m2. The Small Constructed
Wetlands 1 (SCW1) is the fourth site, consisting of a road and parking lot surrounded by
vegetation with no capacity to infiltrate run-offs. It has a catchment and surface area of
597 m2 and 6.5 m2, respectively, with a ground slope of 1.5 ± 0.8%. SCW1 has a total
volume of 4.55 m3 and a storage volume of 2.73 m3, with a total cost of USD 12,650. The
last area is the Small Constructed Wetlands 2 (SCW2), with similar land use, infiltration
capacity, and vegetation as that of SCW1. It has a catchment area of 457 m2, a surface area
of 7 m2, and a ground slope of 1.9 ± 1.5%. It can hold a total volume of 4.9 m3 and a storage
volume of 2.94 m3. Construction of SCW2 amounted to USD 16,200, the costliest of all
the bioretention areas tested [29]. An actual picture of the five bioretentions is shown in
Figure 2.

Table 1. Parameters determined and equipment used in the study.

Parameter Unit Equipment

Turbidity NTU
Turbidity meter: 2100P Portable

Turbidimeter by Hach Company, Loveland,
CO, USA

Total Suspended Solids (TSS) mg/L Drying oven: SJ-201DL by Sejong Scientific
Co., Bucheon-si, Korea

Biochemical oxygen demand
(BOD5) mg/L Incubator: CNC-BIS BOD5 Incubator by

Sang San Tech Co., Seoul, Korea

Total nitrogen (TN) mg/L UV/VIS spectrometer: Optizen 2120 UV by
Mecasys Co., Ltd., Yuseong-gu, Korea

Total Kjeldahl nitrogen (TKN) mg/L Kjeldahl machine: KjeltecTM 8200 by Foss,
Hillerød, Denmark

Total phosphorus (TP) mg/L UV/VIS spectrometer: Optizen 2120 UV by
Mecasys Co., Ltd., Yuseong-gu, Korea

Total heavy metals (Cr, Fe, Ni, Cu,
Zn, Cd, Pb); Soluble heavy metals

(Cr, Fe, Ni, Cu, Zn, Cd, Pb)
mg/L Sequential plasma spectrometer: ICPS-7510

by Shimadzu Co., Kyoto, Japan

Ref. [29] Maniquiz-Redillas, (2014).

Table 2. Bioretention characterizations.

Characterization EBF GEF1 GEF2 SCW1 SCW2

Landuse/Run-off
Source Road Parking lot Road/parking lot

Infiltration capability Yes Yes Yes No No

Vegetation No Yes Yes Yes Yes

Catchment area (m2) 520 880 450 597 457

Ground slope (%) 2.5 ± 1.5 1.3 ± 0.7 0.5 ± 0.5 1.5 ± 0.8 1.9 ± 1.5

Aspect ratio (L:W:H) 1:0.2:0.26 1:1:0.87 1:1:0.87 1:0.15:0.1 1:0.14:0.1

Surface area (m2) 5 2.25 2.25 6.5 7

Total volume (m3) 6.5 2.9 2.93 4.55 4.9

Storage volume (m3) 3.85 1.76 1.76 2.73 2.94

Total cost (USD) 12,200 7650 7650 12,650 16,200
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Figure 2. Actual images of the bioretention system.

2.4. Event Mean Concentration (EMC)

EMC is a characteristic of run-off concentration statistically used for the inflow and
outflow pollutant parameters. It is a significant method to estimate the total emission rate
and the contribution of run-off to inflow waters [30,31]. EMC is defined as the total mass
load of a certain parameter in a bioretention site during a storm event divided by the total
run-off water volume removed in the same storm event [32].

The EMC was calculated using Equation (2):

EMC(mg/L) =
M
V

=

∫ T
0 C(t)× qrun(t)dt∫ T

0 qrun(t)dt
≈ ∑t=T

0 C(t)× qrun(t)

∑t=T
0 qrun(t)

(2)

where M (g) represents the total mass of a pollutant carried during a storm event; V
(m3) represents the total volume of run-off; C(t) (mg/L) represents the concentration at
time t; qrun(t) represents the run-off flow rate discharged at time t. The time associated
with the start and end of run-off is represented by the integration limits t = 0 and t = T,
respectively [33].

2.5. Storm Event Monitoring

In analyzing the parameters, manual grab sampling at inflow and outflow of each
bioretention area was carried out. The sampling frequency was matched to the hydrograph
for the rate of water flow in relation to time using a short time interval during the first hour
(0, 5, 10, 15, 30, 60 min) and more samples hourly thereafter. The rainwater samples were
collected in the EBF bioretention at a specific time interval for both IN and OUT events.

2.6. Fuzzification of Rainfall and Parameter Datasets

The rainfall events data for both IN and OUT differ from every bioretention. Rainfall
events recorded for each bioretention area were as follows: EBF = 43, GEF1 = 15, GEF2 = 33,
SCW1 = 31, and SCW2 = 26. These were processed using Weibull probability distribution
in OriginPro 2021b software. Each parameter was plotted in which the X and Y-axis
showed the actual and predicted cumulative percentage, respectively. A plotted figure
for pH for bioretention IN is shown in Figure 3. The upper and lower percentiles were
used as a basis of the fuzzified data. The fuzzified rainfall and parameter data were the
results of the processed actual values gathered. This novel machine learning method uses
software in determining fuzzy values which were used to a greater extent for analyzing
systems or applications [21]. The figure shows plotted fuzzy values for pH bioretention
IN. The X-axis shows the pH values and the Y-axis represents the Weibull cumulative



Water 2022, 14, 2037 9 of 21

probability expressed as a percentage. This is the graph result after the fuzzification of
data in OriginPro software. The circles represent the percentiles of pH values IN of the
different bioretentions. They are referenced with the red line and enclosed by upper and
lower percentiles. These percentiles used a 95% confidence band and the results were the
basis for the assigning of fuzzy values given the percentile range produced. There were
32 parameters, plus 1 decision rule and 5 bioretentions with 2 events (IN and OUT) having
a total of 330 processed tables.
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The fuzzy classifiers method was used in assigning a class label to the raw values of
the rainfall events [27]. With the five bioretention areas, different rainfall observations were
noted. After assigning classifiers, the resulted class label prediction of the object was used
for the optimization of rules.

2.7. Rough Set Theory Using Rule Induction

The bioretention fuzzified value attributes were processed in the rough set data
explorer (ROSE) software using the rule induction of rough set theory. The EMC parameters’
fuzzy values were coded using the numeric-integer (“number-coded”) data type. The
output was set to the rainfall fuzzy value, the series of bioretention parameters were
arranged in notepad, and the file was saved from text to isf format. An isf file is needed
by the ROSE for the data to be processed. The concept of rough set theory seeks to
reduce a given conditional attribute data set to a smaller subset while keeping the reduced
subset consistently connected to the conditional attribute [34,35]. If the matching decision
attributes for any objects set with equal feature values are comparable, the dataset is
deemed consistent. This is accomplished through the formulation of the reducts and core
notions in rough set theory. Through the concept of rough set theory using the ROSE
software, the enormous EMC parameters fuzzy values data were reduced to a smaller set
of rules. These rules were the basis of bioretention design considerations.

3. Results and Discussion
3.1. Fuzzification of Rainfall and EMC Events

Table 3 summarizes the groupings of pH values of the different bioretention systems
and their corresponding fuzzy values. Groupings were based on the percentile occurrence
frequency of rainfall data. These fuzzy values were used as input values in the rough set
data explorer software to process rules.

Table 3. Groupings of pH and its corresponding fuzzy values.

Bioretention
pH Fuzzy Values

1–10 11–13 14–16 17–19 20–27

IN

EBF 3.00–5.63 5.64–7.21 7.22–8.93 8.94–10.2 10.2–12.2
GEF1 5.83–7.09 7.10–7.69 7.70–8.28 8.29–8.68 8.69–9.31
GEF2 4.55–6.52 6.53–7.49 7.50–8.38 8.39–8.95 8.96–10.5
SCW1 4.59–6.68 6.69–7.72 7.73–8.68 8.69–9.30 9.31–10.8
SCW2 5.48–6.88 6.89–7.53 7.54–8.11 8.12–8.49 8.50–9.05

OUT

EBF 4.90–6.54 6.55–7.32 7.33–8.01 8.02–8.45 8.46–9.12
GEF1 6.46–6.53 6.54–6.57 6.58–6.64 6.65–6.69 6.70–6.78
GEF2 5.59–6.33 6.34–6.64 6.65–6.93 6.94–7.10 7.11–7.37
SCW1 5.04–6.70 6.71–7.48 7.49–8.20 8.21–8.65 8.66–9.33
SCW2 5.03–6.91 6.92–7.83 7.84–8.68 8.69–9.23 9.24–10.1

The various rain intensities and their respective percentile occurrence frequency are
shown in Figure 4. This categorization of the mean rainfall was used for the fuzzy values
concerning the water depth. These fuzzy values, 1 to 27, correlate to the five bioretention
areas for both IN and OUT EMC events, capturing the entire 90th percentile of the total
rainfall events as depicted in Table 4. With the thirty-year rainfall data, Weibull distribution
was used to assign each of the fuzzified values to the 3337 rainfall occurrences, resulting in
their identified relationship [27].
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In producing rough set relation, attributes that have the same values are collected
into the same class. These are equivalence classes where objects in the same class are
indiscernible. Using the discernibility matrix function of the ROSE software, the method
of rule induction substantiated the percent frequency on the number of times the class or
the parameter fuzzy value appeared before rule induction. Indiscernibility relation is a set
approximation, where it gives us both lower L(X) approximation and upper approximation
U(X), hence, calculating the accuracy of approximation α(X). The various parameters and
percentile occurrence frequency were considered as a correlation to the discernibility matrix
of the bioretention systems. Reducts look for the smallest subset of attributes that allow
the same categorization of elements in the original data as the entire set of attributes, in
which computing such minimal reducts among all reducts. Figure 5 shows the parameter
attributes of the bioretention system reducts. The discernibility matrix creates a reduction in
attributes by extracting the less preferred and including those that are more preferred [36].
Table 5 exemplifies the frequency or instances the attributes appeared over the total number
of reducts, expressed in percentage. The attribute parameter units are also depicted in this
table. It can be noted that there are empty values in the table, indicating the unavailability
of data for this attribute and type of bioretention. The total number of reducts produced
after running the data in the ROSE software is shown in the last row of the table.
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Table 5. Discernibility matrix of five bioretentions for both IN and OUT.

% Frequency

Attribute Unit EBF IN EBF OUT GEF1 IN GEF1
OUT GEF2 IN GEF2

OUT SCW1 IN SCW1
OUT SCW2 IN SCW2

OUT

FpH 15.1 13.1 4.92 14.1 13.5 12.9 20.5 16.5 9.40 9.29

FConductivity µs/cm 10.8 13.6 15.1 7.32 11.2 9.18 11.1 12.5 8.89 8.55

FTurbidity NTU 12.7 15.3 7.87 7.32 10.8 13.4 13.7 12.7 17.1 100

FTSS mg/L 11.6 6.04 7.87 7.32 6.77 7.12 18.0 7.96 9.65 6.69

FBOD5 mg/L 11.8 11.0 8.85 15.1 10.4 11.5 8.7 14.5 6.56 7.43

FCODCr mg/L 9.21 8.35 7.21 6.34 7.52 8.66 15.8 12.9 7.69 9.29

FCODMn mg/L 11.5 15.0 16.0 12.2 8.12 10.5 18.5 8.18

FTOC mg/L 12.5 20.7 14.8 15.1 18.0 18.4 11.9 15.2 14.8 11.9

FTN mg/L 11.2 14.9 7.21 18.0 13.4 2.6 12.5 11.6 6.99 11.9

FNO2 mg/L 7.15 9.10 8.41 6.83 4.81 6.12 10.4 7.43

FNO3 mg/L 7.15 9.20 7.20 5.58 6.61 7.69 7.32 7.43

FNH4 mg/L 5.36 8.25 8.13 7.71 4.38 4.88 11.1 3.72

FTKN mg/L 15.9 19.2 11.1 9.84 2.63 2.76 13.5 12.6

FTP mg/L 7.23 13.5 9.84 5.85 12.3 10.1 19.1 11.7 12.7 8.18

FPO4-P mg/L 6.84 8.61 8.34 5.58 6.13 7.80 5.50 6.32

FO&G mg/L 33.5 19.2 19.3 15.9 10.4 14.6 16.4 11.9

FCr mg/L 12.2 9.38 9.51 12.2 15.6 7.86 9.63 9.43 13.9 6.32

FFe mg/L 8.71 12.2 6.56 14.1 20.1 7.93 14.1 12.3 12.5 8.55

FNi mg/L 7.77 10.5 8.20 12.2 12.3 11.9 13.6 12.0 14.4 5.58

FCu mg/L 14.7 8.92 8.52 5.85 13.4 13.4 17.0 14.6 15.1 9.67

FZn mg/L 13.2 16.1 18.0 12.7 12.9 14.5 14.0 11.5 9.03 6.32

FCd mg/L 8.32 14.4 5.25 12.2 17.0 8.30 13.4 12.9 18.7 7.81

FPb mg/L 30.0 13.7 12.8 10.2 12.8 9.62 15.0 13.8 13.1 10.0

FTCr mg/L 13.8 14.8 13.1 6.34 15.6 16.5 14.4 10.2 17.6 0.37

FTFe mg/L 43.9 4.83 11.1 14.1 15.0 14.2 12.6 15.8 12.1 11.1

FTNi mg/L 11.3 11.2 13.4 8.29 11.0 7.86 11.3 12.0 10.7 0.37

FTCu mg/L 10.5 12.3 9.84 12.2 15.4 10.2 11.8 13.8 12.9 10.4

FTZn mg/L 9.21 10.3 14.1 6.34 15.9 17.9 15.1 11.5 14.4 8.92

FTCd mg/L 11.0 14.5 13.8 12.2 18.2 12.5 10.5 10.0

FTPb mg/L 9.72 14.2 17.7 14.1 10.8 9.18 10.6 13.4 8.01 0.37

FAs mg/L 9.17 7.01 5.12 3.82 2.48 3.58 4.08 3.72

FTAs mg/L 8.82 7.09 5.08 4.04 2.48 1.57 3.68 3.72

NUMBER OF
REDUCTS 2573 3892 305 205 2793 1362 2057 1846 2745 269

3.2. Bioretention Rules Optimization

Basic minimal rule induction of the ROSE software-generated rules as the basis for
design considerations of bioretention systems. Table 6 depicts the rule for the EBF IN
bioretention (complete list of rules optimization tables in Supplementary Tables S1–S9).
Considering the rainfall fuzzy value, EMC parameters, and percentile occurrence frequency,
results vary indistinctively. Rough set theory produced specific EMC parameters for the
corresponding rainfall fuzzy value. Each rule produced is in the form of EMC parameter/s
with its corresponding fuzzy value => and the rainfall fuzzy value. Approximation rules
appear when there are the same set of conditions, that is when the same condition relates
to more than one outcome.
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Table 6. EBF IN fuzzified values rules optimization.

No. Rule Rainfall Fuzzy Value EMC Parameters Percentile Occurrence
Frequency

1 (FTOC = 19) => (EBF_IN = 11) EBF_IN = 11 FTOC = 19 20

2 (FTCu = 13) & (FTPb = 13) =>
(EBF_IN = 12); EBF_IN = 12 FTCu = 13, FTPb = 13 30

3 (FTSS = 16) & (FTN = 17) =>
(EBF_IN = 12) EBF_IN = 12 FTSS = 16, FTN = 17 30

4 (FTurbidity = 24) => (EBF_IN =
12) EBF_IN = 12 FTurbidity = 24 30

5 (FTSS = 17) & (FCd = 16) =>
(EBF_IN = 13) EBF_IN = 13 FTSS = 17, FCd = 16 40

6 (FTurbidity = 21) => (EBF_IN =
13) EBF_IN = 13 FTurbidity = 21 40

7 (FCr = 3) => (EBF_IN = 13) EBF_IN = 13 FCr = 3 40

8 (FPb = 13) => (EBF_IN = 13) EBF_IN = 13 FPb = 13 40

9 (FConductivity = 13) & (FCODCr
= 13) => (EBF_IN = 14) EBF_IN = 14 FConductivity = 13,

FCODCr = 13 50

10 (FTSS = 17) & (FTN = 15) =>
(EBF_IN = 14) EBF_IN = 14 FTSS = 17, FTN = 15 50

11 (FNO2 = 11) & (FCu = 14) =>
(EBF_IN = 14) EBF_IN = 14 FNO2 = 11, FCu = 14 50

12 (FNH4 = 0) & (FTFe = 12) =>
(EBF_IN = 14) EBF_IN = 14 FNH4 = 0, FTFe = 12 50

13 (FNO2 = 15) => (EBF_IN = 14) EBF_IN = 14 FNO2 = 15 50

14 (FTP = 15) & (FO&G = 17) =>
(EBF_IN = 14) EBF_IN = 14 FTP = 15, FO&G = 17 50

15 (FNi = 11) & (FTCu = 10) =>
(EBF_IN = 15) EBF_IN = 15 FNi = 11, FTCu = 10 60

16 (FBOD5 = 11) & (FTP = 11) =>
(EBF_IN = 15) EBF_IN = 15 FBOD5 = 11, FTP = 11 60

17 (FPO4-P = 15) & (FTFe = 12) =>
(EBF_IN = 15) EBF_IN = 15 FPO4-P = 15, FTFe = 12 60

18 (FNO2 = 17) => (EBF_IN = 15) EBF_IN = 15 FNO2 = 17 60

19 (FTKN = 10) & (FTZn = 16) =>
(EBF_IN = 15) EBF_IN = 15 FTKN = 10, FTZn = 16 60

20 (FTFe = 15) & (FTCd = 10) =>
(EBF_IN = 16) EBF_IN = 16 FTFe = 15, FTCd = 10 70

21 (FpH = 14) & (FTPb = 14) =>
(EBF_IN = 16) EBF_IN = 16 FpH = 14, FTPb = 14 70

22 (FTFe = 3) => (EBF_IN = 17) EBF_IN = 17 FTFe = 3 80

23 (FCODMn = 11) & (FPO4-P = 0)
=> (EBF_IN = 18) EBF_IN = 18 FCODMn = 11, FPO4-P = 0 90

24 (FTurbidity = 16) & (FTCr = 16)
=> (EBF_IN = 18) EBF_IN = 18 FTurbidity = 16, FTCr = 16 90

25 (FBOD5 = 5) => (EBF_IN = 26) EBF_IN = 26 FBOD5 = 5 98

26 Approximation
Rule

(FTFe = 0) => (EBF_IN = 1) OR
(EBF_IN = 13)

EBF_IN = 1) OR (EBF_IN
= 13) FTFe = 0 1 OR 40

3.3. Preece Test

The data set for the EBF IN bioretention had 43 numbers of rules and were decreased
to 26 numbers of rules (as indicated in Table 7) resulting in a 39.53% decrease. EBF OUT,
GEF1 IN, GEF2 In, GEF2 OUT, SCW1 IN, SCW1 OUT, SCW2 IN, and SCW2 OUT has a
54.55%, 26.67%, 42.42%, 60.61%, 45.16%, 48.39%, and 38.46% decreased number of rules,
respectively. It can be perceived that there is a significant number difference in the rules
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after processing. For the GEF1 OUT bioretention, there were no reduced rules generated
as the data gathered showed insignificant numbers that cannot be processed by the ROSE
software. Upon checking manually, most data attributes for this bioretention were zeros.

Table 7. Percentage decrease in rules generated.

Bioretention Number of
Rules

Number of
Reduced Rules

Percentage
Decrease

EBF
IN 43 26 39.53

OUT 44 20 54.55

GEF1

IN 15 11 26.67

OUT 14 NO RULES
GENERATED 00.00

GEF2
IN 33 19 42.42

OUT 33 13 60.61

SCW1
IN 31 17 45.16

OUT 31 16 48.39

SCW2
IN 26 16 38.46

OUT 27 16 40.74

It was found that the percent validity computed was 100 percent after applying
empirical testing to the rules developed. The total number of rules produced by the ROSE
software was tallied and variable a was assigned to it. Each rule produced by this expert
system algorithm was checked with the fuzzified rough set values to determine if the values
matched. The number of rules where the values of the percentile occurrence frequency and
EMC parameters matched the fuzzy values were counted and assigned to variable b. To
compute the percent validity c, the formula: c = (b/a) times 10 was used. In performing this
test, half of the data were to be used in model building and the other half were for the data
invalidation. Using empirical testing, the principles derived by the rough set theory were
valid [37].

3.4. Bioretention Design Considerations

The summary of the critical parameters as the basis for the bioretention design con-
siderations is given in Table 8. The EMC parameters IN and OUT were the resulted fuzzy
values considering the 1st–90th percentile as rainfall was imminent at this level [27]. Based
on the recorded observations, it was at these percentiles that the maximum rainfall was
captured. The EMC parameters IN are the evident pollutants present in the bioretention
system in the catch basin. The EMC parameters OUT are the resulted pollutants appearing
in the corresponding bioretention system after filtration has been generated. The catchment
area, surface area, total volume, and storage volume for EBF bioretention were 520 m2,
5 m2, 6.5 m3, and 3.85 m3, respectively. For this type of bioretention, the following ob-
servations were expected: out of the 32 parameters, only 26 will be significantly present
given the amount of the rainfall occurrence frequency; after filtration, only 17 parameters
are projected to be significant. For the GEF1, GEF2, SCW1, and SCW2 bioretention, the
catchment area, surface area, total volume, and storage volume are depicted in Table 8.
Some of the pH values displayed are over 14, which is the result of the parameters’ data
fuzzification. The actual pH values captured are grouped in Table 3, where the largest
fuzzified pH values from 20–27 varies between 6.70 and 12.2 depending on the type of
bioretention. The significant EMC parameters present before (IN) and after (OUT) filtration
for the remaining bioretentions are: 5, 0; 17, 9; 11, 9; 18, 14, respectively.
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Table 8. Critical fuzzified parameters present before and after filtration.

Bioretention Catchment Area (m2) Surface Area (m2) Total Volume (m3) Storage Volume (m3) EMC Parameters IN EMC Parameters OUT

EBF 520 5 6.5 3.85

FpH = 14, Fconductivity = 13, Fturbidity =
24, FTSS = 17, FBOD5 = 11, FCODCr = 13,

FCODMn = 11, FTOC = 19, FTN = 17,
FNO2 = 17, FNH4 = 0, FTKN = 10, FTP =
15, FPO4-P = 15, FO&G = 17, FCr = 3, Fni
= 11, Fcu = 14, FCd = 16, FPb = 13, FTCr =
16, FTFe = 12, FTCu = 13, FTZn = 16, FTCd

= 10, FTPb = 14

FpH = 19, Fconductivity = 21, Fturbidity
= 5, FTSS = 17, FBOD5 = 13, FCODCr =
10, FTOC = 10, FTN = 11, FNH4 = 19,

FTKN = 12, FTP = 15, Fni = 17, FZn = 12,
FTCr = 15, FTFe = 15, FTNi = 12, Fas = 0

GEF1 880 2.25 2.9 1.76 FpH = 21, Fconductivity = 21, Fturbidity =
1, FTSS = 13, FTOC = 2

GEF2 450 2.25 2.93 1.76

FpH=17, Fconductivity = 26, FTSS = 18,
FBOD5 = 2, FCODCr = 14, FTOC = 9,

FTKN = 0, FTP = 12, FO&G = 11, FCr = 13,
Ffe = 11, FZn = 10, FPb = 16, FTFe = 13,

FTNi = 12, FTZn = 16, FTAs = 0

FpH = 21, Fconductivity = 10, Fturbidity
= 17, FTSS = 16, FBOD5 = 12, FTN = 9,

FTKN = 0, FPb = 10, FTCr = 13

SCW1 597 6.5 4.55 2.73
FpH = 21, FTSS = 15, FBOD5 = 20, FCODCr

= 16, FTOC = 11, FTN = 12, FO&G = 13,
FCr = 12, FTNi = 0, FTZn = 10, FTPb = 15

FpH = 19, Fconductivity = 16, Fturbidity
= 13, FTSS = 11, FCODCr = 8, FTN = 13,
Fcu = 13, FTCr = 14, FTFe = 13, FTNi =

11, FTCu = 13

SCW2 457 7 4.9 2.94

FpH = 19, Fconductivity = 21, Fturbidity =
13, FTSS = 17, FBOD5 = 13, FCODCr = 14,
FTOC = 10, FTN = 11, FNO2 = 10, FNH4 =
19, FTKN = 12, FTP = 15, Fni = 17, FZn =
12, FTCr = 15, FTFe = 15, FTNi = 15, FTAs

= 0

FpH = 0, Fconductivity = 25, Fturbidity
= 8, FTSS = 16, FTOC = 17, FTN = 9,

FNH4 = 0, FTKN = 11, FTP = 12, FO&G
= 10, FZn = 13, FTNi = 0, FTCu = 10,

FTPb = 0



Water 2022, 14, 2037 17 of 21

Figure 6 depicts the different EMC parameters and the corresponding significant fuzzy
value. It is noticeable, that in this graph, the GEF1 bioretention OUT has no data, as no
rules were optimized during the process. This means that the original set of rules will be
retained for this type of bioretention. Additionally, also illustrated in the figure are the
specific fuzzy values. There are different values for a certain EMC parameter that appeared
after the process. As such, only the highest value that was below or equal to the 90th
percentile [27] was validated for every EMC parameter. The specific fuzzy value of the
parameters signifies the average value of EMC pollutants.
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4. Conclusions

The concept of low impact development (LID) has gained increasing recognition as an
efficient contrivance to manage urban stormwater run-off and its associated environmental
impacts. While studies have proven LID’s substantial role in addressing problem issues
linked to land changes and development in urban areas, these systems have heterogeneous
data that, if not processed efficiently, can result in complicating values. Conversely, LID sys-
tems are able to generate useful data when processed coherently. The percentile frequency
occurrence of rainfall can be determined with only the minimum number of information
using the rough set theory wherein the 90th rainfall percentile occurrence produced the
highest record of rainfall. Through this, the expected event mean concentration parameters
for a given bioretention characterization can be measured. After applying fuzzification
and rough set theory, the characterization model of different bioretentions systems was
realized. From the vast values of event mean concentration parameters and rainfall data,
Weibull probability distribution produced significant design characterization with the five
bioretention areas as the basis. Reducts and rule induction produced rules that were sub-
stantial in the rainfall fuzzy value and pollutants present before and after filtration. Rules
produced were reduced from 26.67% as the lowest percentage, while as high as 60.61% of
rules were minimized using this method. The principles of empirical testing validated the
rules generated by the system, which has a 100% validity.

The present study worked on the limitations in using LID technologies, such as
insufficiency of information and difficulty in interpreting data. This research is useful
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because it can reduce the number of tests needed for rainfall identification based on
the 32 attributes presented. Through the fuzzification of rainfall and parameter data,
rule induction and Preece testing, bioretention design considerations can be calculated
given the catchment area, surface area, total volume, and storage volume used in the
study. The parameter components are computed using the specified quantity of rainfall
percentage occurrence, which is a method for future research to reduce sampling time,
on-site measurements, and expense. Rough set theory as a distinct tool for forecasting
and analyzing large datasets can be used as a foundation for similar studies in the future.
Fuzzy rough set theory explored the possibility of the design, characteristics, operation,
and maintenance of bioretention systems using rainfall analysis, design characteristics, and
the pollutants as decision attributes of this study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14132037/s1, Table S1: EBF IN Fuzzified Values Rules Op-
timization; Table S2: GEF1 IN Fuzzified Values Rules Optimization; Table S3: GEF2 IN Fuzzified
Values Rules Optimization; Table S4: SCW1 IN Fuzzified Values Rules Optimization; Table S5: SCW2
IN Fuzzified Values Rules Optimization; Table S6: EBF OUT Fuzzified Values Rules Optimization;
Table S7: GEF2 OUT Fuzzified Values Rules Optimization; Table S8: SCW1 OUT Fuzzified Values
Rules Optimization; Table S9: SCW2 OUT Fuzzified Values Rules Optimization. These are the
complete lists of the rules optimization table for the five bioretentions for both IN and OUT.
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Nomenclature

As Arsenic
BOD5 Biochemical oxygen demand
Cd Cadmium
CODCr Chemical Oxygen Demand Chromium
CODMn Chemical Oxygen Demand Manganese
Cr Chromium
Cu Copper
EBF Eco-biofilter
EMC Event Mean Concentration
Fe Iron
FAs Fuzzy Arsenic
FBOD5 Fuzzy Biochemical oxygen demand
FCd Fuzzy Cadmium
FCODCr Fuzzy Chemical Oxygen Demand Chromium

https://www.mdpi.com/article/10.3390/w14132037/s1
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FCODMn Fuzzy Chemical Oxygen Demand Manganese
FConductivity Fuzzy Conductivity
FCr Fuzzy Chromium
FCu Fuzzy Copper
FFe Fuzzy Iron
FNH4 Fuzzy Ammonium
FNi Fuzzy Nickel
FNO2 Fuzzy Nitrogen Dioxide
FNO3 Fuzzy Nitrate
FO&G Fuzzy Oil and Grease
FPb Fuzzy Lead
FpH Fuzzy potential of Hydrogen
FPO4-P Fuzzy Phosphate
FTAs Fuzzy Total Arsenic
FTCd Fuzzy Total Cadmium
FTCr Fuzzy Total Chromium
FTCu Fuzzy Total Copper
FTFe Fuzzy Total Iron
FTKN Fuzzy Total Kjeldahl Nitrogen
FTN Fuzzy Total Nitrogen
FTNi Fuzzy Total Nickel
FTOC Fuzzy Total Organic Carbon
FTP Fuzzy Total Phosphorus
FTPb Fuzzy Total Lead
FTSS Fuzzy Total Suspended Solids
FTZn Fuzzy Total Zinc
FTurbidity Fuzzy Turbidity
FZn Fuzzy Zinc
GEF1 Green Eco-tree filter 1
GEF2 Green Eco-tree filter 2
LID Low impact development
NH4 Ammonium
Ni Nickel
NO2 Nitrogen Dioxide
NO3 Nitrate
O&G Oil and Grease
Pb Lead
pH potential of Hydrogen
PO4-P Phosphate
SCW1 Small Constructed Wetlands 1
SCW2 Small Constructed Wetlands 2
TAs Total Arsenic
TCd Total Cadmium
TCr Total Chromium
TCu Total Copper
TFe Total Iron
TKN Total Kjeldahl Nitrogen
TN Total Nitrogen
TNi Total Nickel
TOC Total Organic Carbon
TP Total Phosphorus
TPb Total Lead
TSS Total Suspended Solids
TZn Total Zinc
Zn Zinc
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