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Abstract: Advances in machine-learning techniques can serve practical water management needs
such as salinity level estimation. This study explores machine learning, particularly deep-learning
techniques in developing computer emulators for a commonly used process model, the Delta Simu-
lation Model II (DSM2), used for salinity estimation in California’s Sacramento-San Joaquin Delta
(Delta). We apply historical daily input data to DSM2 and corresponding salinity simulations at 28
study locations from 1990 to 2019 to train two machine-learning models: a multi-layer perceptron
(MLP) and Long-Short-Term Memory (LSTM) networks in a multi-task learning framework. We
assess sensitivity of both networks to the amount of antecedent input information (memory) and
training data to determine appropriate memory size and training data length. We evaluate network
performance according to several statistical metrics as well as visual inspection. The study further in-
vestigates two additional networks, the Gated Recurrent Unit (GRU) and Residual Network (ResNet)
in salinity modeling, and compares their efficacy against MLP and LSTM. Our results demonstrate
strong performance of the four neural network models over the study period, achieving absolute
bias below 4%, plus near-perfect correlation coefficients and Nash–Sutcliffe efficiency coefficients.
The high complexity LSTM shows slight performance edge. We further show that deeper and wider
versions of MLP and LSTM yield only marginal benefit over their baseline counterparts. We also
examined issues related to potential overfitting by the proposed models, training data selection
strategies, and analytical and practical implications. Overall, this new study indicates that machine-
learning-based emulators can efficiently emulate DSM2 in salinity simulation. They exhibit strong
potential to supplement DSM2 in salinity modeling and help guide water resource planning and
management practices for the Delta region.

Keywords: Sacramento-San Joaquin Delta; salinity modeling; machine learning; multi-task learning;
multi-layer perceptron; recurrent neural networks

1. Introduction
1.1. Background

Salinity management is the keystone of water resource management in estuarine
environments due to the underlying biological significance and inherently high variations
in space and time of salinity [1]. Understanding these variations and predicting variation
patterns under different potential future scenarios is the foundation for informed water
management decision-making. This is especially true for areas with great ecological, social,
and economic importance including the Sacramento–San Joaquin Delta (Delta) in California,
United States.
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The Delta is the hub of California’s water supply system and protecting its economic
and ecological vitality is a priority of California’s Water Resilience Portfolio [2]. The Delta
is the confluence of freshwater inflows from upstream rivers and saline tidal flows from the
Pacific Ocean. Freshwater flow releases from upstream reservoirs are managed to maintain
Delta salinity at levels that support water supply and environmental needs. This requires
estimates of salinity for various climate, flow, and operational conditions. Empirical or
process-based models have been traditionally developed and applied for this purpose.
However, running these models for long study periods under multiple scenarios can be
computationally expensive.

This study explores the use of machine learning including deep-learning approaches
to create emulators for an operational process-based model to estimate salinity in the Delta.
The ability of machine-learning emulators to estimate Delta salinity quickly for a vast
number of scenarios makes them powerful adaptive management tools. For example,
salinity emulators can be used in water operations models to ensure that managed flows
are sufficient to meet salinity standards downstream [3–5], or to support analyses with
immense numbers of possible scenarios, such as the use of Decision Scaling to explore
impacts of future climate conditions on water supplies [6].

1.2. Literature Review

Salinity in the Delta has been estimated using empirical models, process-based nu-
merical models and machine-learning models such as Artificial Neural Networks (ANNs).
Empirical models have been developed to simulate salinity in the Delta, with the goal
being to inform water management practices. One of the earliest attempts is the Minimum
Delta Outflow (MDO) procedure [7]. The MDO predicts the Minimum Delta Outflow
required to meet the maximum allowable salinity standards given a level export and the
Delta Cross Channel Gate position. Another attempt is the G-model of [8] which relates
salinity at various Delta locations to the net Delta outflow, as well as the prior history of net
Delta outflow. The G-model improves upon the MDO routine by including the antecedent
outflow conditions. More recently, the Delta Salinity Gradient (DSG) model [9] extends the
G-model to simulate the position of the low salinity zone in the Delta.

Process-based numerical models have also been developed to simulate the spatial and
temporal variations of salinity across the Delta. Unlike empirical models, these models ex-
plicitly simulate the salinity transport process (via solving the salinity advection–dispersion
equations) driven by hydrology, hydrodynamics, water operations, and other relevant
forcing. These models include one-dimensional models (e.g., the Delta Simulation Model II
(DSM2) [10]) and multi-dimensional models (e.g., TRIM2D [11], RMA10 [12], UnTrim [13],
and SCHISM [14]). Compared to one-dimensional models, multi-dimensional models
provide salinity simulations at a higher spatial level but require considerably more input
data preparation and computing resources. For studies requiring long-term simulations of
multiple potential planning (e.g., climate, operational, and structural) scenarios, simpler
one-dimensional models are largely favored. When it comes to Delta salinity modeling,
DSM2 has probably the best-understood performance over decades and is widely used in
contemporary applications in the Delta [15].

Data-driven machine-learning approaches have also been explored for Delta salinity
modeling. The MDO procedure is implemented into the first generation of the California
Department of Water Resources’ (DWR’s) planning and simulation model (DWRSIM [16]),
which simulates the coordinated operations and the State Water Project (SWP) and the
federal Central Valley Project (CVP). However, MDO’s performance in certain months
and years is found to be less desirable. Sandhu and Finch [17] investigated ANNs as an
alternative to MDO using a public domain program named Stuttgart Neural Network
Simulator. They tested networks with one hidden layer and two hidden layers with
different numbers of neurons. They also explored the impacts of various input variables on
model results. They concluded that a structure of two hidden layers driven by multiple
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inputs including flows and gate operations would yield satisfactory simulations on salinity.
They also discovered that increasing the number of neurons could lead to overfitting issues.

DWRSIM is later superseded by CalSim II [18]. CalSim II uses the G-model to simulate
Delta flow–salinity relationships. The G-model generally provides more desirable results
than the MDO procedure. However, it does not distinguish between different flow patterns
which can yield the same Net Delta Outflow. Moreover, it does not consider the salinity
control gate position which affects the salinity. The ANNs of Sandhu and Finch [17] are
enhanced to emulate the G-model in CalSim II [3–5]. CalSim II ANNs are further enhanced
and incorporated into the latest version of the planning model, CalSim 3.0. Enhancements
in CalSim 3.0 ANNs include: a) a total number of seven daily inputs is used to drive the
ANNs; b) the ANNs are trained using DSM2 simulations in a much longer period compared
to CalSim II ANNs. CalSim 3.0 ANNs are shown to be superior to CalSim II ANNs [19].

In addition to emulating flow–salinity models embedded in planning models, ANNs
have also been developed to emulate other empirical or process-based models in salinity
modeling. Rath et al. [20] integrate the empirical DSG with a Bayesian ANN to simulate
salinity in the San Franciso Bay-Delta estuary. The hybrid model yields improved estima-
tions of salinity compared to the DSG model alone. The hybrid approach also provides
an uncertainty range on the estimated salinity. Chen et al. [21] develop ANNs to emulate
DSM2 in simulating volumetric contributions (i.e., fingerprints) from different flow bound-
aries. ANN-simulated volumetric fingerprints are next applied to derive salinity levels at
different locations in the Delta via multiplying the fingerprints by salinity concentrations at
flow boundaries. He et al. [22] explore several ANN architectures in emulating another
empirical model named Martinez Boundary Salinity Generator (MBSG) in simulating
salinity at Martinez, the downstream boundary of the Delta. These architectures include
the Long-Short-Term Memory (LSTM) networks and the one-dimensional Convolutional
Neural Network (CNN). They observe that ANNs outperform the MBSG model across all
salinity ranges in different years with various wetnesses.

All these previous data-driven studies apply ANNs in the single-task learning (STL)
paradigm, namely one ANN per study location. Motivated by the fact that salinity levels
at different locations in a region are impacted by the same set of boundary conditions, Qi
et al. [23] extend the work of Jayasundara et al. [19] by developing multi-task learning
(MTL) ANNs to replace STL ANNs in the latter. Specifically, Qi et al. [23] develop one
MTL ANN to simultaneously simulate salinity levels at 12 study locations versus 12 STL
ANNs in the work of Jayasundara et al. [19]. The hypothesis is that the region-specific
information may enable one task (one study location) to eavesdrop on features learned by
other tasks (other study locations), leading to improved efficacy and generalizability of
the neural network [24]. The MTL ANN has the same structure (i.e., one input layer, two
hidden layers, and one output layer) as any of those STL ANNs but with 12 times more
neurons in each hidden layer. The MTL ANN is shown to outperform STL ANNs in salinity
simulation in terms of both accuracy and efficiency [23].

1.3. Scope of the Current Work

The current study aims to develop machine-learning models that can mimic the fidelity
and efficacy of the commonly used process-based DSM2 model on salinity modeling
in the Delta, while requiring a much shorter run time. This study neither compares
DSM2 emulation with observed salinity data nor trains the machine-learning models with
observed data. However, salinity emulation of real-world data is planned as a future
study. Since the goal of this study is emulation, any biases or errors in the process-based
DSM2 model would also be emulated. The current work builds upon the success of those
previous studies on Delta salinity modeling via machine learning but extends beyond
them in terms of (1) emulating DSM2 in Delta salinity modeling directly; it is worth noting
that Chen et al. [21] emulate DSM2 in flow simulation while other relevant studies do
not emulate DSM2; (2) being the first study to explore deep-learning approaches (i.e.,
LSTM, Gated Recurrent Units, and Residual Networks) in emulating DSM2 for salinity
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modeling. He et al. [22] is the only study that explored deep learning in salinity simulation
but focused on a much simpler model that can only generate salinity at a single location
in the Delta; other relevant previous studies mostly apply the traditional multi-layer
perceptron architecture; and (3) being capable of generating salinity at multiple locations
across the Delta. Most previous machine-learning studies focus on only a small group
of locations. This study aims to develop modular MTL machine-learning models and
exemplify their applications at 28 study locations in the Delta. However, the modular
nature of these models allows them to be readily adapted to simulate salinity at any other
user-defined locations.

The rest of the paper is organized as follows. Section 2 presents the methodology
consisting of study locations, study dataset, the model to be emulated, the machine-learning
architectures proposed, study scenarios, and analysis metrics. Section 3 presents the
results and findings of the study, including sensitivity analysis results and emulation
results. Section 4 provides discussions on training strategies and overfitting potential of the
proposed models, scientific and practical implications of the current work, and potential
follow-up work. Section 5 concludes the study.

2. Materials and Methods
2.1. Study Locations

The capability of machine-learning models proposed in this study in simulating
salinity is exemplified at various locations in the Sacramento-San Joaquin Delta (Delta),
California, United States. The Delta is an estuarine system formed by the confluence of
the Sacramento River from the north, the San Joaquin River from the south, and several
tributaries (Consumnes, Mokelumne, and Calaveras rivers) from the east, woven together
with hundreds of kilometers of waterways including channels and sloughs (Figure 1).
Freshwater inflows travel westward through the Delta channels and exit through the
San Francisco Bay which is bounded by the Pacific Ocean on the west. Within the Delta,
consumptive uses of water include evaporation, seepage, and crop evapotranspiration.
Suisun Marsh along with adjoining bays is the brackish transition between freshwater
and saltwater. Salinity in the Delta is a complex function of freshwater inflows, Delta
consumptive use, incoming ocean tides, Delta exports, and gate (e.g., the Delta Cross
Channel Gate) operations.

The Delta serves as the hub for the SWP and CVP, which export water from the Delta
to irrigate more than 3 million acres of farmland in the state and provide municipal supply
for more than 20 million people. The conveyance of water relies on the movement of that
water through the Delta and maintaining the right balance of saltwater and freshwater.
Operations of the SWP and CVP are critical to keeping the balance as the Delta is also
a diverse ecological region, providing critical habitat for many fish and wildlife species
including the threatened Delta Smelt [25]. These operations are regulated by state and
federal compliant requirements to meet water supply and environmental needs [26,27].

This study focuses on 28 important compliance locations, export locations, key flow
junctions, and locations of ecological significance in the Delta (Figure 1). These locations
are grouped into three regions: western (locations #1–10), northern (locations #11–13), and
interior (locations #14–28). Salinity levels at the western locations are more impacted by
seawater rather than freshwater boundaries. It is the opposite for northern locations. For
interior locations, both seawater and freshwater play an important role in determining
their salinity levels.
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Figure 1. Schematic showing the Sacramento–San Joaquin Delta (Delta), the 28 study locations in
three groups, and the model domain of the DSM2 model. The insert map illustrates the location of
the Delta in the State of California, United States.

2.2. Study Model and Dataset

This study aims to emulate DSM2 in modeling salinity in the Delta. DSM2 is a process-
based hydrodynamic and water quality model that is commonly used to simulate Delta
salinity to inform water resource management decisions [3–5,10,21,23]. DSM2 simulates
salinity, the amount of dissolved salt in water, as Electrical Conductivity (EC) since EC
is how salinity is typically measured in the field. Despite the availability of other hydro-
dynamics and water quality models in the Delta, DSM2 is probably the most extensively
used and has the best-understood performance over decades [15]. Nevertheless, it is a
nontrivial effort to run, maintain, and enhance DSM2. Running the model for multiple
scenarios can be time-consuming. A single 20-year historical DSM2 simulation, including
hydrodynamics and water quality, takes about 3 h to complete on a desktop [21]. DSM2
needs to be recalibrated when there are significant changes to Delta channel geometry
or there is a considerable amount of new flow, stage, and water quality data available.
The entire recalibration can take up to months [22]. A machine-learning-based emulator
of DSM2 needs to be retrained anytime DSM2 is recalibrated or when a major structural
assumption is changed. With an appropriately trained emulator, it is feasible to run many
plausible scenarios in a short amount of time, which is particularly appealing for real-time
operations, long-term planning studies, and surrogate optimization where a model needs
to be run hundreds or thousands of times.
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There are eight major inputs to DSM2: combined inflows from the Sacramento River
and the eastern tributaries, San Joaquin River inflows, total SWP and CVP exports, Delta
Cross Channel Gate operational state (open or close), net Delta consumptive use, Martinez
water stage, Sacramento River salinity, and San Joaquin River salinity. These eight variables
either represent boundary conditions for DSM2 or inform important operating rules for
Delta flow and salinity management. Historical daily values of these variables from
1990–2019 are used as input to train the machine-learning models investigated in this study.
DSM2-simulated daily salinity, represented by EC in micro Siemens/cm (µs/cm), at the
28 study locations during the same period is used as the training target. Accessibility
information of these data is provided in Appendix A.

2.3. Machine-Learning Architectures

ANNs have been extensively applied in water resource modeling, of which the con-
ventional multi-layer perceptron (MLP) networks are probably the most popular networks
being explored [28]. Recently, deep-learning approaches have gained increasing attention
and seen more applications in the field of water resources [29]. In this work, we first follow
the study of Qi et al. [23] and examine the applicability of the traditional MLP networks as
our benchmark in emulating DSM2 in salinity modeling. Next, following the work of He
et al. [22], we develop a deep-learning architecture: the Long-Short-Term Memory (LSTM)
network for the emulation task and compare its performance against that of the MLP net-
works. Finally, as a proof-of-concept exploration, we examine two additional deep-learning
architectures, the Gated Recurrent Units (GRUs) and the Residual Networks (ResNets),
that have never been applied in salinity modeling before, to our best knowledge. The goal
of this final exploration is to assess the capability of less complex, and thus less prone
to overfitting (than LSTM), deep-learning architectures in emulating DSM2 for salinity
simulation. All these architectures are implemented in the form of multi-task learning (one
single network for all study locations). They are briefly described as follows.

2.3.1. Multi-Layer Perceptron (MLP) Networks

MLP networks have demonstrated success in salinity modeling in the Delta [17,19–21,23].
In the current study, we use the same MLP network architecture as proposed in [19], which
consists of an input layer, two fully connected (FC) hidden layers with eight and two
neurons, respectively, and an output layer with one neuron. Further, we apply the MTL
strategy as in [23] and expand the scope of the salinity modeling task from 12 salinity
stations to 28 stations in the Delta. The detailed model architecture is given in Figure 2.
Additionally, the same pre-processing method utilized in [19,23] is adopted for input
dimension reduction in the current study.

Figure 2. Architecture of the proposed MTL MLP Network. Numbers in layer blocks represent the
numbers of neurons.

Based upon the STL MLP network architecture proposed in [19], the authors of [23]
designed an MTL MLP architecture by increasing the numbers of neurons for all layers
by a factor of 12, which is equivalent to the number of monitoring stations in their study.
Following the same MTL model scaling method in [23], we increase the numbers of neurons
in each layer by a factor of 28, which is equivalent to the number of study locations in this
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work. This gives us an MTL MLP model consisting of an input layer with 144 neurons, two
hidden layers with 224 and 56 neurons, respectively, and an output layer with 28 neurons.

2.3.2. Long-Short-Term Memory (LSTM) Networks

The recurrent neural network (RNN) is a type of ANN model well suited for han-
dling sequential data, such as the time series data in salinity modeling [30–33]. An LSTM
network [34] is a special type of RNN that has been widely used in time series estima-
tion [33,35,36], and has recently been applied to estimate salinity at one location in the
Delta [22]. Inside the LSTM layer, there is an input gate, a forget gate, and an output
gate. In comparison with common RNN layers, the LSTM layer stores a cell state vector
and can maintain, update, or erase it when recurrently processing the input vector. A
detailed diagram of an LSTM layer is provided in Figure A1 in Appendix B. To ensure
a fair comparison with the MLP model in Section 2.3.1, we propose the LSTM network
architecture depicted in Figure 3, which consists of an input layer, an LSTM layer with
224 units, and an output layer with 28 neurons. As the LSTM layer is naturally designed
to capture the sequence dependence in the input time series, the pre-defined input data
pre-processing can be skipped.

Figure 3. Architecture of the proposed MTL LSTM Network. Numbers in input layer blocks represent
the input shape while numbers inside subsequent layers represent the number of units/neurons of
the layer.

2.3.3. Gated Recurrent Unit (GRU) Networks

As RNNs are commonly used for time series estimation, other than the LSTM units
with three gates, we further explore the less complex Gated Recurrent Unit (GRU) architec-
ture, which is another type of RNN [37] that has less structural complexity than the LSTM
network. A GRU consists of only two gates, a reset gate and an update gate, and does
not have an internal memory unit as LSTM does. Similar to LSTM units, GRUs are also
developed for processing long sequences and are thus suitable for salinity estimation in this
work. We design the GRU-based RNN architecture as shown in Figure 4, which includes
an input layer, a GRU layer with the same number of units as the LSTM architecture in
Figure 3, and an output layer.

2.3.4. Residual Networks (ResNets)

The ResNet [38] is originally employed to solve the gradient-vanishing problem in
deep-neural-network-based feature extraction. It implements the idea of adding skip
connections across layers. It has been successfully applied in the field of time series
forecasting [39–42]. With the skip connections in the ResNet, intermediate features can
be passed forward from initial layers to later layers while gradients can flow backward
through later layers to initial layers. In our proposed MTL MLP architecture, as input
features are pre-processed in a pre-defined way, information loss is inevitable. Inspired by
the powerful ResNet architecture, we suggest to skip the pre-defined pre-processing steps
and attach a skip path, with a hidden layer, to the proposed MLP network to ensure that
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input information can be preserved. In the meantime, following the structure of Residual
Blocks in ResNet, we insert two one-dimensional convolutional layers to the main path for
input feature extraction. Features of the main path and side path are summed up before
being sent to the second hidden layer. The detailed architecture can be found in Figure 5.

Figure 4. Architecture of the proposed MTL GRU Network. Numbers in input layer blocks represent
the input shape while numbers insides subsequent layers represent the numbers of units/neurons of
the layer.

Figure 5. Architecture of the proposed MTL ResNet. In the convolutional layers, “f” represents
number of filters, “k” represents kernel size, and “s” represents stride.

2.3.5. Implementation Details

We conduct our experiments on Google Colaboratory, a public online platform, which
provides various GPUs for use. In Section 3.1.1, we randomly select 80% from the dataset,
with a pre-defined random seed of 0 such that the training results are reproducible, as the
training set and use the remaining 20% as the test set. According to the results of model
sensitivity analysis on training data length in Section 3.1.2, in other sections of this work,
we randomly select 70% of data as the training set and use the remaining 30% as the test
set. We do not use a separate validation set. Instead, we monitor the models’ performance
on the test set during training. We utilize the Adam optimizer [43] with the mean squared
error (MSE) as objective function to train the proposed networks. The learning rate is a
fixed constant of 0.001 throughout training. The training process stops either at epoch 5000
or when the test MSE does not decrease for 50 epochs.

2.4. Study Scenarios
2.4.1. Network Inputs and Outputs

Similar to the approach described in [19], we utilize a combination of eight hydrologi-
cal, water quality, and operation parameters as inputs, as detailed in Section 2.2. Note that
in addition to the seven input variables employed in [19], in this work, Sacramento River
salinity serves as the eighth input variable to provide extra information for the task.

As in the input pre-preprocessing method proposed in [19], we reduce the dimension
of input data from 118 daily values to 18 values by extracting one value from the current
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day plus the most recent 7 antecedent days, along with 10 non-overlapping 11-day averages
of the prior 110 days.

We use superscript for matrix and vector indexing and subscript for variable indexing.

For example, xt
i is the value for the i-th input variable on day t. We use xt1→t2

i to represent
the average value of the i-th input variable from t1 to t2, where t1 < t2:

xt1→t2 =
1

t2 − t1 + 1

t2

∑
t=t1

xt
i (1)

We linearly normalize the time series of each input variable or the salinity at each
station to the range of [0, 1]. For example, the input variable xt

i can be normalized as in
Equation (2), with T being the total number of samples in the dataset.

x̂t
i =

xt
i − ( min

k=1,...,T
xk

i )

( max
k=1,...,T

xk
i )− ( min

k=1,...,T
xk

i )
(2)

For the proposed MLP network, given a set of input time series x̂t
i with 1 ≤ i ≤ 8

for the task of learning to estimate reference salinity levels on day t, we directly extract
eight daily values x̂t

i , . . . , x̂t−7
i and compute a total of 10 successive non-overlapping 11-

day moving averages x̂t−8→t−18
i , . . . , x̂t−107→t−117

i . These 18 values for each of the eight
input variables together serve as the 8× 18 = 144 input parameters for our proposed
MLP network.

2.4.2. Grouping Stations

As explained in [23], multi-tasking enables intermediate layers in an ANN to share
some features of underlying inputs and thus improves the general performance of the
ANN. However, as the 28 salinity stations studied in this work are located at different
areas in the Delta, as shown in Figure 1, their salinity levels are dominated by different
factors. For example, salinity levels in the western Delta are more likely to be affected by
ocean tides. Therefore, directly treating these stations as one single group and training one
ANN for all of them may not be the optimal solution for the salinity estimation task, it is
natural to consider dividing these 28 stations into three groups (Figure 1) by their physical
locations and train one neural network for each group.

2.4.3. Input Memory

In addition to the pre-processing method defined in [19], which we consider as the
“baseline” case, we introduce five more scenarios with different length of input memories
in this study to test the time memory sensitivity of proposed models. These five additional
scenarios consist of: (I) no input memory; (II) eight-day memory; (III) one-week memory;
(IV) three-week memory; (V) three-month memory. The detailed input vector formulation
can be found in Table 1.
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Table 1. Arrangement of pre-processed inputs for each case.

Cases Prepared Inputs (for Estimating EC on Day t)
(Memory Length) MLP LSTM

Baseline (Four-month)
Eight daily values: x̂t

i , . . . , x̂t−7
i ;

118 daily values: x̂t
i , . . . , x̂t−118

iTen moving averages:
x̂t−8→t−18

i , . . . , x̂t−107→t−117
i

I (No memory) One daily value: x̂t
i One daily value: x̂t

i

II (Eight-day) Eights daily values: x̂t
i , . . . , x̂t−7

i Eights daily values: x̂t
i , . . . , x̂t−7

i

III (One-week) One daily values: x̂t
i ; Same as (II)

One moving average: x̂t−1→t−7
i

IV (Three-week)
One daily value: x̂t

i ;
23 daily values: x̂t

i , . . . , x̂t−22
iTwo moving averages:

x̂t−1→t−11
i , x̂t−12→t−22

i

V (Three-month)
Eight daily values: x̂t

i , . . . , x̂t−7
i ;

96 daily values: x̂t
i , . . . , x̂t−95

iTen moving averages:
x̂t−8→t−18

i , . . . , x̂t−85→t−95
i

2.5. Study Metrics

To train the ANNs, we employ the commonly used mean squared error (MSE) as the
cost function. Further, to evaluate the performance of proposed networks, we utilize four
statistical metrics consisting of r2, Bias, RMSE-observations standard deviation ratio (RSR),
and the Nash–Sutcliffe Efficiency coefficient (NSE). Their detailed descriptions and formulas
can be found in Table 2, where S stands for the salinity, S̄ indicates the global average of the
salinity sequence in the dataset, t represents an arbitrary day, T is the total number of days
or samples in the dataset, and ANN and re f designate ANN-estimated and reference values
(in this case, DSM2 simulated daily salinity represented by EC), respectively. Among the
four evaluation metrics, r2 assesses the strength of the linear relationship between ANN
estimations and the reference salinity; percent bias reveals the extent to which the model
overestimates or underestimates the salinity; RSR standardizesthe root mean squared error
(RMSE) using the standard deviation of reference salinity; NSE quantifies the predictive
skill of ANN models in comparison with the mean of reference salinity. For metrics r2 and
NSE, values closer to 1 demonstrate better performance, whereas for percent bias and RSR,
values closer to 0 indicate better performance.

Table 2. Study Metrics.

Name Definition Formula

MSE Mean Squared Error MSE = ∑T
t=1 (S

t
re f − St

ANN)
2

r2 Squared Correlation Coefficient r2 = (
∑T

t=1 |(St
re f−Sre f )×(St

ANN−SANN)|
T×σre f×σANN

)
2

Bias Percent Bias Bias =
∑T

t=1(St
re f−St

ANN)

∑T
t=1 St

re f
× 100%

RSR RMSE-observations standard deviation
ratio RSR =

√
∑T

t=1 (St
re f−St

ANN)
2√

∑T
t=1 (St

re f−Sre f )
2

NSE Nash–Sutcliffe Efficiency coefficient NSE = 1− ∑T
t=1 (St

re f−St
ANN)

2

∑T
t=1 (St

re f−Sre f )
2

3. Results

This section presents three types of results consisting of sensitivity analysis results,
performance of the MLP and LSTM models proposed, and performance of two additional
deep-learning architectures. The sensitivity analysis aims to identify the appropriate
portion of the available data for training as well as the appropriate amount of antecedent
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input information, namely, memory to be used for training. The outcome of sensitivity
analysis is utilized to train the proposed MLP and LSTM models of which the results are
presented next. Finally, two additional deep-learning models are trained in the same way
as the MLP and LSTM models have been trained. Their performance is compared with that
of the original MLP and LSTM models developed.

3.1. Sensitivity Analysis
3.1.1. Sensitivity to Memory Length

Figure 6 shows the performance of MLP models with various memory lengths as
detailed in Table 1. Both the grouped (G) and ungrouped (UG) versions of the models are
examined based on the training data and test data. From the dataset, we randomly select
80% as the training set and use the remaining 20% as the test set.

Figure 6. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and NSE



Water 2022, 14, 2030 12 of 37

during the training (panels (a–d)) and test (panels (e–h)) phases of the grouped (G) and ungrouped
(UG) MLP models under six scenarios: baseline and five different memory lengths as presented in
Table 1. For a specific plot, the orange line represents the median value of the 28 metrics corresponding
to 28 study locations; the box containing the orange line is the interquartile range from the 25th
percentile up to the 75th percentile. The top bar designates the maximum metric value within 1.5
times the interquartile range above the 75th per percentile, while the bottom bar represents the
minimum metric values within 1.5 times the interquartile range below the 25th percentile. The open
circles designate outliers.

Incorporating any length of memory improves performance compared to the model
with no memory for both training and test datasets. As memory length increases, r2, RSR,
and NSE exhibit less variance and median values become closer to the ideal values. A
significant improvement is observed when memory is increased to a week (II and III). The
improved performance of case II over case III denotes that inclusion of all eight daily values
is better than a one-week moving average. Another significant performance increase is
observed when the memory is increased from one week to one month. The three-month
memory model slightly outperforms the one-month memory model. We can conclude that
1) increasing input memory length generally leads to more desirable model performance;
and 2) there is a notable improvement in using daily values over a moving average with
short (i.e., one week) memory lengths. Grouping stations does not necessarily improve the
model performance. On the contrary, the ungrouped models perform better with generally
higher r2 (panels (a) and (e)), lower RSR (panels (c) and (g)), higher NSE (panels (d) and
(h)), as well as less variation of all three metrics. Grouping results in less variations in
percent bias (panels (b) and (f)).

Figure 7 shows information similar to Figure 6, but for the LSTM models rather than
the MLP models. Additionally, for LSTM models, scenario III is identical to scenario II
and thus not shown in Figure 7. Looking at r2, RSR, and NSE, increasing memory length
leads to improved model performance for both the training and test datasets. This trend
is not present in percent bias as it is not a normalized metric. The absolute magnitudes
of the biases for all models are small, generally less than 4%. It is also clear that none
of the proposed scenarios outperforms the baseline which has the longest memory, even
though Scenarios IV (one-month memory) and V (three-month scenario) have comparable
results to the baseline. Nevertheless, even the model with the least memory (i.e., Scenario I)
performs reasonably well. The median values of test r2 and NSE are above 0.8. The median
test RSR is less than 0.5. The test bias is generally close to 0. Comparing the grouped
version of LSTM to the ungrouped LSTM, the former tends to be slightly superior to the
latter on average.

In brief, while both MLP and LSTM perform well even with limited antecedent data
(i.e., memory) fed into them during the training, increasing the memory length clearly
leads to improved model performance. The baseline MLP and LSTM models have the
longest memory (118 days) and generally have the most desirable performance. For
MLP, the ungrouped version tends to slightly outperform the grouped version. However,
for LSTM, the grouped version seems to have the edge on the ungrouped version. The
baseline memory length (118 days) will be adopted in all machine-learning models to be
discussed henceforth.

3.1.2. Sensitivity to Training Data Length

Both grouped and ungrouped versions of the MLP and LSTM models are trained using
randomly selected 80%, 70%, 60%, and 50% of the 30-year study dataset. Figure 8 shows the
corresponding metrics associated with salinity simulations from these scenarios. The figure
indicates that model performance drops as the training dataset length is reduced when
judged by r2, RSR, and NSE. For LSTM models, performance degrades steadily from 80%
to 60% scenarios. A noteworthy drop is observed at 50% training length, where outliers are
observed at greater magnitude and frequency. Nevertheless, in all scenarios examined, the
metrics are generally satisfactory. Between 80% and 70% scenarios, the changes in metrics
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are generally marginal or not notable. MLP is more sensitive to reducing training length
and generally shows greater variability compared to LSTM with a comparable training
length. Similar to what has been shown in Figures 6 and 7, the signal in percent bias is
less consistent compared to the other three metrics. The bias values in all scenarios are
generally low and satisfactory. Figure 8 further shows that, within LSTM models, grouping
consistently improves performance over ungrouped models. Within MLP models, the
opposite is observed. Grouping either degrades or does not change model performance.
Again, the percent bias metric does not clearly illustrate a consistent trend of performance
between LSTM, MLP, or their grouped or ungrouped variants as the biases in all cases are
very small. Those observations are in line with what has been illustrated in the memory
sensitivity analysis (Section 3.1.1).
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Figure 7. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and NSE
during the training (panels (a–d)) and test (panels (e–h)) phases of the grouped (G) and ungrouped
(UG) LSTM models under five scenarios: baseline and four different memory lengths as presented in
Table 1.
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Figure 8. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE during the training (panels (a–d)) and test (panels (e–h)) phases of the grouped (G) as well as
ungrouped (UG) MLP and LSTM models under four scenarios with varying lengths of training data:
50%, 60%, 70%, and 80% of all the data available.

In short, applying a larger portion of the available data to train MLP and LSTM models
generally yields improved model performance. Nonetheless, the models trained with less
data perform reasonably well. In particular, increasing the training dataset from 70% to
80% only leads to marginal or no improvements. Only results from models trained via 70%
of the study dataset will be discussed hereinafter.

3.2. Salinity Simulation Results

The capability of the proposed MLP and LSTM models in emulating DSM2 in salinity
simulation is examined from two aspects. Firstly, their performance quantified via the
above-mentioned statistical metrics at different ranges of salinity is scrutinized. Even
though it is important to capture the full range of salinity variations, high salinity is
typically more of a concern from a water resource management perspective. Relevant
water quality standards ([26]) normally prescribe a maximum salinity threshold that water
operations need to comply with. Additionally, salinity (represented by EC) simulations
from the proposed machine-learning models are compared to the target salinity directly.
As illustrated in Section 3.1, the grouped LSTM generally outperforms its ungrouped
counterpart, while the ungrouped MLP tends to yield better performance than the grouped
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MLP model. For the sake of simplicity, the current section focuses on the results from the
grouped LSTM (LSTM G) model. The corresponding results from the ungrouped MLP
model are presented in Figures A2 and A3 of Appendix C. Figure 9 shows the statistical
metrics r2, percent bias, RSR, and NSE for each study location calculated in three ranges of
salinity, low-middle (0–75%), high (75–95%), and extremely high (95–100%) range of EC.
A note on the symbology of the figure is that “yellow” for r2, NSE, and RSR reflects the
satisfactory performance of the simulation models. The dark red and dark blue reflect the
positive and negative percent bias, respectively, and the light color shows the near-ideal
percent bias. As a general trend, model performance is most satisfactory when the salinity is
in the low-middle range and decreases with higher salinity. Despite this trend, the metrics
are generally desirable even for the extremely high range of salinity. Most of the metrics
of extremely high salinity for location RSAC064 (location #4 in Figure 1) are distinctive
from their counterparts of other locations. Its r2 and NSE are the lowest while its RSR is the
highest, even though they are all acceptable. This is further investigated by looking at the
numerator and denominator components of the formulas for these metrics (Tables A1–A6
in Appendix D). It is evident that, compared to other locations, the high RSR and low
NSE of RSAC064 during the extremely high range of salinity are caused by a relatively
low variance in salinity at this location, while the low r2 can be attributed to the relatively
low numerator (differences between individual daily salinity and the overall mean value)
when calculating this metric. The bias of RSAC064 is actually very small (Figure 9) and
in line with the biases of all other locations. Another notable pattern is that the model
generally overestimates low-middle EC range of salinity (referring to the formula for bias
calculation in Table 2), and underestimates high and extremely high ranges of salinity for
most locations. The corresponding metrics of the ungrouped MLP model share similar
patterns but are slightly inferior (Figure A2 in Appendix C).

In addition to the statistical metrics, the specific daily salinity simulations from the
proposed models are compared to the corresponding target salinity. For demonstration
purposes, the results from the grouped LSTM model are presented at six selected locations
in the form of exceedance probability curves and time series plots. These locations include
three intake locations where water is pumped and transferred to various users to meet dif-
ferent needs: CCWD Rock Slough (RSL; location #28 in Figure 1), CVP Intake (CHDMC006;
location #23), CCFB Intake (CHSWP003; location #22). Two important salinity compliance
locations: Emmaton (RSAC092; location #1) and Jersey Point (RSAN018; location #5) are
also included. The last location is the Sacramento River at Port Chicago (RSAC064; location
#4) of which some of the metrics for an extremely high range of salinity are not as desirable
as their counterparts for other locations, as previously noted in Figure 9.

Figure 10 shows the corresponding exceedance probability curves and daily time series
plots comparing DSM2 emulation with process-based DSM2 outputs. The simulations
mimic the target salinity very well at all six locations across the full spectrum of exceedance
probabilities. There are only marginal discrepancies between them, especially the upper tail
(high salinity) at some locations. This is corroborated by the time series plots which show
that the simulations generally capture the temporal variations of the target salinity but
slightly underestimate the peak values. For RSAC064, though some statistical metrics of it
are inferior to those of other locations, visual inspection of the exceedance curve and time
series plot reveals that the grouped LSTM model can skillfully apprehend the temporal
pattern and magnitude of the reference salinity at this location. The relevant results of the
ungrouped MLP model (Figure A3 in Appendix C) are highly similar but slightly inferior.

We further investigate the results by comparing the group-wise performance of the
grouped LSTM model in Figure 11. It can be observed that the LSTM model delivers the
best test performance in the western Delta group, which is likely due to the fact that this
group is located the closest to the ocean and is more affected by seawater. Their salinity
level patterns appear to be more regular. In addition, the LSTM model achieves the worse
test performance on the northern Delta among the three groups. There are only 3 stations
in the northern Delta group, while there are 10 and 15 in the western and interior Delta
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groups, respectively. As a result, the amount of information provided by the training set for
northern Delta is much less than the other two groups, making the task more challenging.
Finally, estimating salinity levels for the interior Delta group is known as the most difficult
because their salinity levels can be affected by more variables, our LSTM model delivers
the worse test performance of the group compared to the western Delta group, as expected.
The box and whisker plots of group-wise performance of the other three proposed models,
namely, MLP, ResNet, and GRU, can be found in Figures A15–A17 in Appendix I. The other
three models present a similar pattern, except for ResNet, which estimates the interior
Delta group mildly better than the western Delta one, indicating that the interior Delta
group benefits more from the additional convolutional path attached to an MLP model to
compensate for the potential estimation residuals. These comparisons lead to the conclusion
that to accurately estimate the salinity levels for the interior Delta group, relying only on
the pre-processed, dimension-reduced input data may not be sufficient and more detailed
information from inputs is necessary.

Figure 9. Model (grouped LSTM) performance measured by (a) r2, (b) Percent Bias, (c) RSR, and (d)
NSE at different salinity ranges: low-middle range (lowest 75%), high range (75 to 95 percentile, and
extremely high range (highest 5%) at the study locations.

Based on the observations above, we consider the interior Delta group as the key
group and visualize the station-wise performance of this group in Figure 12. In general,
among the 14 stations in the interior Delta group, all the four proposed models appear to
show a poorer test performance on RSAN037 (location #16 in Figure 1), ROLD059 (location
#19), CHWSP003 (location #22), CHDMC006 (location #23), RSAN058 (location #25), MUP
(location #27), and RSL (location #28). According to Figure 1, all of them are located at the
central part of interior Delta, and hence are further away from the locations where input
variables are measured. We can observe the same patterns in the station-wise performance
comparison plots of proposed MLP, ResNet, and GRU models, which can be found in
Figures A18–A20 in Appendix J.

In short, the proposed MLP and LSTM models are able to solidly mimic DSM2-
simulated daily salinity across the study locations. The models tend to overestimate the
low-middle range of salinity but underestimate the high range of salinity. However, the
biases are generally small with the absolute amount being less than 4%. The grouped LSTM
model has an edge over the ungrouped MLP model.
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Figure 10. Exceedance probability curves and time series plots of salinity at six key study locations,
including (a) RSL, (b) CHDMC006, (c) CHSWP003, (d) RSAC064, (e) RSAC092 and (f) RSAN018,
comparing the grouped LSTM model with the process-based DSM2 outputs.

Figure 11. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and NSE
on stations belonging to the northern, interior, and western Delta groups during the training (panels
(a–d)) and test (panels (e–h)) phases of the grouped (G) LSTM model.
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Figure 12. Model (grouped LSTM) performance measured by (a) r2, (b) Percent Bias, (c) RSR, and (d)
NSE on training and test datasets at the study locations belonging to the Interior Delta group.

3.3. Performance of Additional Architectures

The simpler MLP and more complex LSTM models are shown to soundly emulate
DSM2 in salinity simulation (Section 3.2). The current sub-section further assesses the two
performance exploratory neural networks, GRU and ResNet, whose structural complexities
are in between those of the MLP and LSTM models. Figure 13 illustrates the comparison of
performance in terms of four study metrics. Each model architecture has its grouped (G)
and ungrouped (UG) versions. The figure reveals that all the proposed architectures have
satisfactory performance in both G and UG scenarios. The training results in Figure 13a–
d indicate that the GRU model performs best while the MLP model is outperformed
by the other three architectures, most likely because the MLP model has the simplest
complexity and thus the fewest parameters. Meanwhile, the test results in Figure 13e,f
suggest that LSTM and GRU models yield better results than MLP and ResNet models
in the corresponding G or UG scenarios, reflecting that recurrent-based architectures are
more suitable for the time series estimation task in this study. Moreover, the grouped GRU
model appears to overfit more to training data than the grouped LSTM model, which is
probably because it does not have an internal cell state to regularize the learned features.
In addition, as the proposed ResNet model has more parameters than the MLP model,
the ResNet model clearly overfits more as its training performance is better while its test
performance is poorer than MLP. Potential model overfitting will be further discussed in
the following section.

In addition, for all architectures except for the LSTM model, not grouping (UG) the
stations can lead to a slight performance improvement in comparison with grouping. This
is likely due to that with more stations (information) available, it is less likely for the
models to converge to a “bad” local minimum while the most complex LSTM model is less
impacted by the information fed into it.

In brief, the RNN-based architectures (LSTM and GRU) achieve better statistical
performance than MLP and ResNet models, which is most likely because the RNN-based
models are much more complex in terms of model sizes as well as their internal feature
extraction processes (Table A7 in Appendix E). The exploratory ResNet and GRU are more
prone to overfitting than the originally proposed MLP and LSTM, respectively. Among all
the models examined, the grouped LSTM model has the most desirable metrics.
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Figure 13. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and NSE
during the training (panels (a–d)) and test (panels (e–h)) phases of the originally proposed MLP and
LSTM models as well as two additional models (GRU and ResNet).

4. Discussion and Future Work

Overfitting and generalization are two crucial and related topics in the field of machine
learning. Machine-learning models are inherently prone to overfitting. Their generalization
ability largely depends on how their parameters are optimized using what portion of
the available training data. This section first discusses the overfitting potential of the
machine-learning models proposed in this study. Next, the impact of different training
data selection strategies on model performance is assessed. The section then discusses
the practical and scientific implications of the current study. Finally, a few future research
directions are proposed.

4.1. Overfitting

Theoretically speaking, complex machine-learning models can perform better on
training data than simpler ones as they have more flexibility to adjust their parameters
to fit the training data. However, an over-parameterized model with insufficient training
data may end up with overfitting, meaning its training performance is good while the
test performance is poor. This study proposed two types of machine-learning models, the
classic multi-layer perceptron (MLP) models that have been dominantly applied in relevant
previous studies as well as a deep-learning architecture: Long-Short-Term Memory (LSTM)
network. An enhanced version of MLP, the Residual Network (ResNet), and a lite version
of LSTM, the Gated Recurrent Unit (GRU), were also explored in this study. LSTM was the
most complex in terms of model structure using the number of parameters (Table A7 in
Appendix E) or model training time (Table A8 in Appendix F) as a proxy, followed by GRU
and then ResNet.

To reduce the overfitting potential when developing machine-learning models, a
common practice is to apply a two-step procedure where a subset of the data is used to
train the models while the remaining subset of data is utilized to monitor the performance of
the models being trained [44]. The current study adopted this procedure when developing
the proposed models. The early stopping strategy triggered by the loss function (i.e.,
mean squared error (MSE) in this case) of the test set during training was used to monitor
the training process. Specifically, when the test MSE did not decrease for 50 epochs, the
training would be stopped. The strategy has shown to reduce the overfitting potential of
the proposed models in this study. This was reflected in Figure 13 which illustrates that
the training metrics of the proposed models are better than the test metrics while the test
metrics themselves are very desirable.

To further assess the overfitting potential, we increase the width and depth of the
original MLP and LSTM models proposed. For demonstration purposes, we selected the
ungrouped MLP (MLP UG) model and grouped LSTM (LSTM G) model. As illustrated
in Figure A4 in Appendix G, to build a deeper MLP model, we added an additional fully
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connected layer between the two hidden layers; to build a wider MLP model, we doubled
the number of neurons of the two hidden layers. These additions increased the number
of MLP parameters roughly by 40% and 150% (Table A9 in Appendix G), respectively.
Similarly, as shown in Figure A5 in Appendix G, to build a deeper LSTM model, we added
an additional LSTM layer; to build a wider LSTM model, we doubled the number of
LSTM units of the LSTM layer. Those changes also largely increased the number of LSTM
parameters (Table A9 in Appendix G).

Figure 14 shows the results of the deeper and wider versions of the ungrouped
MLP along with their counterpart where the original architecture (in Figure 2) remains
unchanged. These enlarged models clearly outperform the original baseline model in both
training and test phases, with superior metrics for the study locations. This indicates that
increasing the depth or width of the MLP model does lead to improved model performance
while not necessarily increasing the overfitting potential. Comparing the deeper model
against the wider model, their associated metrics are very close to each other, suggesting
the depth and width of the architecture has similar impacts on model performance in
this case.

Figure 14. Performance comparison of the baseline MLP (ungrouped) versus its deeper and wider
versions illustrated in Figure A4.

Figure 15 shows the metrics of the deeper and wider versions of the grouped LSTM
model along with those of their base architecture (in Figure 3). On average, the enlarged
models have more desirable metrics during the training for most study locations. However,
their test metrics are close to the baseline test metrics. These observations suggest that
employing a most complex version of LSTM does not yield evidently better results while
increasing the likelihood of overfitting.
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Figure 15. Performance comparison of the baseline LSTM (grouped) versus its deeper and wider
versions illustrated in Figure A5.

In summary, the training process of the machine-learning models proposed in this
study is monitored via the test metrics. Early stopping is implemented to terminate the
training when the test metrics does not improve for a certain number of iterations. The
overfitting potential is thus low, as confirmed by the test metrics shown in Section 3.
Additional assessment of more complex models reveals that for the simpler MLP model,
there is room to improve model performance by increasing its structural complexity (i.e.,
by adding additional layers or neurons) while the overfitting potential is still low. For the
LSTM model which already has a complex structure, however, neither increasing the depth
nor width of the architecture would lead to notable improvement in model performance
but would tend to increase the overfitting potential.

4.2. Data Split

In line with relevant previous studies [20,21,23], the current study randomly split the
dataset into a training subset and a test subset. There are other ways of splitting the dataset
including chronological split and manual split. This sub-section compares the results of
these two methods against their counterparts in the random split method applied, aiming
to assess the impact of different data-split strategies on model performance.

Specifically, we select the grouped LSTM (LSTM G) model for demonstration purposes.
For chronological split, data from the last 21 years (which are more representative of the
current status of the Delta compared to the first 21 years) out of the available 30-year period
are selected to train the LSTM G model. For manual split, we manually pick 21 years out of
the study period based on the overall wetness of each year. There are five types of water
years defined in California to facilitate water resource management practices in the State:
wet, above normal, below normal, dry, and critical, with decreasing wetness quantified
by the amount of runoff from major water supply watersheds [22,45]. To ensure that the
training data contains representative years from each category, four years of each type are
selected from the study period, which yields 20 years of data. Given that there are more
wet years than any other type of year in the study period (referring to the data source
provided in Appendix H), a fifth wet year is added as the 21st year. These years chosen are
tabulated in Table A10 in Appendix H. Comparing these three methods, the chronological
selection uses a fixed period of data for training with no randomness involved. The manual
selection has increased randomness as there are no other constraints during the selection
process other than including evenly distributed types of water years to the maximum extent
possible. The random split is completely random with no constraining criteria to follow.
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Figure 16 illustrates the four study metrics of those three data-split methods. The
metrics associated with the chronological method and the manual method are generally
satisfactory and comparable to each other. As expected, the training metrics are better than
the test metrics for both methods. In comparison, the chronological method has slightly
better metrics during the training process. However, the manual method has comparable
or marginally better performance during the testing compared to the chronological method.
This indicates that the manual method is less prone to overfitting as its test performance is
closer to its training performance. In contrast, the metrics of the random split method are
considerably superior to those of the chronological and manual methods. Both training
and test r2 and NSE are near the perfect value 1 for most of the study locations. The bias
and RSR values are also very small. The variation range of each metric is also tight.

Figure 16. Training and test metrics of the grouped LSTM model under three data-split methods.

All in all, these observations suggest that training data splitting can play an important
role when developing machine-learning models. The methods with increasing randomness
tend to yield more robust models that have increased test performance.

4.3. Implications

The current study has important practical and scientific implications. From the prac-
tical point of view, this study demonstrates that the proposed machine-learning models
can faithfully emulate the operational process-based model DSM2 in salinity modeling.
The absolute bias is generally less than 4% and the correlation between them is close to the
perfect value of 1 for all study locations. In addition to accuracy, efficiency in the context of
computational burden is another strength of the proposed machine-learning models. Given
the same set of inputs, the trained machine-learning models take only a few seconds to
generate salinity simulations for even very long periods. In comparison, the running time
for the calibrated DSM2 model would be hours [21] and becomes longer as the simulation
period increases. Although the MTL machine-learning emulators proposed in the current
study need to be retrained when a major structural assumption has changed or when its
parent DSM2 model is recalibrated if new data become available or new model features
are developed [46–49], they usually require less than an hour to converge (Table A8 in
Appendix F). Once an emulator is appropriately trained for the range of expected con-
ditions, it can be used in applications that require quick turnaround time (e.g., real-time
forecasting) or long-term simulations of multiple planning scenarios (e.g., climate change,
operational change, etc.). It is worth noting that machine-learning models presented in this
study are trained with the process-based DSM2 outputs for historical conditions from 1990
to 2019, and both the process-based DSM2 and the machine-learning models are limited
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in the capability to extrapolate beyond the conditions they are calibrated/trained for. In
future work, we plan on training ANNs using augmented datasets that include a wider
range of possible boundary conditions for DSM2 and gate operation scenarios. We will
report the results in our future work.

From the scientific point of view, machine learning as a new scientific exploratory tool
has the potential to supplement and improve upon process-based models in terms of (a)
recognizing patterns or processes that are inadequately represented by the models due
to knowledge gaps or capability limitations; (b) identifying the appropriate amount (less
than the current data utilized to run process-based models) of data required to generate
results that are comparable to simulations of process-based models; and (c) bypassing
long-standing issues (e.g., equifinality, regionalization, scaling) associated with process-
based models, among other things. The current study exemplifies the feasibility and
capability of machine learning, particularly deep-learning architectures, in emulating an
operational process-based model, DSM2, in salinity simulation in the Delta for the first
time. This successful pioneering attempt lays the foundation for further testing of different
hypotheses on the adequacy and representativeness of the input requirement, structure,
and parameterization of DSM2 and other process-based models via the herein proposed
or new machine-learning techniques. For example, dimension reduction techniques (e.g.,
Principal Component Analysis) can be applied to identify the primary predictors for
salinity, further reducing the data requirement of machine-learning models. As another
example, machine-learning approaches can be applied to solve the partial differential
equations (PDEs) of DSM2 or other process-based models directly to circumvent the issues
with the conventional numerical solvers for these equations. There have been successful
applications on this front. Reference [50] proposed physics-informed neural networks with
specifically designed loss functions to solve nonlinear PDEs. During training, the neural
network learns to approximate the target function in the PDEs. Reference [51] designed
a convolutional LSTM network called “FiniteNet” to solve PDEs, which can capture the
temporal behavior with LSTM structure and the local spatial behavior by convolution.
Moreover, their training strategy mimics conventional PDE-solving algorithms. They claim
that the FiniteNet can reduce the root mean squared error by a factor of 2 to 3 compared
to conventional algorithms. Similarly, reference [52] proposed to discretize the PDEs and
train an ANN for grid-wise estimation. Generally speaking, the physics-informed neural
networks can learn the underlying physical laws embedded in the training data in an
interpretable way and are less prone to overfitting [50].

4.4. Future Work

Despite its practical and scientific values, the current study has a few limitations.
Firstly, DSM2 is capable of providing salinity simulations on 15-min time steps. While in
line with all previous relevant studies [19–23], the temporal scale of the current study is
daily. The coarse-scale daily salinity simulations are aggregated from the fine-scale DSM2
simulations by averaging. The sub-daily tidal variations in salinity which can be important
to certain salinity management practices are not captured. One follow-up study of the
current work is to emulate DSM2 in terms of simulating sub-daily salinity variations. In
that case, the 15-min salinity simulations from DSM2 will be used as the emulation target.
Input features and model structures for the finer-scale emulation will be explored. We
plan to use the same architectures explored in the current study but increase the output
layer size by a factor of 96 (daily to 15-min conversion). Our preliminary test shows that
the training time is expected to double, which is still reasonably efficient. Secondly, the
current study adopts early stopping and random split of training and testing datasets to
prevent the proposed machine-learning models from overfitting. In our follow-up work, we
plan to explore other regularization techniques including dropout and data augmentation.
Dropout is the process of randomly dropping some layer outputs in neural networks during
the training. It has been shown to reduce overfitting in many applications [53–55]. Data
augmentation is a set of techniques that artificially corrupt the training data to enlarge
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and diversity them to better represent extreme conditions and possible future conditions,
aiming to reduce overfitting and thus improve the generalization ability of the trained
neural networks. Traditionally, perturbation of training data (e.g., increase or decrease by a
certain percentage) and inclusion of synthetic but plausible operational scenarios have been
applied to augment the historical simulation scenarios [5,21]. In another follow-up work,
we will explore these perturbation techniques. Additional techniques including temporal
shifting and jittering will also be investigated.

Lastly, the current study focuses on DSM2-simulation salinity which is in obedience
to the advection–dispersion process defined in DSM2 and lacks noisy variations in real-
world salinity. Therefore, the machine-learning models proposed in the study are capable of
mimicking DSM2’s advection–dispersion procedure in generating salinity, but not the actual
salinity level in the field. To address this issue, we will conduct transfer learning [56,57] in
a follow-up study. Transfer learning is a popular machine-learning method where a model
gains knowledge from one task (i.e., DSM2-simulated salinity in this case) and applies the
knowledge to a different yet related task (i.e., observed salinity). Based on the basic salinity
response learned from the simulated dataset, we can augment the pre-trained model with
additional observed dataset to capture the additional information without starting from
scratch. As a result, the training time can be reduced and the transferred model is less
prone to overfitting. In this follow-up work, we consider that (1) DSM2 salinity simulations
after the augmentation mentioned above are large and general enough; and (2) the neural
networks trained on them are reliable and can effectively serve as generic models for
real-world salinity estimation. To be specific, we will reuse the intermediate layers straight
from the neural networks trained on DSM2 simulations while replacing the output layer
with a new randomly initialized fully connected layer. We will explore two different ways
of customizing the pre-trained models: (1) training the output layer only; during training,
all the hidden layers are fixed and directly use the extracted features for real-world salinity
emulation; and (2) end-to-end fine-tuning. During training, both the hidden layers and the
newly added output layer are optimized together for the new task, while a higher learning
rate is applied to the output layer as it is being trained from scratch while other layers are
pre-trained. The findings will be reported in a follow-up paper.

5. Conclusions

With the ever-increasing number of water management options, operational scenarios,
and climate conditions to be considered in the future, there is a growing need to emulate
complex process-based models using machine-learning techniques to facilitate the running
of a vast number of scenario permutations for screening purposes. This study exemplifies
the development and application of machine-learning-based emulators for a process-based
model, DSM2, in salinity estimation in the Sacramento-San Joaquin Delta of California.
The investigation shows that the emulators can efficiently and effectively mimic DSM2 in
salinity simulation across the Delta. The low computational requirement of the trained
emulators makes these emulators appealing tools to supplement the existing process-based
model in accurately estimating salinity to inform both real-time and long-term water
management decision-making.
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Appendix A. Data Sources

The data presented in this study are available online on Google Drive (accessed on 9
June 2022) on request from the corresponding author. The data are not publicly available
due to privacy.

Appendix B. LSTM Layer

Figure A1 shows the detailed architecture of a typical LSTM layer used in the LSTM
model in Figure 3, proposed in Section 2.3.2.

Figure A1. Details inside an LSTM layer.

Appendix C. Performance of the MLP (Ungrouped) Model

Figure A2. Model (ungrouped MLP) performance measured by (a) r2, (b) Percent Bias, (c) RSR, and
(d) NSE at different salinity ranges: low-middle range (lowest 75%), high range (75 to 95 percentile),
and extreme high range (highest 5%) at the study locations.

https://docs.google.com/spreadsheets/d/1AGfSNqEjc5LnVtBN70uVwmze6Y8YpkDP/edit?usp=sharing&ouid=116849707911164757819&rtpof=true&sd=true
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Figure A3. Exceedance probability curves and time series plots of salinity at six key study locations,
including (a) RSL, (b) CHDMC006, (c) CHSWP003, (d) RSAC064, (e) RSAC092 and (f) RSAN018,
comparing the ungrouped MLP model with the process-based DSM2 outputs.

Appendix D. Detailed Values for Metric Computation

Table A1. Values of ∑T
t=1 |(St

re f − Sre f )× (St
ANN − SANN)|, numerator in r2, for six key stations. St

re f
and St

ANN are linearly normalized according to Equation (2).

Key Station Name 0∼75% 75∼95% 95∼100%

RSL 53.74 3.72 3.33
CHDMC006 102.04 2.89 2.56
CHSWP003 108.83 3.67 2.43
RSAC064 438.44 4.77 0.47
RSAC092 29.18 18.39 4.07
RSAN018 86.00 9.41 2.38



Water 2022, 14, 2030 28 of 37

Table A2. Values of ∑T
t=1(S

t
re f − St

ANN) for six key stations. St
re f and St

ANN are linearly normalized
according to Equation (2).

Key Station Name 0∼75% 75∼95% 95∼100%

RSL −4.43 −14.04 −6.24
CHDMC006 −7.00 −12.39 −7.95
CHSWP003 −8.22 −14.25 −5.43
RSAC064 22.09 6.72 −2.31
RSAC092 −24.10 −13.12 −13.32
RSAN018 44.06 4.27 −8.91

Table A3. Values of ∑T
t=1 St

re f for six key stations. St
re f is linearly normalized according to Equation (2).

Key Station Name 0∼75% 75∼95% 95∼100%

RSL 1814.60 1007.23 345.78
CHDMC006 2720.57 1241.83 405.82
CHSWP003 2671.24 1281.44 411.13
RSAC064 2477.64 1686.43 490.15
RSAC092 560.01 840.55 369.71
RSAN018 1083.53 1093.23 393.68

Table A4. Values of MSE (∑T
t=1 (S

t
re f − St

ANN)
2) for six key stations. St

re f and St
ANN are linearly

normalized according to Equation (2).

Key Station Name 0∼75% 75∼95% 95∼100%

RSL 0.97 0.79 0.89
CHDMC006 0.98 0.66 0.76
CHSWP003 0.98 0.78 0.89
RSAC064 1.00 0.83 0.48
RSAC092 0.94 0.92 0.78
RSAN018 0.97 0.85 0.73

Table A5. Standard deviation of target (σre f ) for six key stations. St
re f is linearly normalized according

to Equation (2).

Key Station Name 0∼75% 75∼95% 95∼100%

RSL 0.08 0.04 0.08
CHDMC006 0.11 0.04 0.07
CHSWP003 0.12 0.04 0.07
RSAC064 0.23 0.05 0.03
RSAC092 0.06 0.09 0.09
RSAN018 0.10 0.07 0.07

Table A6. Standard deviation of LSTM G model predictions (σANN) for six key stations. St
ANN is

linearly normalized according to Equation (2).

Key Station Name 0∼75% 75∼95% 95∼100%

RSL 0.08 0.04 0.08
CHDMC006 0.11 0.04 0.07
CHSWP003 0.12 0.05 0.07
RSAC064 0.23 0.05 0.04
RSAC092 0.06 0.10 0.09
RSAN018 0.10 0.07 0.07
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Appendix E. Numbers of Parameters in Proposed Architectures

Table A7. Total numbers of parameters of each architecture proposed, including ungrouped version
(one model for 28 stations) and grouped version (three models, one for each station group).

Architecture Ungrouped Version Grouped Version
Northern Delta Interior Delta Western Delta

MLP 46,676 3651 19,810 14,971
LSTM 224,028 4203 60,270 38,643
GRU 170,268 3243 45,934 29,491

ResNet 79,604 7579 36,498 28,179

Appendix F. Training Time of Proposed Architectures

We train the models on the Google Colaboratory, a public platform, which provides
various GPUs for use. We count the training time of each model and summarize them
in Table A8. Note that the training time can be impacted by the randomness in model
initialization due to the early stopping strategy we used, and thus may differ considerably
from the data in Table A8, which are collected from a single test.

Table A8. Total training time (in minutes) of each architecture proposed, including ungrouped
version (one model for 28 stations) and grouped version (three models, one for each station group).

Architecture Ungrouped Version Grouped Version
Northern Delta Interior Delta Western Delta

MLP 3.7 4.0 2.6 2.5
LSTM 22.5 23.1 51.1 47.2
GRU 10.0 14.0 26.6 24.9

ResNet 2.0 2.2 2.5 2.5

Appendix G. Architecture of Deeper and Wider MLP and LSTM Networks

Figure A4 shows the detailed structures of deeper and wider MLP ANNs and Figure A5
shows the detailed structures of deeper and wider LSTM ANNs explored in Section 4.1.
Table A9 lists the total number of parameters in each model.

Figure A4. Proposed MLP ANN with increased (a) depth; (b) width.
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Figure A5. Proposed LSTM Network with increased (a) depth; (b) width. The three numbers in the
LSTM layers and the output layer correspond to proposed LSTM model for northern, interior, and
western Delta groups, respectively.

Table A9. Total numbers of parameters in the deeper and wider MLP model (ungrouped) and LSTM
network (grouped) tested in the study.

MLP, LSTM, Grouped Ver.
Ungrouped Ver. Northern Delta Interior Delta Western Delta

Deeper Structure 65,604 5943 97,342 61,567
Wider Structure 118,412 13,011 220,878 139,227

Appendix H. Years Manually Picked for Training

A detailed summary of Water Year Type can be found here. Table A10 lists the water
years picked for training in “Manual” case of Section 4.2.

Table A10. Years of data manually selected for training.

Water Year Type Year

Wet 1995, 1997, 1998, 2006, 2019
Above Normal 1993, 2000, 2003, 2005
Below Normal 2010, 2012, 2016, 2018

Dry 2001, 2002, 2009, 2013
Critical 1991, 1994, 2008, 2015

Appendix I. Detailed Group-Wise Performance of Each Experiment

Overall, according to Figures A6–A11, with a shorter input memory length, both our
proposed MLP and LSTM models show the best average test performance in the northern
Delta group and poorest performance in the interior Delta group. A shorter input memory
length indicates a less complex model with fewer parameters and hence lower potential of
overfitting. In this case, although the amount of information provided by the dataset of
the northern Delta group is less than the other groups, it seems to be sufficient to guide
such simpler MLP and LSTM models. For the stations in the interior (south) Delta group,
similar to what we concluded according to Figure 11, the span of their locations is the
largest and their salinity levels are influenced by more variables, including both seawater
and freshwater, making it harder to accurately estimate their salinity levels. Moreover,
the group-wise results in Figures A6–A11 reveal the fact that the salinity levels of stations
belonging to the interior Delta are influenced by the inputs in a longer term.

https://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST
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Figure A6. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the northern Delta group during the training (panels (a–d)) and test
(panels (e–h)) phases of the grouped MLP model under five scenarios: baseline and four different
memory lengths as presented in Table 1.

Figure A7. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the interior Delta group during the training (panels (a–d)) and test
(panels (e–h)) phases of the grouped (G) MLP model under five scenarios: baseline and four different
memory lengths as presented in Table 1.

Figure A8. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the western Delta group during the training (panels (a–d)) and test
(panels (e–h)) phases of the grouped (G) MLP model under five scenarios: baseline and four different
memory lengths as presented in Table 1.
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Figure A9. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and NSE
on stations belonging to the northern Delta group during the training (panels (a–d)) and test (panels
(e–h)) phases of the grouped (G) LSTM model under five scenarios: baseline and four different
memory lengths as presented in Table 1.

Figure A10. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the interior Delta group during the training (panels (a–d)) and test
(panels (e–h)) phases of the grouped (G) LSTM model under five scenarios: baseline and four different
memory lengths as presented in Table 1.

Figure A11. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the western Delta group during the training (panels (a–d)) and test
(panels (e–h)) phases of the grouped (G) LSTM model under five scenarios: baseline and four different
memory lengths as presented in Table 1.
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Figure A12. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the northern Delta group during the training (panels (a–d)) and test
(panels (e–h)) phases of the grouped (G) MLP and LSTM models under four scenarios with varying
lengths of training data: 50%, 60%, 70%, and 80% of all the data available.

Figure A13. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the interior Delta group during the training (panels (a–d)) and test
(panels (e–h)) phases of the grouped (G) MLP and LSTM models under four scenarios with varying
lengths of training data: 50%, 60%, 70%, and 80% of all the data available.

Figure A14. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the western Delta group during the training (panels (a–d)) and test
(panels (e–h)) phases of the grouped (G) MLP and LSTM models under four scenarios with varying
lengths of training data: 50%, 60%, 70%, and 80% of all the data available.
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Figure A15. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the northern, interior, and western Delta groups during the training
(panels (a–d)) and test (panels (e–h)) phases of the grouped (G) MLP model.

Figure A16. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the northern, interior, and western Delta groups during the training
(panels (a–d)) and test (panels (e–h)) phases of the grouped (G) ResNet model.

Figure A17. Box and whisker plots of four types of metrics consisting of r2, percent bias, RSR, and
NSE on stations belonging to the northern, interior, and western Delta groups during the training
(panels (a–d)) and test (panels (e–h)) phases of the grouped (G) GRU model.
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Appendix J. Detailed Station-Wise Performance of the Proposed MLP, ResNet, and
GRU models for Interior Delta

Figure A18. Model (grouped MLP) performance measured by (a) r2, (b) Percent Bias, (c) RSR, and (d)
NSE on training and test set at the study locations belonging to the interior Delta group

Figure A19. Model (grouped ResNet) performance measured by (a) r2, (b) Percent Bias, (c) RSR, and
(d) NSE on training and test set at the study locations belonging to the interior Delta group.

Figure A20. Model (grouped GRU) performance on training and test set at the study locations
belonging to the interior Delta group.

CNRA. Water Resilience Portfolio; California Natural Resources Agency: Sacramento,
CA, USA, 2020; p. 141.
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