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Abstract: The coffee processing industry produces toxic and low biodegradable effluent, which can
pollute water bodies. A pre-treatment study on coffee effluent using a dual-media biofilm reactor
(DM-BR) containing sand and Hexafilter (HEX) was conducted alongside a control biofilm reactor
(C-BR) containing sand media. The novelty of this study lies in the use of dual media in biofilm
reactor (DM-BR) for real coffee effluent treatment, where these processes were used individually in
previous studies. The performance of DM-BR and C-BR in treating coffee effluent were investigated at
different hydraulic retention times (HRTs), 24, 48 and 72 h, and the degrading bacteria were identified.
Both biofilm reactors were inoculated with a recycled paper mill-activated sludge and acclimatised
for 97 days. The DM-BR displayed the highest removal of chemical oxygen demand (COD) and
NH4

+-N at 47% and 38%, respectively, within 48 h of HRT, whereas colour and tannin–lignin reached
maximum average removal of 21% and 29%, respectively, at 24 h of HRT. The combination of sand
and HEX media in a system showed COD and NH4

+-N removal improvement at 48 h of HRT
and encouraged a variety of bacterial species growth. Bacterial characterisation analysis revealed
Proteobacteria to be dominant.

Keywords: dual-media biofilm reactor; coffee effluent; aerobic degradation; lignin –tannin removal;
cod removal

1. Introduction

Coffee processing consists primarily of two methods, specifically wet and dry meth-
ods, which are in contradiction with the complexity and quality of the resultant coffee [1].
The wet method is widely applied in coffee processing mills while it generates large
amounts of effluent from the de-pulping, fermentation and washing steps in the process [2].
The uncontrolled release of these effluents is of great concern, as they contain high con-
centrations of suspended organics such as sugars, pectins, proteins and polyphenols and
cause significant adverse effects on the receiving water bodies, such as the decreasing of
dissolved oxygen that may disturb the aquatic ecosystem [3].

The effluent generated from this industry is acidic (pH 3–5). Additionally, it con-
tains high concentrations of organic matter (1185–32,459 mg/L chemical oxygen demand
(COD), 3450–12,100 mg/L biochemical oxygen demand (BOD5), 7000–10,900 mg/L total
suspended solids (TSS) and nutrients (4.4–70 mg/L phosphorus, 37–279 mg/L nitrogen) [4].
Furthermore, the effluent produced by coffee processing plants contains highly toxic and
low biodegradability pollutants such as tannins, phenolic and alkaloids [5]. In addition
to characteristics such as high toxicity and low biodegradability, the colour of the coffee
effluent also poses a risk to the environment. Coffee wastewater has similar viscosity
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and colour as very diluted black coffee [6]. This is due to the presence of dark brown
pigments or melanoidins in these effluents, such as tannin and lignin. Once coffee effluent
is discharged into waterways, it obstructs the light due to its extremely dark brown colour,
thereby affecting photosynthesis. Moreover, eutrophication occurs as a result due to a high
nutrient load. Significant pollution problems are also created due to the foul smell of coffee
plant effluents [7]. These harmful effluents are released directly into the aquatic system,
and can cause major health issues in humans, are toxic to aquatic life, and result in natural
waters becoming unsuitable as potable water sources [8].

Thus, the current focus is to discover the most effective wastewater treatment method
using low-cost sustainable technology to save the environment from the threat posed by cof-
fee effluent [9]. In previous studies, various approaches were utilised to remove pollutants
from coffee effluents, including zero-valent iron (ZVI) treatment [10], the photo-Fenton
method [11], ultraviolet (UV) radiation catalysis (with ozone) [12], electro-oxidation [13],
membrane filtration [14,15], chemical coagulation and flocculation [16]. However, due to
the high footprint requirement, high energy consumption and huge operation and main-
tenance costs [17], most of their use is restrained and requires steady financial input. In
addition, to the best of our knowledge, lack of study using biological approaches for the
coffee effluent treatment. Laboratory scale granular sludge bed showed removal of COD
up to 94% from coffee wastewater. In addition, coffee biodegradability was demonstrated
in the laboratory using a complete stirred tank reactor, achieving >60% degradation under
anaerobic conditions. Due to the limited research on the biological treatment of coffee
effluent, there is still a need to develop an economically viable and eco-friendly technology
for handling such types of wastewaters.

Most of the water usage in coffee mills is unsupervised, especially the amount of water
used in the washing line. As a result, a superfluous amount of water is used during the
process. A previous study revealed that 87% of coffee mills in Costa Rica do not supervise
water usage aside from the amount of water used for the main process [18]. A coffee processing
mill in Penang, Malaysia, produces a substantial amount of coffee effluent originating from
the washing line. This coffee wastewater is highly acidic. Although these coffee effluents
are subjected to a rapid sand filtration system, they still contain high amounts of COD
and have high turbidity, more than the permissible levels as stated in Standard B of the
Environmental Quality (Industrial Effluent) Regulations 2009 [19].

Immobilization and growth of biomass as biofilms is proved to be a promising method
to retain slow-growing microorganisms in bioreactors that operate continuously [20]. Sup-
porting media provide a high surface area for biofilm development, which results in less
sensitivity to toxic compounds [21]. Previous studies showed that supporting media, e.g.,
polyethylene plastics, polyvinyl alcohol gels, sand, granular activated carbon, polymer
foam pads and polyurethane sponges, have been introduced to the biofilm process [22].
However, to our concern, data related to the use of multi-type supporting media in biofilm
reactor were scarce, as the concept of multi-type supporting media were considered new
compared to the single-type biofilm carrier.

Therefore, in this study, we developed a dual-media biofilm reactor (DM-BR) as a
pre-treatment system, containing a combination of submerged and floating media, sand
and a Hexafilter (HEX), respectively, to treat the coffee effluent. The novelty of this study
lies in the use of dual media in a biofilm reactor (DM-BR) for real coffee effluent treatment,
which has not been reported thus far. In terms of system design, the sand media in the
DM-BR serves as a filter preventing biomass washout and providing a large surface area
for faster biofilm development. Increased stability and performance in the DM-BR can
be achieved if the microbial consortium is retained in the reactor. As the sand media
on which microorganisms grow is fluidised state, the surface of the media available for
the development of microorganisms is quite large, which leads to a high concentration
of microorganisms. Because of a large concentration of microorganisms, DM-BR bears a
high potential for the removal of various parameters such as COD, nitrogen, colour, etc.
If DM-BR is operated properly, there is no need to provide a secondary setting tank, which
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leads to a saving in the total cost of the plant. In addition to sand media, HEX also acts as an
effective support media for the growth of slimy biofilm to increase the overall performance
of the system.

Thus, this biofilm reactor has the potential as a simple, reliable, inexpensive and
environmentally friendly alternative [22–25] compared to the existing conventional rapid
sand filters used in coffee processing mills. In addition to the DM-BR, a control biofilm
reactor (C-BR) containing sand media was developed. Both biofilm reactors were inoculated
with activated sludge from a recycled paper mill as a biofilm source to treat coffee effluent
pollutants. In this study, we investigated the performance of both biofilm reactors in
treating coffee effluent and subsequently identified the coffee effluent degrading bacteria.

2. Materials and Methods
2.1. Sampling of Coffee Industry Effluent

Coffee industry effluent (CIE) was sampled from a coffee processing factory located in
Tasek Gelugor, Penang, Malaysia. The CIE was produced from the washing wastewater
and water from the scrubber process. The effluent was preserved in a cool room at 4 ◦C
prior to use. The characteristics of the coffee effluents are shown in Table 1. The CIE
had high amounts of COD, NH4

+-N and colour. The CIE consisted of macromolecules of
tannin–lignin, which contributed to the colour of the effluent. The CIE was acidic with a pH
of 4.6. The COD, NH4

+-N, pH, MLSS and colour levels in the CIE exceeded the Standard
B regulated by the Department of Environment Malaysia. Due to the high strength of
the CIE, with a COD concentration of greater than 15,000 mg/L, the effluent was diluted
with distilled water in accordance with a dilution factor of 0.1 (v/v) to avoid the biological
aerobic treatment being affected [26] and to simulate as a primary treated CIE prior to
treatment using biofilms process.

Table 1. Coffee effluent characteristics.

Parameter
Coffee Effluent Mean Values

Standard B (Federal Subsidiary Legislation Malaysia 2009)
Raw 10% Coffee + 90% Water

COD (mg/L) 15,700 900–1050 200
NH4

+-N (mg/L) 93 4.5–8.5 20
pH 4.6 4.5 5.5–9.0
MLSS (mg/L) 123 <10 100
MLVSS (mg/L) 111 - -
Turbidity (NTU) 74.7 15–20 -
Colour (ADMI) 1867 1020–1100 200
Tanin–Lignin (mg/L) 510 35–40 -

2.2. Bacterial Inoculation and Acclimatisation

Activated sludge from an industrial wastewater treatment plant located in Kajang,
Malaysia, was used as a bacterial seed. Approximately 20% of the activated sludge with
an initially mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended
solids (MLVSS) for DM-BR and C-BR ranged from 100–200 mg/L and 90–150 mg/L,
respectively. Bacterial acclimatisation and development were conducted for DM-BR and
C-BR using synthetic wastewater for 97 days (3 months). The reactors were initially fed
with 3 L of synthetic wastewater containing glucose (C6H12O6, 200 mg/L) and ammonium
chloride (NH4Cl, 40 mg/L). Without any addition of trace elements, only C6H12O6 and
NH4Cl as a carbon and nutrient source, respectively, were supplied to promote the growth
and propagation of the bacteria. Concentrations of C6H12O6 and NH4Cl were increased
gradually to 500–1000 mg/L and 50–90 mg/L, respectively. The acclimatisation was
conducted at an HRT of 24 h with DO and pH values maintained at 2–7 mg/L and pH 6–8,
respectively. During the acclimatisation, the main wastewater quality parameters such as
COD, NH4

+-N, pH, DO, MLSS and MLVSS were monitored.
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2.3. Configuration of the Dual-Media Biofilm Reactor
2.3.1. Biofilm Carriers

HEX was made from polyethene, with a diameter and height of 25 mm and 12 mm,
respectively. It consisted of a large surface and specific surface area of 1460 mm2 and
320 m2/m3, respectively. The specific gravity of 1.03 allowed for it to float on the effluent
surface. The HEX that floats and is continuously in motion inside CIE acts as a biofilm
attachment site due to its large surface area. Meanwhile, the sand with a granule size of
0.5–1.18 mm was used as fixed carriers.

2.3.2. Setup and Operation of the Biofilm Reactors

Two laboratory reactors were fabricated using Plexiglas with a dimension of 19 cm
(D) × 25 cm (H), as shown in Figure 1. Figure 1a shows DM-BR filled with sand (fixed
carrier) + HEX (moving carrier), while Figure 1b shows C-BR filled with sand (fixed carrier).
The working volume of both reactors was 3 L. The sand carriers were filled at the bottom of
both reactors to a height of 8 cm with a filling ratio of 30%. The HEX (110 pieces) was filled
into another reactor at 25% of the reactor working volume. Air distributors were placed at
the bottom of the reactors, and aeration was supplied using an aquarium pump (Model BB
8000, Aqualeisure, China) to ensure adequate oxygen supply for bacterial aerobic activity.
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Figure 1. Schematic diagram of (a) DM-BR and (b) C-BR.

Both reactors were operated in a batch mode with a sequencing method of 0.25 h filling,
23–71 h reaction, 0.25 h settling and 0.5 h discharging. The discharged effluent from both
reactors was 80%. The HRT varied from 24 to 72 h with loading rates of 13.5–40.6 mg/L/h.
The performance of both reactors in treating CIE under various HRTs was monitored for
76 days, excluding the acclimatisation period. The acidic CIE was neutralised with sodium
carbonate to avoid inhibiting bacterial growth. Due to the high strength of the CIE, the
effluent was diluted at a ratio of 1:9 (CIE–water). The treatment was started with an HRT
of 24 h (Days 97–118), which was then increased to an HRT of 48 h (Days 119–140) and 72 h
(Days 141–173). The treated CIE was sampled at the end of each HRT prior to analysis.

2.4. Wastewater Quality Parameter Analysis

Effluent samples from both reactors were collected in plastic bottles at the end of
each HRT. A glass microfibre filter (0.45 µm pore size; Whatman, Florham Park, NJ, USA)
was used to filter the excessive suspended solids via a gravimetric method. The samples
used for tannin–lignin concentration were examined using the Tyrosine Method (Method
8193, HACH, Loveland, CO, USA). Samples for COD measurement were digested in a
digestion reactor (Method 8000, HACH). NH4

+-N concentrations were analysed via the
Nesslerization method (Method 8038, HACH). Colour was examined using the ADMI
Weighted Ordinate Method (Method 10048, HACH). Measurements of tannin–lignin, COD,
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NH4
+-N and colour were performed using a HACH DR6000 Spectrophotometer (Loveland,

CO, USA). MLSS and MLVSS in the suspension and attached to the carriers were examined
via the gravimetric method and were dried at 105 ◦C and 550 ◦C, respectively [27]. pH was
measured using a pH meter (Metrohm 827, Herisau, Switzerland) while DO levels were
determined using a DO meter (Model YSI 550A, Yellow Springs, Ohio, USA). Samples for
turbidity concentrations were evaluated using a turbidity meter (HACH 2100AN, Loveland,
CO, USA). The equation used to calculate the removal efficiency (%) in the experiments was:

R (%) =
C0 − C

C0
× 100 (1)

where C0 and C are the initial and final concentrations (mg/L), respectively.

2.5. Bacterial Analysis
2.5.1. Biofilm Observation under Scanning Electron Microscopy

The activated sludge suspension and biofilm formation on the sand and HEX surfaces
were observed under scanning electron microscopy (SEM, Zeiss Supra 55VP, Germany).
The samples were fixed with 4% glutaraldehyde for 12–24 h at 4 ◦C, followed by washing
three times with 0.1 M phosphate buffer (10 min each). The samples were then washed with
35%, 50%, 75% and 95% acetone, and each washing lasted approximately 10 min. Finally,
the samples were washed three times with 100% acetone (approximately 10 min each). The
samples were subsequently transferred to a Critical Point Dryer for 30 min before being
placed onto a stub using two-sided bands or colloidal silver. Finally, the samples were
gold-plated with sputter plugs prior to being viewed in the SEM.

2.5.2. Microbial Cell Number

The microbial cell number was determined for biomass suspension at the end of
acclimatisation (day 97) and treatment (day 173). It was determined using the plate count
method by spreading the biomass suspension at a few serial dilutions [28,29]. The estima-
tion number of viable bacteria on the plate was presented as colony-forming unit (CFU)
per mL sample.

2.5.3. Microbial Community Analysis

The microbial community structure was analysed via DNA extraction, PCR amplifi-
cation, PCR clean-up and quantification, and Illumina sequencing. Microbial DNA was
extracted from the biofilm sample taken from the HEX using a FavorPrep™ Soil DNA Isola-
tion Mini Kit (Favorgen, Taipei, Taiwan) according to the manufacturer’s protocol. During
the PCR amplification process, the regions of bacterial DNA from V3 to V4 were amplified
at 95 ◦C for 3 min followed by 25 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s and 72 ◦C for 5 min
using the following primer sequences:16S Amplicon PCR Forward Primer = 5’ TCGTCG-
GCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG and 16SAmpli-
con PCR Reverse Primer = 3’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC-
TACHVGGGTATCTAATCC. PCR reactions were performed in triplicate and involved 25
µL of 2 × KAPA Hifi HotStart ReadyMix (12.5 µL), 5 µL amplicon PCR forward primer
of each primer (1 µM), 5 µL amplicon PCR forward primer of each primer (1 µM), and 2.5
µL of microbial DNA (5 ng/µL). The amplified DNA was purified using PCR clean-up
kits containing 10 mM Tris at pH 8.5, 80% ethanol and AMPure XP beads according to the
manufacturer’s protocol. A clean-up step followed to purify the 16S V3 and V4 amplicons
from the free primers and primer-dimer species. Lastly, in the Illumina sequencing, sample
libraries were pooled in equimolar concentrations and were paired-end sequenced using
the Illumina MiSeq platform according to standard protocols.
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Chao and ACE analysis were used to estimate the number of species in a biomass
sample. Chao was calculated using Equation (2) as follows:

Sest = Sobs +
f1( f1 − 1)
2( f2 + 1)

(2)

where, Sest = estimated richness, Sobs = observed number of species, f1 = number of
operational taxonomic units (OTUs) with only one sequence and f2 = number of OTUs
with only two sequences [30].

Shannon, Simpson and Fisher analyses were utilised to show the diversity index of
the microbial community in which the index increased as the richness and evenness of
the microbial community increased. Equations (3)–(5) were used to calculate the Shannon,
Simpson and Fisher diversity indices, respectively.

H′ =
R

∑
i=1

pi ln pi (3)

D = ∑
( n

N

)2
(4)

S = a ln
(

1 +
n
a

)
(5)

where R = number of observed OTUs, pi = proportion of species, i = relative to the total
number of species, n = total number of organisms of a particular species, N = total number
of organisms of all species, S = number of taxa and a = Fisher’s alpha [31].

3. Results and Discussion
3.1. Bacterial Enhancement and Acclimatisation

Enhancement and acclimatisation of bacteria were conducted for 3 months. As sum-
marised in Table 2, during the initial acclimatisation (days 0–14), the reactors were fed
with 200 mg/L COD and 40 mg/L NH4

+-N. The bacteria consumed all the organic carbon
(COD = 100% removal) but not much of the nitrogen (NH4

+-N = 12.4% removal). Between
days 16 and 64, the COD concentration was increased to 500 mg/L to ensure the bacteria
had sufficient organic carbon supply, while the concentration of NH4

+-N was maintained.
In accordance with the aforementioned concentration of COD and NH4

+-N, the removal
of COD decreased to 88.8%; meanwhile, NH4

+-N removal recorded was only less than
5%. Low removal of NH4

+-N was observed via the accumulation of a black layer in the
reactor, which contained a sulphite precipitate that disrupted the nitrogen consumption by
the bacteria [32]. The use of ammonium sulphate during the initial acclimatisation caused
this issue as sulphides are generated from dissimilatory sulphate or sulphur reduction.
Hence, the nitrogen source was replaced with NH4CI after day 64. From day 65 to 77, the
COD removal increased to 91.6%, while NH4

+-N also drastically increased to 38.8%. By
increasing the concentration of glucose and NH4CI at the end of the acclimatisation period
(days 78–97), the removal of COD and NH4

+-N for both reactors was approximately 90%
and 40%, respectively. The MLSS and MLVSS at the end of the acclimatisation period for
both reactors increased to 1750–1900 mg/L and 1650–1680 mg/L, respectively. The pH and
DO were observed in the range of 6–9 and 6–7 mg/L, respectively.
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Table 2. Removal of COD and NH4
+-N in DM-BR and C-BR throughout acclimatisation.

Day
Influent (mg/L)

Average Removal (%)

C-BR DM-BR

COD NH4
+-N COD NH4

+-N COD NH4
+-N

0–15 200 40 100 12.4 100 10
16–64 500 40 88.8 4.4 88.6 1.2
65–77 600–800 50–70 91.6 38.8 92.3 34.6
78–97 1000 80–90 89.6 39.7 89.3 44.2

3.2. Performance of the Biofilm Reactors
3.2.1. Removal of Tannin–Lignin

The dark brown colour of the CIE is due to the organic recalcitrant compound of
tannin and lignin. The performance of tannin–lignin removal is shown in Figure 2. The
compound showed a slow degradation rate and could be harmful to the environment. The
average tannin–lignin removal at an HRT of 24 h was 28.8% (Table 3), with an average
effluent concentration of 25.8 mg/L. At an HRT of 48 h, the average tannin–lignin removal
decreased slightly to 26.4% (Table 3), with an average effluent concentration of 28.6 mg/L.
Meanwhile, at an HRT of 72 h, the removal of tannin–lignin was similar to an HRT of 24
and 48 h. This finding suggests that an HRT from 24 to 72 h insignificantly affected tannin–
lignin removal in the dark brown CIE. Tannin–lignin compounds have complex molecules
with a high molecular weight and are persistent towards degradation due to the presence
of carbon-to-carbon linkage of biphenyl type and other linkages in the molecule [33].
The degradation of tannin–lignin has also been studied in pulp and paper wastewater
using granular sludge technology, where the removal decreased at high concentrations [34].
Research conducted by Diez et al. [35] on kraft mill wastewater treatment using activated
sludge showed that at an HRT of 10 h, the removal of tannin–lignin was in the range of
25–48%. Another study on CIE reported that lignin removal remained unchanged with
a range of 9–11% for mesophilic and thermophilic anaerobic digesters [36]. The findings
of this study revealed that the removal of high molecular weight compounds such as
tannin–lignin is very challenging with the use of aerobic biofilms or anaerobic treatments.

Table 3. Summary of CIE treatment performance by DM-BR and C-BR.

Reactor Day HRT (h)
Average Removal (%)

Tannin–Lignin a COD a NH4
+-N a Colour a Turbidity a

DM-BR
97–118 24 28.8 ± 18.5 40.9 ± 10.9 10.4 ± 1.2 21.1 ± 19.2 21.2 ± 23.1
119–140 48 26.4 ± 9.6 47.0 ± 4.2 37.6 ± 0.6 6.7 ± 2.1 32.7 ± 12.3
141–173 72 26.3 ± 7.9 44.2 ± 5.2 12.3 ± 2.9 5.4 ± 4.9 23.8 ± 18.7

C-BR 97–118 24 23.3 ± 15.7 37.9 ± 9.2 0 10.0 ± 1.6 14.0 ± 18.9
119–140 48 24.0 ± 16.9 42.2 ± 3.7 23.4 ± 19.7 4.7 ± 3.6 46.0 ± 21.4
141–173 72 25.4 ± 8.4 38.7 ± 16.9 12.5 ± 19.2 4.6 ± 4.3 32.8 ± 25.2

a Values are means ± standard deviations based on total samples collected throughout treatment periods (days).
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3.2.2. Removal of COD and NH4
+-N

Figure 3a shows the performance of COD removal for HRTs of 24 to 72 h. The average
influent of COD in diluted CIE was 969.8 mg/L. No significant change in COD removal
was observed with an increase in HRT. At an HRT of 24 h, 40.9% COD removal was
achieved (Table 3) with an average effluent concentration of 585.8 mg/L. An increase in
the HRT to 48 h showed a slight increase in the removal with an average removal of 47%
(Table 3) with an average effluent concentration of 535 mg/L, while at an HRT of 72 h
with a lower feeding concentration, the removal was 44.2% (Table 3). The performance of
DM-BR dropped compared to during the acclimatisation stage. This suggests that organic
compounds in coffee effluent are refractory toward aerobic biofilm degradation. Figure 3b
shows the removal performance of NH4

+-N. As shown in Table 3, the most effective HRT
for NH4

+-N removal was achieved at 48 h, with removal at 37.6%. At HRTs of 24 and 72 h,
the removal was 10.4% and 12.3%, respectively. A C/N ratio of 160 contributed to the
imbalanced treatment performance, while previous research mentions a lower C/N ratio of
137 for bioreactors [37]. A high C/N ratio might result in lower degradation performance
since organic materials (especially carbon) are consumed and converted into cell biomass
under a specific ratio [38].

Extensive previous studies revealed that the quality of existing carbon sources in
real industrial effluents was poor and could not be consumed by microorganisms, which
further worsened the degradation process. There was greater removal of COD and NH4

+-
N during the acclimatisation stage due to the availability of an easily degraded carbon
source. In contrast, real CIE contains degradable and non-degradable carbon sources, where
non-degradable carbon sources contribute to the low removal performance of the DM-BR.

3.2.3. Removal of Colour and Turbidity

Figure 4a shows the average removal of colour. Colour due to the presence of lignin
or polymerised tannins in the CIE showed a poor biodegradable rate as the HRT increased.
The highest removal was achieved at an HRT of 24 h with an average removal of 21.1%
(Table 3); however, the reactor did not function well to remove the colour even when the
HRT was increased to 48 and 72 h. The colour, which was contributed to by the presence of
the macromolecules of tannin–lignin, required multiple physical and chemical treatments
to achieve high removal [39]. The trend of colour removal was correlated with the tannin–
lignin concentration due to the carbon-carbon double bond of tannin–lignin undergoing
cleavage and degrading to CO2 and H2O, thus simultaneously removing the colour in
the coffee effluent [7]. Figure 4b shows the turbidity removal throughout the treatment
period. The influent turbidity concentration ranged from 14 to 30 NTU. It was found that
the removal of the turbidity was in the range of 21.2–23.8%, with the highest removal
achieved at 48 h HRT with 32.7% removal.

3.3. Monitoring of Operational Parameters

DO is an important factor in the biological degradation process for both COD and
NH4

+-N removal. Throughout the study, the average DO concentration in the influent
was 3.5 to 4.5 mg/L and was 5 to 6 mg/L in the effluent. In addition, the average pH
value was from 6 to 7. The DM-BR retained bacterial cells in a biofilm that adhered to the
sand and HEX media surface as well as being suspended in the reactor. Throughout the
treatment phase, the average MLSS and MLVSS ranged from 400 to 2700 mg/L and from
400 to 2300 mg/L, respectively. The mixed liquor increased from time to time until the end
of the treatment, indicating the enhancement of microbial cells. The high surface area of the
hybrid media (sand and HEX) in the reactor allowed for ease of adherence for the bacteria.
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3.4. Microbial Community Structure and Analysis
3.4.1. Microbial Observation via SEM

SEM analysis was conducted after the treatment for samples of biomass attached on
HEX and sand and suspended biomass, as shown in Figure 5. As can be seen from the
micrograph, bacterial biofilms are complex consortia of cells and extracellular polymeric
substances (EPS). The micrographs results were used to classify the bacteria as coccus-
shaped, rod-shaped and EPS matrixes. At the end of the treatment, these consortia of
microorganisms formed complex granular and rough surfaces where the rough surfaces
increased the number of effective sites for pollutant removal. As portrayed in the micro-
graphs, the biofilms formed a layered structure (growth gradient). This occurred because
of diffusional substrate concentration gradients. Fast-growing bacteria (heterotrophic)
tend to grow outside the biofilm matrix, while low-growing bacteria (autotrophic) de-
velop inside the biofilm so that it remains protected from the external sheer force, which
could lead to detachment [40]. Coccus-shaped bacteria were rarely observed compared
to rod-shaped bacteria, which were observed inside the biofilm matrix, indicating that
coccus-shaped bacteria were autotrophic and were responsible for the removal of NH4

+-N
from the coffee effluent.
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3.4.2. Microbial Cell Number

The total bacteria count at the end of the acclimatisation period before treatment
(day 97) and after treatment (day 173) is shown in Figure 6. Prodigious colonies were
observed for HEX at the end of the treatment. HEX was the most effective media for
biofilm growth as it had the greatest number of bacterial cells (1.42 × 108 CFU/mL)
compared to any other samples (after treatment) due to a large active surface area for
biofilm development. The number of bacterial cells on the sand and in suspension in the
coffee wastewater decreased at the end of the treatment. A similar trend was observed for
the total cell number in the reactor. This could be due to the toxicity effect of the real coffee
effluent on the bacterial cells.
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Figure 6. Total bacterial count for samples before (day 97) and after treatment (day 173).

3.4.3. Microbial Community Diversity

Metagenomic analysis of the microbial community revealed a diverse microbial pres-
ence in the reactor. Table 4 depicts the diversity parameters, including Chao, ACE, Shannon,
Simpson and Fisher indices. All diversity parameters excluding Fisher’s index showed
the richness of the microbial community compared to the C-BR in which sand was utilised
as the sole biofilm carrier. The Chao1 and ACE values were 3051 and 24, respectively.
Meanwhile, the diversity indices represented by Shannon and Simpson were 24.1 and 6.0,
respectively. The richness of diversity in the DM-BR containing the sand + HEX indicates
that a high surface area for attachment led to the richness of the microbial community, thus
allowing for the high efficiency of CIE treatment.

Table 4. The diversity of microbial in the DM-BR.

Diversity Parameters DM-BR C-BR

OTU 3641 3359
Chao1 3051 2941
ACE 24 21

Shannon 24.1 22.8
Simpson 6.01 5.9

Fisher 801 99

An analysis of the microbial community which adhered to the sand + HEX during the
CIE treatment revealed a host of organisms that were classified into phylum and genus, as
shown in Figure 7. Figure 7a depicts 12 phyla where Proteobacteria was the most dominant
phylum for the DM-BR. Figure 7a also shows that both reactors were dominated by the
phyla Proteobacteria, Planctomycetes, Verrucomicrobia, Actinobacteria, Acidobacteria, Chlamydiae
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and Spirochaetes. Figure 7b shows the genus level of the microbial community. The most
abundant genera in the C-BR were Treponema, Devosia, Candidatus Rhabdochlamydia, Geothrix,
Mycobacterium and Rhodoplanes. The most abundant genera in the DM-BR consisted of
Opitutus, Dok59, Burkholderia, Nitrospira, Mycobacterium, Rhodoplanes and Gemmatimonas.
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It has been reported that the phylum Proteobacteria contains lignin-degrading groups [41].
An additional study reported that Actinobacteria are also lignin-degrading organisms [42,43].
This information supported the performance of lignin–tannin removal in both reactors
during this study, where the genera of the Proteobacteria (Dok59, Burkholderia, Rhodoplanes,
Devosia and Dechloromonas) and the Actinobacteria (Microbacterium, Salinibacterium, Mycobac-
terium, Rhodococcus and Solirubrobacter) were responsible for the degradation. In addition,
the presence of the genus Nitrospira in the DM-BR increased the removal of NH4

+-N com-
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pared to the C-BR. This genus has previously been shown to perform well in the oxidation
of NH4

+-N [44,45].

4. Conclusions

In this study, real coffee effluent was successfully treated using a DM-BR containing
sand and HEX media under aerobic conditions. Coffee effluent is a high-strength effluent
that contains non-degradable organic compounds under aerobic conditions. Changes in
HRT had no significant effect on COD removal but did influence the removal of NH4

+-N,
colour and turbidity. The combination of HEX and sand media in the DM-BR showed
improved removal performance at an HRT of 48 h compared to the sole application of
sand media in the C-BR. The combination of media also encouraged the growth of various
species of bacteria, with the majority belonging to the Proteobacteria.
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