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Abstract: The conventional drinking water treatment process involves disinfecting water at the final
stage of treatment to ensure water is microbiologically safe at customer taps. Monochloramine is a
popular disinfectant used in many water distribution systems (WDSs) worldwide. Understanding the
factors that impact monochloramine decay in the WDS is critical for maintaining disinfection at the
customer tap. While monochloramine residue moves through a WDS, it decays via several pathways
including chemical, microbiological, and wall decay processes. The decay profile in these pathways is
often site-specific and depends on various factors including treated water characteristics. In a water
quality network model, the decay of a chemical species is often modelled using two parameters that
represent bulk and wall decay kinetics. Typical bulk decay characteristics of monochloramine for
a specific WDS can be easily established in the laboratory using grab sample tests, while in a real
situation, wall decay is difficult to quantify. In this study, we compared two different approaches
to model monochloramine decay in a WDS. In the first approach, the wall decay parameter was
quantified using a parameter optimisation technique with monochloramine concentrations at different
network locations simulated using a water quality network model. In the second approach, a data
analytics model was developed using a machine learning algorithm. For both approaches, the model
predicted monochloramine concentrations closely matched the observed data. Our study suggests
that the data analytics model has a relatively higher accuracy in predicting monochloramine residual
concentrations in a WDS.

Keywords: monochloramine decay modelling; EPANET; water quality data analytics model; support
vector regression

1. Introduction

Disinfection is a vital part of the drinking water treatment process to render water of
potable quality and to minimise the occurrence of many waterborne diseases. Monochlo-
ramine (NH2Cl), is the most widely used drinking water disinfectant after chlorine (Cl2).
Its usage in a water distribution system (WDS) substantially minimises the concentrations
of regulated disinfection by-products (DBPs) in water [1,2]. Under typical water conditions,
monochloramine is more stable than chlorine, hence, it is preferable in WDS where a
high hydraulic retention time (HRT) is encountered. Drinking water utilities optimise the
disinfection process to maximise the disinfectant stability. Still, monochloramine decays
via several pathways such as an auto-decomposition, reaction with natural organic matter
(NOM), reactions with nitrite (NO−2 ) and bromide (Br−), microbiological reactions, and wall
reactions [1–6]. Water quality modelling helps water utilities to achieve more technically
sound and sustainable solutions for water quality management [7]. In a process-based
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water quality modelling perspective, monochloramine decay is sometimes modelled as the
sum of bulk decay and wall decay, assuming a zero or first-order decay kinetics [8–10]. Bulk
decay is caused by the disinfectant-demanding species present in bulk water while wall
decay is a result of the disinfectant-demanding species present at the surface, including
biofilm and corrosion products. Bulk decay usually dominates where the volume-to-surface
ratio is high [9,11]. Moreover, sediments can accumulate in pipe and service reservoirs
which can have a high disinfectant demand [11]. Several factors including the pH, temper-
ature, NOM concentration, and composition of surface materials can affect the bulk and
wall decay processes [6,11,12]. To prevent bacterial regrowth in a WDS, a certain level of
monochloramine residual needs to be maintained throughout the WDS [1,8,13].

A process-based water quality model requires both a hydraulic module and a water
quality module. Such models are highly dependent on the reasonably accurate simulation
of the underlying hydraulic conditions [11]. This is because water quality parameters
such as water age, reaction time, mixing conditions, and transport to and from the sur-
face are governed by various hydraulic conditions. The hydraulic model is calibrated to
ensure it reproduces the observed behaviour in the real system [14,15]. The calibration
is done by formulating an optimisation problem and minimising it by adjusting several
parameters such as pipe roughness, demand patterns, leakage parameters, and control
rules for pumps, valves, and tanks [14,15]. Successful prediction of water quality using a
well-calibrated hydraulic model depends on accurately defining the bulk and wall reaction
characteristics. The bulk decay coefficient can be accurately determined from controlled
laboratory experiments. However, wall decay is largely uncharacterised because of the
complexities involved in its determination [6,8]. There are few studies that have reported
the wall decay coefficient, which is very site- and material-specific. Moreover, the majority
of these studies were conducted in either pilot distribution systems (PDS) or controlled
laboratory experiments, hence, their application in a real distribution system is challenging.
Doshi et al. [16] proposed a field-based method to quantify the chlorinated wall decay
coefficient by measuring the residual chlorine difference between two points in a pipe
segment. This method can be applied to quantify the wall decay for monochloramine
disinfectants. However, this method appears to have limited applicability, as in a real WDS,
it is rare to find a pipe segment made up of the same material with the same diameter that
can cause a noticeable monochloramine decay between the start and end of the segment.
A different study used a water quality network model with a parameter optimisation
technique to determine the chlorinated wall decay coefficient [17]. This method is more
feasible to quantify the monochloramine wall decay, however, little research is done in this
area, which requires improvement.

Currently, many software packages such as EPANET (developed by the US Environ-
mental Protection Agency), WaterGEMS, and WaterCAD (developed by Bentley systems)
offer options to model hydraulic and water quality behaviour in a WDS. A multi-species
water quality model (EPANET-MSX) was developed by Shang et al. [12] that allows mod-
elling multiple species as they grow or decay over time while transported through a WDS
network. This model was applied by Alexander and Boccili [18] in a real WDS and sug-
gested that a multi-species model cannot accurately model the variation of several species
throughout the network. It is more suitable to model the internal processes that made up
the bulk decay or similar mechanisms. In contrast, modelling single species (e.g., decay of
chlorine) using a bulk and wall reaction approach has proven to be successful in the case of
a real WDS [17]. The level of calibration achieved using many of these models depends
on the optimisation algorithm that is being used. The available optimisation algorithms
are broadly classified as local and global optimisation. A local optimisation algorithm
terminates the optimisation process when it reaches a local minimum, whereas a global
optimisation starts searching using multiple starting points to increase the likelihood to
end at a global minimum [14,19]. Most of the global search algorithm belongs to the class of
evolutionary algorithm [20,21]. The optimisation algorithm is incorporated with the water
quality model to calibrate the model parameters.
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Alternative methods such as data-driven models are gaining attraction for predicting
a range of water quality parameters. The changes in water quality in a WDS are driven
by many factors, including physical, environmental, chemical, and biological factors,
simultaneously. Data-driven models should include variables for these factors that have
an impact on the target parameters. The data-driven model uses artificial intelligence,
or more specifically, machine learning (ML) algorithms, to build a relationship between
predictor and response variables. Over the years, various non-linear models have been
developed which include deep neural network (DNN), artificial neural network (ANN),
K-nearest neighbour (KNN), naïve Bayes, partial least square regression (PLS), principal
component regression (PCR), and support vector machines (SVM). These models have been
successfully applied for the prediction and classification of water quality variables. For
instance, Gibbs et al. [22] used a linear regression model, multi-layer perceptron (MLP),
and general regression neural network (GRNN) to predict chlorine concentration in a
distribution system in South Australia, while Rodriguez et al. [23] applied ANN to predict
the same in a distribution system in the UK. Similarly, Aldhyani et al. [24] used SVM, KNN,
and naïve Bayes (NB) algorithms to classify the water quality index data and found SVM
achieved the highest performance. Peters et al. [25] used upstream water quality data to
predict total chlorine residual (sum of monochloramine and free chlorine) downstream
in a WDS. They found that the upstream pH, chlorine to ammonia ratio, and reservoir
levels have little effect on the target variable while upstream total chlorine residual and
temperature have a noticeable effect on downstream total chlorine.

The applications and subsequent algorithms used in ML are continuously evolving.
Asadollah et al. [26] introduced a new method called extra tree regression (ETR) to predict
the monthly water quality index for a river. They compared its performance with support
vector regression (SVR) and decision tree regression (DTR), where the new method showed
better prediction performance. Singha et al. [27] developed a deep learning (DL) model
to predict groundwater quality. The model’s performances were compared with many
other ML methods, including random forest (RF) and ANN, where the best prediction
performance was achieved under DL. Similarly, Ahmed et al. [28] investigated the water
quality classification problem using decision tree (DT), multilayer perceptron (MLP), KNN,
and NB. They analysed several parameters including the pH, dissolved oxygen (DO),
electrical conductivity (EC), turbidity, and temperature, where a 99% classification accu-
racy was achieved under the DT algorithm. The ML algorithm was also used to analyse
the water spectra to determine various water quality parameters including monochlo-
ramine disinfectant [29]. These are a few applications of ML in different aspects of water
quality modelling.

In light of the above discussion, this study attempted to apply the ML technique for
disinfectant decay modelling in a WDS. There is little research completed in this area and
further work is required. While these studies used upstream water quality data to predict
the target water quality parameter downstream, they do not include hydraulic parameters
which can have a significant relationship with monochloramine decay. Therefore, including
them in the data analytics model might improve the model’s predictability. To the best
of our knowledge, such an approach has not been proposed before, hence, it adds new
knowledge to water quality modelling applications. Moreover, there are few studies that
investigated the chloraminated wall decay coefficient using real operational data from WDS
and this study aims to fill this knowledge gap. Therefore, the objectives of this study are to
(i) quantify the wall decay parameter and develop a water quality network model to predict
monochloramine residual concentration for a WDS (ii) develop a data analytics model to
predict the same, and (iii) compare both models’ performance to better understand their
decay behaviour. The outcomes of this study would be beneficial for water utilities to better
manage disinfectant residuals and help identify areas for further improvement.
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2. Materials and Methods
2.1. Study Area

The Tailem Bend-Keith (TBK) drinking water distribution system is one of the largest
WDS located in the Tailem Bend township in South Australia. The TBK system extends
from the Tailem Bend to Keith communities, consisting of about 130 km long pipeline which
feeds about 800 km of branch mains [14,29]. It serves a large area of about 6500 square km,
supplying drinking water to customers in Meningie, Karoonda, Keith, and other smaller
townships (Figure 1). The water treatment plant (WTP) is located at Tailem Bend and the
source water is drawn from the River Murray. Prior to the delivery of treated water to the
TBK distribution system, the raw water goes through several stages of treatment using the
conventional treatment method (coagulation→ flocculation→ sedimentation→ filtration)
followed by disinfection using UV irradiation and chloramination [29]. A schematic of the
TBK system with a location map is presented in Figure 1. Initially, ammonia and chlorine
are added at pump station 1 (PS1), while at pump station 2 (PS2), chlorine is added to boost
the monochloramine residual. Hydraulic and water quality data at strategic locations of
the TBK distribution system are monitored using a supervisory control and data acquisi-
tion (SCADA) system. It monitors the various hydraulic states of the network including
tank levels, pump status, valve status, pressure, and flows. The SCADA system and the
subsequent algorithm also monitor a wide range of water quality parameters including the
pH, turbidity, chlorine to ammonia ratio, monochloramine, and water age. Additionally,
grab samples are routinely collected from several locations of the WDS and analysed for
chemical and biological parameters including dissolved organic carbon (DOC), nitrite,
nitrate, E. coli, and heterotrophic plate count (HPC). However, at Meningie, the SCADA
monitoring system is not available. Water quality at this location is regularly monitored
using the grab sampling method. To obtain 30-min resolution water quality data, a spec-
trophotometer was installed at Meningie. It monitored several water quality parameters
including DOC, combined nitrate and nitrite as N (NO−x ), and turbidity. Additionally,
the raw spectral fingerprint was analysed to obtain monochloramine information using
the method developed by Hossain et al. [29]. The monochloramine data from PS2 and
Meningie were used to calibrate the water quality model for a period of four weeks from
early February to March 2021.
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2.2. Hydraulic and Water Quality Modelling Tool

The hydraulic and water quality modelling was completed using the EPANET network
modelling tool. It is public domain software developed by the U.S. Environmental Pro-
tection Agency (USEPA) which can be used to perform either steady-state or an extended
period simulation. In EPANET, the whole network system is represented by several inter-
connected nodes and links. Various other components such as tanks, pumps, and valves,
including the pressure sustaining valve (PSV), pressure reducing valve (PRV), and pressure
breaker valve (PBV), are used to accurately define a distribution system. The hydraulic
solver in EPANET computes nodal head and link flows by simultaneously solving the mass
conservation equation in each node and the energy equation in each link [9,30]. The mass
conservation and energy equation is given in Equations (1) and (2).

∑
j

qij − Di = 0, (1)

hij = hi − hj = r qij
∣∣qij

∣∣n−1
+ m qij

∣∣qij
∣∣ (2)

where, qij is the flow in the link between nodes i and j, hi and hj are hydraulic heads at
these nodes and hij is the head loss between them, Di is the demand at node i, r is a head
loss coefficient, n is a flow exponent, and m is a minor loss coefficient.

The head loss coefficient r, of the pipe, is calculated using either the Hazen–Williams,
Darcy–Weisbach, or Chezy–Manning formula. Under the most typical condition in a
WDS, the Hazen–Williams formula can be used to adequately model head-loss, while the
Darcy–Weisbach formula is used to model pressurised flow under a range of hydraulic
conditions [9]. In contrast, the Chezy–Manning formula is generally used to model head
loss in open channel flow. Pumps are modelled using a curve representing the head vs. flow
relationship. For each node, water demand is represented by assuming a baseline demand,
and the temporal variability of the baseline demand is modelled using a multiplication
factor for each time step [9]. Hydraulic behaviour is accurately simulated by adequately
defining control rules in the model for various hydraulic components. In the network, the
conservation of mass and energy equations are solved using the global gradient algorithm
(GGA) through an iterative process until the convergence criterion is met [31].

The water quality module in EPANET tracks the fate of discrete parcels using the
Lagrangian time-based approach as they move through pipes and are mixed together at
junctions. Water in a pipe is considered to be a series of non-overlapping segments moving
upstream to downstream. The substances in these segments are subjected to reaction,
hence, they can grow or decay over time. At each water quality time step, these segment’s
positions are updated and new node concentrations are calculated by considering the
cumulative amount of mass and flow volume entering each node. The contribution from
any external source can also be specified at each node. Four types of water quality sources
are available in the EPANET water quality module (i) concentration source, (ii) mass booster
source, (iii) set point booster source, and (iv) flow paced booster source [9]. A concentration
source fixes the concentration of any external inflow entering a node, a mass booster source
adds a fixed mass flow to a node, a set point booster source fixes the concentration of flow
leaving a node, and a flow paced booster adds a fixed concentration to a node resulting
from the mixing of all inflows. A variable source quality can be modelled by assigning a
time pattern.

At service reservoirs, water quality concentrations are updated based on the type of
mixing model used for the tanks. The available mixing models are (i) complete mixing,
(ii) two-compartment mixing, (iii) the first-in-first-out (FIFO) plug flow model, and (iv) the
last-in-first-out (LIFO) plug flow model [9]. The complete mixing model assumes that the
water that enters the tank during the filling cycle is instantaneously and completely mixed
with the water already residing in the tank. In the two-compartment mixing model, the
available storage volume is divided into two compartments, both of which are assumed to
be completely mixed. Water parcels enter and exit from the first compartment which, if
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full, sends overflow to the second compartment which is completely mixed with the water
already residing in the second compartment. When water leaves the first compartment, it
receives an equivalent inflow from the second compartment. The FIFO plug flow model
assumes no mixing of water in the tank during its residence time. Water parcels move
through the tank in a segregated fashion where the first parcel to enter is also the first to
leave. In the LIFO plug flow model, water parcels entering the tank are assumed to be
stacked up one on top of another. There is no mixing between parcels of water as water
parcels are assumed to enter and leave the tank on the bottom.

While the dissolved substance is moving through a pipe, water quality reactions are
assumed to occur both within the bulk flow and on the materials residing at the pipe
surface, including corrosion products and biofilms. The rate of bulk reaction is defined as a
power function of concentration as shown in Equation (3).

rb = Kb Cn (3)

where, Kb is the bulk reaction rate constant, C is the concentration of the substance being
modelled, and n is the reaction order. A first-order reaction is often used to describe the
bulk reaction.

Similarly, the water quality reaction occurring at or near the pipe surface is assumed
to be a power function of concentration which is given in Equation (4).

rw = (A/V) Kw Cn (4)

where, A/V is the surface area available for reaction per unit volume of water, Kw is a wall
reaction rate coefficient, C is the concentration of dissolved substance, and n is the reaction
order. This formula suggests that a smaller diameter pipe will be subjected to more reaction
as compared to a larger diameter pipe. The rate of wall reaction depends on several factors
including the pipe material, pipe age, flow regime, hydraulic conditions, temperature, and
water chemistry, hence it should be considered as a calibration parameter.

2.3. Optimisation Tool

PEST (Parameter ESTimation), a non-linear model-independent parameter optimisa-
tion tool developed by Watermark Numerical Computing was used to optimise the model
parameters. This software can be easily incorporated into several applications in Windows
and Linux environments. Because of its model independence, it is increasingly used to
calibrate surface water and groundwater models [14,19]. To initiate the calibration in both
serial and parallel processing environments, a number of files need to be prepared that
contain the settings information of control variables, initial values of parameters and their
upper and lower boundaries, information on how to read the result from the simulation
output file, and observed data and their corresponding weights and calibration runtime
settings. Further details of the calibration setup files can be found in [14,19,32]. Moreover,
an objective function is defined which is to be minimised through the calibration process.
The default objective function is given by:

∅ =
n

∑
i=1

ωi

(
xobs

i − xsim
i

)2
(5)

where, ∅ is the calibration objective function, n is the number of data points, ωi is the
assigned weight to the ith measurement, and xobs

i and xsim
i are the observed and model-

simulated values, respectively. The theoretical minimum value of ∅ is positive and zero,
meaning a perfect fit. However, it is unlikely to reach a zero value in environmental,
hydraulic, and water quality models, instead, a minimum value is sought.

During calibration, the optimisation algorithm takes control of the model and performs
hundreds to thousands of iterations to reach the minimum objective function. Four criteria
were used to decide the minimum objective function: (i) the convergence of optimisable
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parameters to their optimal values; (ii) the insignificant reduction in the objective function
over successive iterations; (iii) the insignificant change of parameter values over successive
iterations; and (iv) the exceedance of the defined maximum number of iterations [32]. Once
any of these criteria are fulfilled, the algorithm assumes that the minimum objective function
is found, returns the optimum parameter set, and terminates the calibration process.

Optimisation Algorithm

Currently, many algorithms are available for numerical optimisation. These are
broadly classified as local and global optimisation. Local optimisation searches parameter
values within the parameter’s space that correspond to the local minimum value of the
objective function [14,32]. The Gauss–Levenberg–Marquardt algorithm (GLMA), which is a
gradient-based method, is an example of local optimisation. In contrast, global optimisation
searches for an optimum set of parameters by evaluating many local minimum values of
the objective function and retaining the lowest one [32]. Most evolutionary algorithms,
including the covariance matrix adaptation evolution strategy (CMAES), particle swarm
optimisation (PSO), and the shuffled complex evolution (SCE), are examples of global
optimisation. This study used the CMAES algorithm to optimise the model parameters.

The CMAES algorithm is a derivative-free method that has been proven to be success-
ful in minimising non-linear, non-convex, multi-modal, ill-conditioned, or noisy objective
functions [21,33]. CMAES minimises the objective function by performing many iterative
loops where at each iteration, candidate solutions are generated from the parameter space
considering a multivariate Gaussian distribution. Three statistical terms, N(m, σ2, C) are
used to represent the multivariate normal distribution, where m is the mean vector, σ
is the step-size, and C is a symmetric positive definite matrix, known as the covariance
matrix [20,21]. The terms m and σ represent the centre and spread of the distribution, while
C is related to the shape of the distribution [14,34]. During each iteration, all candidate
solutions are evaluated based on objective function values and sorted accordingly. Prior to
the next iteration, the mean of the Gaussian distribution is updated such that the probability
of the previously successful candidate solution is maximised while the covariance matrix
is updated to maximise the likelihood of previously successful search steps. In the next
iteration, the CMAES algorithm adaptively increases or decreases the search space based on
the result of the previous iteration [21]. The number of a candidate solution, also referred
to as population size, needs to be defined in the CMAES setup. The default population
size is given by 4 + 3 ln(n), where n is the number of parameters to optimise. However,
in the case of a non-linear, multi-modal, or noisy objective function, the population size
should be increased [21,34]. It should be noted that increasing the population size can
significantly increase the solution space and the convergence time. The value of σ which
represents the initial step size should be defined such that it can be reasonably applied to
all variables [14,33].

2.4. Support Vector Regression (SVR)

Support vector machines (SVMs) are supervised machine learning algorithms that can
be used for classification and regression problems [35–37]. In the classification problem,
two different classes of data are separated by using an optimum hyperplane that gives
maximum margin around the hyperplane. Hence, the data points falling on either side
of the hyperplane can be attributed to different classes. For the regression problem, an
epsilon (ε) range is assumed from both sides of the hyperplane where the regression error
by the points within the ε distance is ignored [37,38]. Therefore, the best fit line in SVR is
the hyperplane that has the maximum number of points. If the data points are linearly
inseparable in a classification problem, a kernel function is used to map the data in a
high-dimensional or feature space where linear separation exists [36,38]. A kernel function
is defined as a linear dot product in the feature space. Different kernel functions give
different mapping capabilities. Except for ε, two other parameters of the SVR algorithm
are C and Υ, where C represents the penalty of misclassifying a data point and Υ controls
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the spread of the data while transforming to a feature space. A relatively low value of Υ
encounters a broader decision region while a high Υ creates islands of decision boundaries
around data points. These parameters are fine-tuned to obtain the optimum hyperplane.
Among the available kernel functions, the right choice of kernel may improve the SVR
modelling performance. The most commonly used kernel functions in the SVR algorithm
are given in Equations (6)–(9):

Linear : k
(
xi, xj

)
=

(
xT

i xj

)
, (6)

Polynomial : k
(
xi, xj

)
=

(
YxT

i xj + r
)d

, (7)

RBF : k
(
xi, xj

)
= exp

(
−Y‖x− y‖2

)
, Y > 0, (8)

Sigmoid : k
(

xi, xj
)
= tanh

(
YxT

i xj + r
)

(9)

where, xT
i is the transpose of xi, r is a constant term, d is the polynomial order, and Y is an

RBF kernel parameter.

2.5. Sampling Strategy and Laboratory Procedures

Typically, the bulk decay coefficient is determined using the disinfected water collected
from the point of entry to the WDS. Chloraminated grab samples were collected from the
TB-WTP at different periods. These samples were stored in amber bottles and kept in a dark
place at a temperature of 24 ± 1 ◦C, which was assumed to be the average temperature
of the WDS during the study period. Otherwise, the Arrhenius equation can be used to
adjust the temperature effect. As the bulk decay coefficient can be different for different
samples, five individual experiments were conducted to decide the typical bulk decay
coefficient during the study period. The N,N-diethyl-p-phenylenediamine (DPD)-ferrous
ammonium sulfate (FAS) titrimetric procedure (APHA 4500-CI-F) was used to determine
the free chlorine, monochloramine, and dichloramine concentrations [39]. Temperature
and pH were determined using a portable pH meter (pH320, WTW, Weilheim, Germany).
The decay of these samples was observed for a period of four weeks.

2.6. Model Setup

In the water quality model setup in EPANET, the quality time step was selected as
5 min. The bulk and wall decay coefficients were assigned to be first-order reactions. For
automatic calibration, initial values of parameters and the ranges within which they vary
need to be provided to the optimisation algorithm. The bulk decay coefficient established
through the lab experiment was used as an initial value with a little tolerance above and
below for the range, while for the wall decay coefficient, the initial values and the ranges
were obtained from the literature. In a distribution system, the water stays in service
reservoirs most of the time rather than in pipes. Wall reactions can also occur in tanks.
However, unlike in a pipe wall, a constant wall surface is not possible in a tank because
of its filling and emptying. Hence, on top of bulk decay, an additional loss was assumed
in tanks for wall reaction. For all tanks, a first-order reaction was assumed and the final
value was obtained through calibration. The re-chlorination point was modelled using a
“setpoint booster” in EPANET. The optimisation process can take several hours to days
to complete depending on the problem size. Using the CMAES global search algorithm,
the optimisation was performed in a Linux-based high-performance computing (HPC)
environment. The settings of the CMAES algorithm parameters control the convergence
time which was left to default values. Parallel processing was employed to reduce the
optimisation time. R programming language [40] was incorporated with EPANET and the
optimisation tool. They act sequentially to update the model input file during each model
run throughout the optimisation process.
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In preparing the data analytics model, the various water quality parameters at the point
of chloramine application were included. Water age at the points where monochloramine
concentrations were modelled were obtained from the EPANET simulation and included
in the data analytics model. Data were normalized to the +1 and −1 range to bring their
values to a common scale so that model training was not very sensitive to variables with
high values. The Unscrumbler X (CAMO software, Oslo, Norway) was used to create the
SVR model. The performances of the SVR model were investigated under different kernel
functions as shown in Equations (6)–(9).

3. Results and Discussion
3.1. Typical Water Quality at the Studied Locations

The monochloramine concentrations were simulated at two separate monitoring points
in the distribution system (i) at the PS2 inlet and (ii) at the Meningie pump station. During
the study period, the monochloramine concentration at PS1 where chloramination is ap-
plied was 4.2 ± 0.1 mg L−1. When these monochloramine residuals reached the PS2 inlet,
their concentration was reduced to 2.5 ± 0.4 mg L−1 because of residual decay through
bulk and wall decay processes. At the PS2 outlet, re-chlorination is done to boost the
monochloramine concentration to 3.7 ± 0.2 mg L−1. At Meningie, the residual concentra-
tion decreased to 2.3 ± 0.5 mg L−1. The concentration of dichloramine and free chlorine at
these locations was below the reporting limit for field titration (<0.1 mg L−1). There was
high variability in monochloramine concentration at the PS2 inlet and Meningie compared
to its variability at the PS1 and PS2 outlet. A reduction in pH was also observed at Meningie
(pH = 8.5 ± 0.3) compared to the PS1 (pH = 9.0 ± 0.1) and PS2 outlet (pH = 9.7 ± 0.1 after
adjustment), which could possibly be caused by the products of monochloramine de-
composition and/or wall reactions. The turbidity at PS1 was 0.07 ± 0.01 nephelometric
turbidity unit (NTU), while DOC and NO−x concentrations were 2.0 ± 0.2 mg L−1 and
0.2 ± 0.1 mg L−1, respectively. As shown in Figure 2, the monochloramine data from
these locations suggest that bulk and wall decay processes cause a significant reduction in
monochloramine residuals while traveling from Tailem Bend to Meningie.
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re–chlorination and at Meningie.

3.2. Development and Calibration of Hydraulic Model

The details of the hydraulic model development and calibration process for the TBK
system can be found in Hossain et al. [14]. In brief, the model was constructed using various
information such as the initial states of several hydraulic components, their geometry, and
settings. For pipe head loss calculation, the Hazen–Williams formula was used, while the
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hydraulic time step was set to 30 min. Some missing values and outliers were found in the
SCADA data which were replaced by the closest sensible values. Two different demand
patterns were considered: residential and commercial. Several parameters including
pipe roughness, pump settings, time-based controls for pump operation, and parameters
representing variable demand patterns were calibrated. An automatic calibration method
using the CMAES global optimisation algorithm was adopted. The calibration process was
run in a Linux-based high-performance computing environment (HPC). Several codes were
composed to run the whole calibration process in order.

Through the calibration process, the objective function was minimised to obtain the
maximum fit between the observed and the simulated time series. The plot of observed
vs. model simulated tank heads and flows corresponding to the best objective function
at five different locations (i) flow at PS1, (ii) head at Coomandook tank, (iii) flow at PS2,
(iv) head at Binnies tank, and (v) head at Meningie tank are presented in Figure 3. The plot
of the whole time series at these locations is given in Figures A1–A3 in Appendix A. The
correlation between the observed and the simulated heads at Coomandook, Binnies, and
Meningie tanks were 0.88, 0.95, and 0.88 while the correlation between the observed and
the simulated flows at PS1 and PS2 were 0.85 and 0.80. The mean of the observed heads at
Coomandook, Binnies, and Meningie were 81.23 m, 136.77 m, and 42.53 m while the same
obtained through model simulation were 81.1 m, 136.76 m, and 42.54 m, respectively. In
contrast, the mean of the observed and model-simulated flows at PS1 were 113.84 L S−1

and 120.68 L S−1 while those at PS2 were 57.19 L S−1 and 55.92 L S−1, respectively. The
percentage difference between observed and simulated flows at PS1 and PS2 were 5.83% and
2.25%, respectively. Therefore, the developed hydraulic model was considered adequately
calibrated to reproduce the observed data.
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Figure 3. Plot of observed vs. model–simulated values using EPANET. (a) Flow at PS1, (b) head at
Coomandook tank, (c) flow at PS2, (d) head at Binnies tank, and (e) head at Meningie tank.

3.3. Bulk Decay Study

The measured free chlorine and dichloramine concentrations in the five samples
during the four-week observation period were below the reporting limit (<0.1 mg L−1).
For all samples, the bulk decay coefficients of monochloramine were determined by fitting
a first-order decay curve. The average value of these coefficients was considered as the
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bulk decay coefficient in calibrating the water quality model. Figure 4 shows the observed
monochloramine decay and the subsequent first-order curve fitting where the slope of the
line represents the bulk decay coefficient. The estimated value of the average bulk decay
coefficient for these samples was −0.0012 h−1. The bulk decay coefficient can be changed
due to changes in pH and temperature. Therefore, considering it as the starting point,
this value was also calibrated, representing the average bulk decay coefficient during the
study period.

Water 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

3.3. Bulk Decay Study 
The measured free chlorine and dichloramine concentrations in the five samples dur-

ing the four-week observation period were below the reporting limit (<0.1 mg L ). For all 
samples, the bulk decay coefficients of monochloramine were determined by fitting a first-
order decay curve. The average value of these coefficients was considered as the bulk de-
cay coefficient in calibrating the water quality model. Figure 4 shows the observed mon-
ochloramine decay and the subsequent first-order curve fitting where the slope of the line 
represents the bulk decay coefficient. The estimated value of the average bulk decay coef-
ficient for these samples was −0.0012 h . The bulk decay coefficient can be changed due 
to changes in pH and temperature. Therefore, considering it as the starting point, this 
value was also calibrated, representing the average bulk decay coefficient during the 
study period. 

 
Figure 4. (a) Plot of the observed monochloramine decay for the experimented samples and (b) 
first‒order curve fitting for these samples. 𝐶  represents initial monochloramine concentration, 
while 𝐶  represents monochloramine concentration at time t. 

3.4. Water Quality Model Calibration and Validation 
Observed data from the selected locations were used to calibrate the EPANET water 

quality model. The parameters representing bulk and wall decays, tank reaction rates, and 
initial monochloramine residual concentrations were included in the calibration process. 
The initial monochloramine concentration can be gradually reduced as the distance from 
the source increases because of residual decay. Therefore, the whole distribution system 
is arbitrarily divided into several zones and for each zone, individual initial concentra-
tions were assigned which were also calibrated. The calibrated value of the first-order 
bulk decay coefficient for the flow path from PS1 to the PS2 inlet (path 1) was −0.0012 h  
while for the PS2 outlet to Meningie (path 2) was −0.001 h . For path 2, the calibrated 
bulk decay coefficient was relatively low as compared to that for path 1. This is because 
the monochloramine bulk decay rate decreased with the increased water age. Similarly, 
this variation can also be attributed to varying pH and temperature throughout the sys-
tem. In contrast, the calibrated first-order wall decay coefficient for path 1 was −0.029 m h  while path 2 was −0.006 m h . For path 1, most pipe diameters varied from 610 mm 
to 758 mm while for path 2, most pipe diameters ranged between 102 mm to 363 mm. The 
calibrated wall decay coefficients represent average values for the whole path. The fit be-
tween the observed and the simulated monochloramine residual concentration as ob-
tained through the calibrated model was measured by the Root Mean Square Error 
(RMSE) and coefficient of determination (R2). Figure 5 shows the observed and the simu-

Figure 4. (a) Plot of the observed monochloramine decay for the experimented samples and (b) first–
order curve fitting for these samples. C0 represents initial monochloramine concentration, while Ct

represents monochloramine concentration at time t.

3.4. Water Quality Model Calibration and Validation

Observed data from the selected locations were used to calibrate the EPANET water
quality model. The parameters representing bulk and wall decays, tank reaction rates, and
initial monochloramine residual concentrations were included in the calibration process.
The initial monochloramine concentration can be gradually reduced as the distance from
the source increases because of residual decay. Therefore, the whole distribution system is
arbitrarily divided into several zones and for each zone, individual initial concentrations
were assigned which were also calibrated. The calibrated value of the first-order bulk
decay coefficient for the flow path from PS1 to the PS2 inlet (path 1) was −0.0012 h−1 while
for the PS2 outlet to Meningie (path 2) was −0.001 h−1. For path 2, the calibrated bulk
decay coefficient was relatively low as compared to that for path 1. This is because the
monochloramine bulk decay rate decreased with the increased water age. Similarly, this
variation can also be attributed to varying pH and temperature throughout the system. In
contrast, the calibrated first-order wall decay coefficient for path 1 was −0.029 m h−1 while
path 2 was −0.006 m h−1. For path 1, most pipe diameters varied from 610 mm to 758 mm
while for path 2, most pipe diameters ranged between 102 mm to 363 mm. The calibrated
wall decay coefficients represent average values for the whole path. The fit between the
observed and the simulated monochloramine residual concentration as obtained through
the calibrated model was measured by the Root Mean Square Error (RMSE) and coefficient
of determination (R2). Figure 5 shows the observed and the simulated monochloramine
concentration plots at the PS2 inlet and Meningie and corresponding correlation plots for
these locations. At the PS2 inlet, the calibration performance in terms of RMSE and R2 were
0.007 and 0.66, respectively, while at Meningie, the performances were 0.009 and 0.94. The
model’s performance at the PS2 inlet was relatively poor as compared to that at Meningie,
which can be attributed to many factors including pH and temperature changes and the
quality of the observed data used in model calibration.
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For the water quality model validation, another hydraulic model was constructed in
EPANET using a different data period. The hydraulic model was adequately calibrated
for one week. Then, the water quality model was run with the previously obtained
calibrated water quality parameters. The time-series plots of the observed vs. the simulated
monochloramine concentrations at the PS2 inlet and Meningie during the validation period
are shown in Figure 6. The correlation between the observed and model-simulated values at
the PS2 inlet were 0.64 and 0.74 at Meningie. During the validation period, the mean of the
observed monochloramine concentrations at PS2 inlet and Meningie were 3.2 ± 0.1 mg L−1

and 2.1 ± 0.1 mg L−1, respectively, while the same simulated values for these locations
were 3.2 ± 0.1 mg L−1 and 2.1 ± 0.1 mg L−1, respectively. These statistics indicate that the
calibrated water quality model can reasonably reproduce the observed monochloramine
concentrations during the validation period.
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model during the validation period at (a) the PS2 inlet and (b) Meningie.

3.5. Machine Learning Model

To improve the monochloramine prediction at these locations, machine learning mod-
els were developed using the SVR algorithm. The SVR model used observed water quality
data from the source point or point of chloramine application including monochloramine
concentration, flow, pH, turbidity, DOC, NO−x , and water age at the points of interest as pre-
dictor variables, while the observed monochloramine concentration at the points of interest
were used as response variables. An epsilon value of 0.01 and 10-fold cross-validation were
employed. A grid search method was used to find the optimum SVR function parameters.
Modelling performances under different kernel functions such as linear, polynomial, RBF,
and sigmoid were investigated (Table 1), and the RBF was found to be the most accurate
kernel to map the data. Figure 7 shows the plot of observed vs. model predicted time-series
at the PS2 inlet and Meningie and corresponding correlation plots using the RBF kernel. At
the PS2 inlet, RMSE and R2 in model training were 0.03 and 0.99 while in cross-validation,
they were 0.11 and 0.92, respectively. Similarly, at Meningie, RMSE and R2 during SVR
model training were 0.03 and 0.99, while the same during cross-validation were 0.05 and
0.99. These statistics suggest that the developed SVR model can adequately predict the
monochloramine concentrations at the studied locations.

Table 1. SVR model’s performance under different kernel functions at the PS2 inlet and Meningie.

Location Kernel Type
Model-Training Cross-Validation

R2 RMSE R2 RMSE

PS2 inlet

Linear 0.50 0.27 0.48 0.28
Polynomial (2nd order) 0.70 0.21 0.68 0.22
RBF 0.99 0.03 0.92 0.11
Sigmoid 0.50 0.28 0.48 0.28

Meningie

Linear 0.95 0.11 0.95 0.11
Polynomial (2nd order) 0.96 0.10 0.95 0.11
RBF 0.99 0.03 0.99 0.05
Sigmoid 0.95 0.11 0.95 0.11
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3.6. Discussion and Future Work

This study suggests that both the water quality network model and data analytics
model can adequately predict the observed monochloramine concentrations at the studied
locations. However, the data analytics model shows a relatively higher performance
as compared to the water quality network model. The water quality network model’s
performance can be improved by accurately defining the initial water quality conditions
throughout the network. It should be noted that the water quality network model is a more
practical option for most WDS as it requires only a few water quality data, such as the decay
rate and initial concentrations, to simulate the monochloramine profile throughout the
network. In contrast, the data analytics model requires several water quality data, hence, it
becomes impractical for WDS that do not employ real-time monitoring for a range of water
quality parameters.

Monochloramine decay is a complex process that depends on several chemical and
microbiological factors. The bulk decay rate determined in the laboratory mainly consists
of monochloramine auto-decomposition, decay due to NOM, and microbiological reactions.
It is evident that for the same initial monochloramine concentration, the individual decay
component can vary with the changed water quality including pH, temperature, and the
concentration of NOM and microbiological cells, hence, the overall bulk decay rate also
varies. Moreover, the variability of flow rate and the mixing condition in the tank can
alter the water chemistry and can affect the overall monochloramine decay rate. Therefore,
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the bulk decay parameter was also calibrated by assuming a little tolerance above and
below the value obtained from the lab experiment. The calibrated parameters are expected
to minimise the temperature effect on the bulk and wall decay rates, and they represent
average values for the whole path.

Literature suggests that monochloramine is more stable at a higher pH. During the
course of the bulk decay experiment, pH was found to decrease, which could be due to
monochloramine decomposition reactions. In the case of real WDS, the products of bulk
and wall reactions may also contribute to reducing the pH of water which can significantly
accelerate the monochloramine decay rate. However, at the studied WDS, pH was re-
adjusted at an intermediate point at PS2 to maximise the monochloramine stability. Hence,
the monochloramine decay rate was assumed to be approximately stable. For WDS where
a significant reduction in pH occurs between the source point and the point of interest,
one might encounter a poor calibration performance because of the variable decay rate. In
such a case, using a relatively shorter period of data for model calibration may improve the
calibration performance.

Pipe materials can significantly affect the chloramine decay, hence, for a specific
WDS, the wall decay coefficient can vary in different parts of the distribution system. In a
review, Hossain et al. [8] suggested that cement pipes can affect chloramine decay as the
principal ingredients of cement are aluminosilicates which can be reactive to chloramine.
They can also leach lime over time which may change the pH of the water and affect
the chloramine stability. Similarly, pipes made of polyvinyl chloride (PVC) can leach
organic compounds, including plasticisers, which affect chloramine decay. Westbrook
and Digiano [6] reported the chloraminated wall decay coefficient of 0.67 m d−1 in cast
iron (CI) pipe and 0.026 m d−1 in ductile iron (DI) pipe. Similarly, Liu [41] determined
the chloraminated wall decay coefficient of 0.046 m d−1 in many areas of the distribution
where CI pipes dominate, whereas it was reduced to 0.0160 m d−1 where the pipe material
was mostly made of PVC. In our study, the estimated wall decay coefficient varied from
0.15 m d−1 to 0.69 m d−1 dependent on pipe category, and the dominant pipe category
of the distribution system was asbestos cement (AC). Other pipe categories such as PVC
and DI are also found in some areas of the distribution system. Hence, the quantified wall
decay coefficient through parameter optimisation is consistent with the previous studies.

Wall decay is very site-specific and depends on several factors including pipe diameter,
pipe material, and age [8,42]. The estimated wall decay coefficient in the current study
reflects the decay associated with the dominant pipe category. For better accuracy, the flow
path should be divided into several zones and for each zone, an individual wall decay
coefficient should be assigned to minimise the error caused by different pipe materials or
age. Future studies should consider this aspect.

In a distribution system, a significant amount of monochloramine decay happens in
service reservoirs [43]. The mixing condition largely characterises the monochloramine
decay dynamics in the reservoir. This study assumes complete and instantaneous mixing
which can be changed depending on several factors including the flow rate, seasonal
variation of water usage, and customer demand. Further research is necessary to better
understand the mixing pattern and the subsequent decay characteristics in the reservoir.
Possibly, other available mixing models such as two-compartment mixing, FIFO, and LIFO
plug flow mixing can be explored. In addition, the current studies used the CMAES global
search algorithm to calibrate the water quality network model parameters; calibration
performance under other global optimisations should be an area to explore further.

A data-driven model can be used without the development of a hydraulic model
for a WDS [22,25]. However, the current study developed a data analytics model using
some variables that were obtained through hydraulic model simulation. Using signifi-
cant parameters helps reduce the model size by removing redundant information and
decreasing the noise introduced in the model [22]. In a chlorinated system, Gibbs et al. [22]
identified the significant parameters for an ANN model were upstream chlorine concen-
tration, flow, and temperature. Similarly, using a data-driven approach, Peters et al. [25]
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found that reservoir total chlorine and temperature can capture 90% of the variability in
the downstream total chlorine, while the turbidity, pH, and chlorine to ammonia ratio have
a relatively smaller effect. The significant parameters found in this study are upstream
monochloramine concentrations, pH, DOC, and water age, while flow, turbidity, and NO−x
have relatively less effect on the downstream monochloramine concentration. At the PS2
inlet, these significant parameters upstream can capture 93% of the variability in the down-
stream monochloramine concentration during model training and 88% variability during
cross-validation.

While the current study used the SVR method to develop the data analytics model,
the modelling performance can be different under different ML algorithms. Further studies
may investigate the data analytics modelling performance using different ML algorithms.
The performance can also be improved by including more water quality variables. Due to
data unavailability, the current study does not include the temperature variable in the data
analytics model. As temperature is one of the crucial factors controlling monochloramine
decay, incorporating it into the model may better explain the relationship between the
variables and improve the model’s predictability. In addition, microbiological activity can
significantly affect the monochloramine decay process. Hence, further research is necessary
to identify and incorporate these important microbiological parameters.

The calibrated water quality network model can be better used to predict the monochlo-
ramine concentration for a different period if the water quality is relatively stable and similar
to the calibration period. If there is a significant change in water quality, its chemistry
may change which can alter the bulk and wall decay kinetics. In such a case, the model
needs to be re-calibrated using the observed data to obtain a better prediction. The proce-
dure/method adopted in this study has shown good chloramine predictability, hence, it can
be applied to a different distribution system. The developed model is a site-specific model
which is valid only for the case-studied system. For a different distribution system, the
hydraulic and water quality characteristics may be different, hence the need to re-develop
and/or re-calibrate the hydraulic, water quality, and data analytics model for that system.

4. Conclusions

Management of disinfectant residuals in a distribution system is important to ensure
water is microbiologically safe to consume. From the entry point where disinfectant is
applied to the customer taps, the residual monochloramine gradually decays during its
passage through the network. From a water quality modelling viewpoint, monochloramine
decay can be modelled using bulk and wall decay kinetics. The bulk decay coefficient
for a specific distribution system can be quantified in the laboratory through controlled
laboratory experiments, while wall decay is difficult to quantify as it depends on several
factors including pipe materials, pipe age, and the density of biofilms and corrosion
products. In this paper, we have quantified the wall decay coefficient using the parameter
optimisation technique. For this purpose, a hydraulic model of the studied distribution
system was constructed and adequately calibrated to reproduce the observed data at the
selected locations. Then, the water quality model was formulated by assigning bulk and
wall decays. The bulk decay, as obtained through lab experiments, was assigned to the
model while the initial value of the wall decay coefficient and range were obtained from
the literature. The CMAES, which is a global search algorithm, was used to optimise the
water quality model parameters. The whole calibration process was run in a Linux-based
HPC environment using parallel processing. Several types of software were incorporated
together to run the whole calibration process in order.

Using the calibrated wall decay parameters, the water quality model-simulated
monochloramine residual concentrations were compared with the observed data at two
different locations in the Tailem Bend drinking water distribution system located in South
Australia. For the first location (PS1), the goodness-of-fit between the observed and simu-
lated monochloramine residual concentration was R2 = 0.66, while for the second location,
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the fit was R2 = 0.94. The calibrated water quality network model was validated using a
different data period and found to reasonably reproduce the observed data.

To improve the model prediction at these locations, data analytics models were devel-
oped using machine learning algorithms. Various hydraulic and water quality data such as
flow rate, water age, pH, DOC, NO−x and monochloramine concentrations at the source
point and the point of interest were used to build the data analytics model. Using the SVR
algorithm and a 10-fold cross-validation, the model’s performance was compared under
different kernel functions. The RBF was found to be the most appropriate kernel to map the
data. The performance at PS2 in the SVR model training was R2 = 0.99 and cross-validation
was R2 = 0.92. In contrast, at Meningie, the SVR performance in both model training and
cross-validation was R2 = 0.99. At both locations, the SVR models reproduced the ob-
served data with a high level of accuracy. The key findings are (i) the estimated wall decay
coefficient for the TBK system varies from 0.15 m d−1 to 0.69 m d−1, depending on the pipe
diameter, (ii) the significant parameters in the data analytics model are upstream monochlo-
ramine concentration, pH, water age and DOC concentrations, (iii) the RBF is the most
appropriate kernel function to analyse data using the SVR method, and (vi) the upstream
flow, turbidity and NO−x concentrations have little effect on downstream monochloramine.
Finally, it can be concluded that, at the studied locations, the water quality network model
and data analytics model both adequately predict the observed data. However, the data
analytics model showed better predictability, and hence, is recommended if various water
quality data are available.
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