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Abstract: Soil and land use information are important inputs for physically-based hydrological
modeling such as SWAT. Although fine resolution local or regional data are often preferred for
modeling, it is not always reliable that these data can lead to better model performance. In this study,
we investigate the effect of input data on the sensitivity and uncertainty of the SWAT model in the
Porijõgi catchment in Estonia. We created four model setups using global/regional level data (HWSD
soil and CORINE) and local high-resolution spatial data, including the Estonian high-resolution
EstSoil-EH soil dataset and the Estonian Topographic Database (ETAK). We employed statistical
criteria to assess SWAT model performance for monthly simulated stream flows from 2007 to 2019.
The results illustrated that models with high-resolution local soil data performed lower than models
with global soil data, but in contrast, in the case of land use datasets, the local high-resolution ETAK
dataset improved performance over the CORINE data.

Keywords: SWAT; hydrological modeling; uncertainty; sensitivity analysis; spatial data resolution

1. Introduction

Hydrological systems are often complicated due to high temporal variability and di-
verse topography, land use, and anthropogenic conditions in the catchments. Hydrological
models have become indispensable for understanding these complex human–ecosystem
interactions and investigating the effects of human activities on watershed systems [1].
Over the past few decades, intensive efforts have been made to develop process-based
catchment models operating on different temporal and spatial scales. Such models include,
for example, Topographic Hydrological Model (TOPMODEL) [2], Système Hydrologique
Européen (MIKE-SHE) [3], and the Soil and Water Assessment Tool (SWAT) [4]. Various
process-based models have been extensively applied worldwide to improve the under-
standing of hydrological processes and provide scientifically credible solutions. However,
SWAT has gained wide popularity and was chosen in this study due to its open-access na-
ture, compatibility with geospatial tools, spatial and temporal flexibility, and incorporation
of optimization algorithms [1,5].

SWAT requires detailed information on soil, land use, topography, and weather to
successfully set up, execute and interpret the results [6]. Such spatial datasets need to
be high quality and reliable to produce trustworthy model responses. However, many
specific data requirements such as soil hydraulic conductivity or soil bulk density cannot
be measured everywhere and, thus, are modeled or derived in other ways to create spatial
coverage for these parameters. Consequently, these types of data are often exposed to vari-
ous levels of errors associated with data sources, resolution, interpolation, and resampling
techniques [6,7]. Such errors combined with an inaccurate model structure can lead to
uncertainties in the modeling outputs [8,9]. Model uncertainty analysis plays a key role
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in identifying the magnitude and sources of errors and enables more adequate decision-
making [8,10]. Failure to understand and interpret the effects of these uncertainties on
model performance may result in model outputs that cannot consistently represent the
observations.

In recent years, the sensitivity of the SWAT model to spatial input data has attracted
the attention of researchers [6,8,11–13]. The previous studies show somewhat contradicting
results, and there is no clear pattern indicating that high-resolution and local data outper-
form the low-resolution data. For example, Camargos et al. [6] evaluated the effect of spatial
resolution of the input data on river discharge simulation and found that regional land use
data reduced the bias of discharge simulation by 50%, while global soil data performed
better than regional soil. On the contrary, Geza and McCray [14] evaluated the performance
of SWAT with two U.S. soils (i.e., high-resolution SSURGO and low-resolution STATSGO
soils) and reported better performance of the model with SSURGO soil. Al-Khafaji et al. [12]
investigated the effect of DEM and land use data quality on the accuracy of SWAT model
predictions and reported that high-resolution datasets did not provide better predictive
reliability. Similar results were obtained by Asante et al. [11], who evaluated the impact
of land use data quality on the predictive capacity SWAT model and indicated slightly
better performance of low-resolution land use data. Chaplot [15] also confirmed only a
little impact of land use quality on the SWAT model results, while soil data with lower
resolution greatly degraded the prediction accuracy. In general, the existing studies on the
effect of spatial input data resolution (especially soil and land use) on SWAT estimates have
yielded contradicting conclusions. Such contradictions mainly arise from the variations
in environmental characteristics of the investigated watersheds [15]. As a result, it is es-
sential to evaluate the sensitivity of the SWAT model to the accuracy of these datasets in
catchments differing in physiographic conditions.

Moreover, previous studies have focused on evaluating the effect of input data uncer-
tainty on SWAT model predictions using low-resolution global or regional datasets, while
no attention has been given to assessing the effect of high-resolution local datasets. In this
paper, we examined the effect of high-resolution local soil and land use data on the predic-
tive capacity of the SWAT model in the Porijõgi catchment of Estonia. We hypothesized that
local datasets provide greater information details and yield a reduced range of parameter
uncertainty and better simulation performance than global or regional lower-resolution
datasets.

2. Materials and Methods
2.1. Description of the Study Area

The Porijõgi catchment, with a total area of 258 km2, is one of the Emajõgi river sub-
catchments in Estonia (Figure 1). The central and northern part of the catchment is in the
southern Estonian moraine plain, 5–10 km south of Tartu city. The catchment elevation
varies between 31 and 188 m above mean sea level (a.s.l). A major part of the catchment is
located on the Otepää Heights with a fragmented landscape [16]. The depth of the ground-
water table varies (0.5–20 m) depending on relief and geomorphologic conditions [17]. The
northern part of the catchment is covered by patches of fields, grasslands, and forests,
while the southern part is a very mosaic landscape [18]. Upland areas of the catchment
are dominated by podzoluvisols, planosols, and podzols on loamy sand and fine sandy
loam [19]. The main crops grown in the catchment include wheat and rapeseed, with
mainly mineral fertilizers used [20]). The average annual precipitation during the research
period (2007–2019) is 678 mm, and the mean annual temperature is 6.38 ◦C [13].
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Figure 1. Map of the study area: the Porijõgi catchment.

2.2. Input Data

We used MERIT DEM [21] for elevation data (70 m resolution) to derive the catchment.
For soil and land use data, we used both high-resolution local and lower-resolution regional
and global level information (Figure 2). For global soil data, we used the Harmonized
World Soil Database (HWSD 2.1), which has a 1 km spatial resolution [22]. For local soil
data, we used EstSoil-EH [23], which is 1:10,000 scale vector data with 75% of mapped
units smaller than 4.0 ha. Each mapped unit has a unique composition of soil parameters,
including depth of profile and horizons, texture, and fine earth fractions, etc. To represent
this highly detailed and spatially varying data in a useful way to SWAT, we converted it
to raster with a resolution of ca. 70 m, which is the same resolution as the MERIT DEM
used for catchment delineation. The CORINE Land Cover data (100 m) for the year 2012
was used as regional/global lower-resolution land use data, which has a defined minimum
mapping unit of 25 ha [24]. For the local land use data, we used Estonian Topographic
Database (ETAK) (1:10,000) obtained from the Estonian Land Board [25]. The local land
use is more detailed than CORINE, especially in urban land use and wetlands spatial
distribution. In CORINE, the generic-agricultural land (ca. 50%) dominates the catchment,
followed by mixed forests (32.3%). In ETAK land use, on the other hand, the mixed forest
(45.8%) dominates the study area, while the share of agricultural land is only 38% (Table 1).

The daily weather records (2007–2019), which included precipitation, maximum and
minimum temperature, solar radiation, relative humidity, and wind speed, were collected
from the Estonian Weather Service (EWS) database at 3 stations (Tõravere, Piigaste, and
Otepää). The daily average streamflow (m3/s) of the Porijõgi (2007–2019) was obtained
from EWS at the Reola gauge, located at the outlet of the catchment.
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Figure 2. Spatial distribution of SWAT input data.

Table 1. The ETAK and CORINE land cover types reclassified into SWAT classes and their proportion
in the Porijõgi catchment.

ETAK Reclassied CORINE
Reclassified

SWAT Types SWAT Code % SWAT Types SWAT Code %

Generic-
Agriculture AGRL 38.0 Generic-

Agriculture AGRL 49.8

Mixed Forest FRST 45.8 Mixed Forest FRST 37.3
Deciduous Forest FRSD 0.4
Coniferous Forest FRSE 4.9

Pasture/Hay PAST 8.7 Pasture/Hay PAST 4.9
Range Shrubland RNGB 0.9 Range Shrubland RNGB 6.1

Grasslands/
Herbaceous RNGE 0.01 Grasslands/

Herbaceous RNGE 0.7

Urban
Transportation UTRN 0.5 Urban Medium

Density URML 0.4

Urban Industrial UIDU 0.3
Residential /

Public building UTBN 0.3

Private yard URLD 2.2

Wetland WETL 0.01
Herbaceous

Wetlands WETN 0.1

Woody Wetlands WETF 2.2
Water WATR 0.9 Water WATR 0.4

2.3. Model Setup

We built four models for the Porijõgi, where we use different soil and land use data
combinations while keeping the other inputs constant, such as DEM, subbasins, and hydro-
climate forcing data (Table 2). We used the QSWAT3 plugin [26] to set up the models. The
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catchment delineation and overlay of spatial datasets were performed automatically within
the interface. We used the threshold of 3.6 km2 to divide the catchment into 37 subbasins,
which was kept the same in all models. QSWAT further subdivided the subbasins into
different hydrological response units (HRUs). The interface discretizes unique combinations
of soil type, land cover, and slope classes within each sub-basin into several HRUs based on
a defined threshold. Reference [6] suggested not using any threshold to avoid loss of both
information and representation of heterogeneity, and in their case study area of 104 km2

created 100–200 HRUs at the greatest detail. The number of HRUs varies depending on the
distribution and resolution of land use and soil. However, we chose a threshold of 10% of
the subbasin area to keep the number of HRUs and, thus, simulation time manageable.

Table 2. Description of the SWAT model setup. In addition to the model setups used throughout the
study (10% threshold), we recorded the full theoretical number of HRUs based on the initial QSWAT
overlay (unconstrained).

Model
Abbreviation

Data
Combination

No. of
Subbasins

No. of HRUs
(10%

Threshold)

No. of HRUs
(Unconstrained)

CLHS

CORINE land
cover and

HWSD global
soil

37 293 616

ELHS
ETAK land use

and HWSD
global soil

37 300 936

CLES
CORINE land

cover and
EstSoil-EH

37 573 2999

ELES
ETAK Estonian

land use and
EstSoil-EH

37 575 4448

In order to compare the impact on the model performance and to be able to attribute
these effects to the different input data (i.e., land use and soil), we implemented the
following steps:

1. First, each of the four models is calibrated and validated individually to understand
and assess their capability to predict streamflow in the catchment by itself.

2. Secondly, we collate the calibrated parameter ranges from each individual model into
an encompassing range for each originally selected parameter. With this parameter
configuration, we run a sensitivity analysis for each model.

3. Finally, we reduce the list of parameters from the previous step to only the sensitive
parameters and their ranges, run a final uncertainty analysis again, and extract the
results.

These steps are described in more detail in Sections 2.4–2.6.

2.4. Calibration and Validation

For flood forecasting, reservoir management or other operational applications of
SWAT, daily streamflow simulation is of importance. For the general characterization and
management of a catchment and to understand and describe the hydrological system,
monthly flows are an appropriate scale to identify patterns to see the "big picture". Fur-
thermore, Moges et al. [13] reported high daily variation in the detection of rainfall in the
observed gauges for the Porijõgi catchment. Thus, we calibrated and validated all models
only on a monthly scale to reduce additional noise.

The initial model calibration and validation were achieved using SUFI-2 in SWAT-
Calibration and Uncertainty Program (SWAT-CUP) [27]. We identified the ranges of the
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parameters based on the SWAT manual [28] and used the one-at-a-time approach. We
calibrated the models using 2007 to 2014 and validated them using years from 2015 to
2019 on a monthly time scale. The first two years (2005–2006) were used as a warm-
up period to mitigate the unknown initial conditions. Snow-related parameters were
calibrated independently from the main parameters, fixed, and excluded from further
calibration [29]. Several simulation iterations (500–2000 simulations in each run) were
executed until we achieved a reasonable value of statistical metrics. After each iteration,
we modified (narrowed down) the range of parameters based on the new parameter ranges
suggested by SWAT-CUP. In the validation step, the models were simulated for a separate
period not included in the calibration, keeping the same number and range of parameters
used for calibration. The performance and efficiency of the models in simulating the
observed streamflow were evaluated using the Nash–Sutcliffe Efficiency (NSE) [30] as the
goodness-of-fit between observed and simulated streamflow.

Table 3. Parameters used for sensitivity analysis.

Parameter Description (Unit) Initial Range

CN2 SCS runoff curve number (-) −20% to 20%

GWQMN

Threshold depth of water in
the shallow aquifer required
for return flow to occur (mm

H2O)

500 to 4500

RCHRG_DP Deep aquifer percolation
function (-) 0 to 1

GW_REVAP Groundwater revap coefficient
(-) 0.02 to 0.2

GW_DELAY Groundwater delay (day) 30 to 450

SOL_BD Moist soil bulk density
(g/cm3) −20% to 20%

SOL_K Soil hydraulic conductivity in
the main channel (mm/h) −20% to 20%

SOL_AWC Soil available water storage
capacity (mm H2O/mm soil) −20% to 20%

ALPHA_BF Baseflow alpha factor (day) 0 to 1

ESCO Soil evaporation
compensation factor (-) 0 to 1

ALPHA_BNK Baseflow alpha factor for bank
storage (day) 0 to 1

CANMX Maximum canopy storage
(mm H2O) 50 to 100

CH_N2 Manning coefficient for main
channel (–) 0 to 0.3

CH_K2
Effective hydraulic

conductivity in the main
channel (mm/h)

5 to 250

2.5. Sensitivity Analysis

The models were initially calibrated and validated independently to assess the combi-
nation of input data separately and to describe initial model robustness. After we calibrated
and validated the models individually, we re-traced the basic modeling steps jointly across
all models. In particular, we applied a global sensitivity analysis in SWAT-CUP to find those
parameters that significantly influence the streamflow. We considered the same parameters
(Table 3) as at the start of each individual calibration step, but we collated the finalized cali-
brated parameter ranges from each individual model into an encompassing range for each
originally selected parameter into a single parameter file. The global sensitivity analysis
considers the sensitivity of the simulated streamflow values to changes in one parameter
in relation to the other changed parameters. We used the t-stat for impact and p-value to
assess the sensitivity rank of the parameters. Then, we selected those parameters where the
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p-value was less than the 0.05 level. The parameters with a p-value less than 0.05 in at least
one of the four models were chosen as sensitive parameters and used for the subsequent
joint parameter-based uncertainty analysis.

2.6. Joint Parameter-Based Evaluation of Differences in Model Performance

We ran an additional uncertainty analysis with the developed single parameter list
for all the models and set the simulations for 2000 runs during this last step. We extracted
and compared the simulated parameter ranges from this uncertainty analysis simulation
with the Python package pyswat [31] for the top 5% performing simulations (the 95%
percentile of NSE, not 95PPU) for each of the models. To statistically assess differences or
similarities between the parameter value distributions for the models with their different
combinations of land use and soil input data, we applied crosswise comparison using the
Mann–Whitney-U test [32] and visualized the results as individual heatmaps per parameter.

3. Results
3.1. General Model Performance

All four models achieved a very good performance in predicting streamflow during
calibration, but for the validation period, only the models with the global HWSD soil (CLHS
and ELHS) achieved good or at least satisfactory performance, but the two models with
local EstSoil-EH (CLES and ELES) were below satisfactory level (Table 4). The soil datasets
had a strong influence on the model performance, whereas the effect of different land
use data was less influential. The models with HWSD soil performed very well, whereas
the models with EstSoil-EH did not reach similarly high NSE values. However, among
the models with the same soil data, those models with the local Estonian land use data
performed better than models with regional CORINE land cover.

Table 4. Results of goodness-of-fit evaluation for calibration and validation periods.

Indices CLHS ELHS CLES ELES

cal val cal val cal val cal val

NSE 0.78 0.51 0.79 0.59 0.69 0.34 0.71 0.41
P-factor 0.72 0.8 0.83 0.27 0.72 0.76 0.86 0.36

R-
factor 0.87 1.75 0.99 0.1 0.88 1.45 1.02 0.41

PBIAS −3.0 0.4 5.7 4.7 −0.4 4.2 3.9 3.6

The goodness-of-fit between the simulated and the measured discharges was evaluated
by using the P-factor (the percentage of data bracketed by the 95% prediction uncertainty
band-95PPU) and R-factor (a measure of the thickness of the 95PPU band) indices. Ab-
baspour [33] recommended a value of > 0.7 for the P-factor and < 1.5 for the R-factor for
discharge simulations. Our results indicate that most of the models fall in the desirable
ranges of the two indices (Table 4 and Figure 3). Although CLHS and ELHS models yielded
slightly lower values for validation, all models resulted in a P-factor higher than 0.7, sug-
gesting that over 70% of the measured discharges were enveloped by the 95PPU. Similarly,
except for the CLES model during validation, all models yielded an R-factor less than
1.5, which indicates that the observed discharge and the 95PPU matched very well. Our
results also reveal the PBIAS values of < ± 10 for both calibration and validation periods,
indicating a "very good" level of performance for all models [34]. Figure 3 indicates that all
models captured the low flow better, while most of the peak flows were underestimated
(positive PBIAS).
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Figure 3. Comparison of gauged and simulated streamflow for the calibration period (2007–2014, left
part) and the validation period (2015–2019, right part) for each of the four different models: a) CLHS,
b) ELHS, c) CLES, and d) ELES, including the 95PPU band in grey.

3.2. Joint Parameter Level Performance Assessment

The joint parameter level performance assessment, which is still a traditional parameter
uncertainty assessment but with equalized all-encompassing parameter ranges for all
four models, followed the individual model assessment. The list of parameters only
contains sensitive parameters based on a prior global sensitivity analysis. The same value
distributions for the fitted parameters are extracted for the 5% performing simulations.

In Figure 4, it becomes apparent that the preferential parameter ranges for high-
performing simulations are much more similar to the models that use the same soil input
data. In particular, the similarity of the value distributions for the parameters curve number
(CN2), shallow aquifer return flow (GWQMN), bulk density (SOL_BD), and canopy storage
(CANMX) is very pronounced (Figure A6 shows the detailed density plot).
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The models with EstSoil-EH (ELES and CLES) show a preference for increasing CN2
(Figure A6, row 1), which indicates a strong tendency to increase surface runoff. GWQMN
has a more defined peak for the models with HWSD soil (ELHS and CLHS), whereas, for
ELES and CLES, the density curve is flatter and indicates a less defined behavior (Figure A6,
row 2). SOL_BD exhibits a very significant trend in both cases. For ELHS and CLHS, the
simulations optimize only for a small increase, with the density plot showing a positive
skew (Figure A6, row 4), but for ELES and CLES, the trend is inverse, with a much stronger
tendency and higher values for SOL_BD and negative skew. Finally, CANMX values are
optimized for larger canopy storage in the ELES and CLES models (Figure A6, row 9).

Figure 4. Boxplots of the distribution of the parameter values for the top 5% performing simulations
during the joint uncertainty analysis for each of the selected 11 parameters of the common parameter
list. The parameter descriptions and units are listed in Table 3.

We used the Mann–Whitney-U test to compare the extracted parameter values as
groups pair-wise per parameter per model. The heatmaps in Figure 5 visualize whether
there is a statistically significant difference between the model parameter ranges. Statistical
significance (p < 0.05, dark-green to purple) indicates that we can reject the null hypothesis
that the two model parameter ranges are similar. Thus, where the squares are dark green-
purple, we can say that the parameter ranges of the two models are statistically significantly
different. The only meaningful patterns can be reported for CN2 (1) GWQMN (2), SOL_BD
(4), and CANMX (9), with a striking clustering based on the soil data of the model (Figure 5,
l. to r., from top). Figures A3 and A5 in the appendix show the results of this Mann–
Whitney-U analysis for the initial calibration and validation steps for the models. In the
calibration, almost all parameter distributions are different from each other, which is rooted
in their individual initial calibration and optimizations. Whereas in the validation, we saw
only significant differences between models with different soil data sets (Figure 5).
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Figure 5. Crosswise comparison of model parameter ranges with p-values of the Mann–Whitney-U
test in the joint parameter uncertainty analysis with the common parameter list. Statistical significance
(p < 0.05, dark-green to purple) indicates we can reject the null hypothesis that states the two groups
are similar.

In order to interpret the initial parameterization of the soils based on the input datasets,
we compared the general soil textures and fine earth fractions from the discretized HRUs be-
fore any calibration. We summarized the parameter values for the significantly differing pa-
rameters and additional explanatory variables (SAND, SILT, CLAY, ROCK, and Hydrologic
Soil Group) and area- and depth-weighted them accordingly into a per-catchment-model
summary table (Table 5).

Table 5. Original values of parameters at model creation, area and depth-weighted catchment sum-
mary and additional explanatory variables (SAND, SILT, CLAY, ROCK, SOL_CBN, and Hydrologic
Soil Group).

Parameter CLHS ELHS CLES ELES

CN2 83.57 82.63 66.42 64.37
GWQMN 1000 1000 1000 1000
SOL_BD 1.58 1.58 1.05 1.03
CANMX 0 0 0 0

SAND 41.51 41.52 55.6 54.16
SILT 27.57 27.57 17.42 17.45

CLAY 30.92 30.92 26.97 28.4
ROCK 5.82 5.83 2.99 2.4

SOL_CBN 1.2 1.27 9.75 10.34

Hydrologic
Soil Group, A 0 0 141.21 130.88

Area in km2 B 0 0 0 0
(of total

241.53 km2) C 0 0 99.85 109.01

D 241.53 241.53 0.46 1.63
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EstSoil-EH states a much higher sand to silt content ratio: 10–15% more sand in
EstSoil-EH versus 10–15% higher silt fractions in HWSD for the Porijõgi catchment. The
clay fractions are much more similar. Both data sets HWSD and EstSoil-EH hydrologically
emulate wetlands and histosols with a high clay fraction. For EstSoil-EH, we see higher
soil organic carbon and lower bulk density values than in HWSD.

Figures A2 and A4 in the appendix show the parameter value distributions of the top
5% performing simulations during the calibration and validation period, and Figure A1
shows the ranges of NSE as boxplots for the extracted simulations. These ranges were
already constrained and optimized through each model’s individual calibration iterations
and demonstrate the preferential value ranges for each model.

4. Discussion

In this study, we compared low to medium resolution datasets of land use (CORINE)
and soil (HWSD) with local high-resolution datasets (ETAK, EstSoil-EH) in a four-fold cross-
wise fashion to answer the question of whether local datasets yield a better simulation
performance and can reduce parameter uncertainty when predicting streamflow with
SWAT. The results indicate a mixed response. The models with the high-resolution local
soils performed worse; however, the models with the same soil but with the high-resolution
Estonian land use data performed marginally better. Overall, the impact of the soil datasets
was stronger on the model uncertainty.

Overall, all models captured the low flow better, while many of the peak flows were
underestimated (positive PBIAS), which might be due to the very mosaic nature of the
catchment and the abundance of floodplains with alluvial soils in the lower catchment that
delay the flow peak. In general, it can be said that the values obtained for the P-factor and
R-factor (Table 4) indicate low uncertainties for all individual models. Higher uncertainties
can only be observed for validation, which is expected. All models exhibit a decline in NSE
values for the validation period within a range of 0.2 to 0.3, with the best model, ELHS
(Estonian landuse, HWSD soil), also having the best scores during validation (cf. Figure 3).
This could indicate over-fitting during calibration. One reason for the lower validation
scores could be that the three rain gauges are not fully capturing the variability of the
rainfall within the catchment, thus increasing the chance of over-fitting in the calibration
period. However, the overall ranking is principally comparable. Of the models with the
same soil, those models with the high-resolution Estonian land use data had a smaller
decline in NSE during the validation period, indicating that land use parameters were more
reliable. Modeled and reanalyzed rainfall data would be available [13], but we decided to
refrain from introducing additional large-scale data.

Table 5 shows the main differences in parameter values between HWSD and EstSoil-
EH. EstSoil-EH shows a significantly higher large amount of very sandy soils in the catch-
ment. This might be one of the reasons for the great differences in streamflow performance
between models with EstSoil-EH and HWSD. The high sand content in EstSoil-EH sub-
sequently might have led to the much lower curve numbers for CLES and ELES and the
hydrological soil group configurations. As can be seen, the EstSoil-EH models have large
areas with soil hydrologic groups "A" and "C", whereas HWSD only shows type "D". The
soil hydrologic group is a parameter that is not used by the SWAT model during simulation,
but it is used by the ArcSWAT and QSWAT packages that create the initial SWAT model files
from the spatial and tabular input data. The SWAT documentation explains the hydrologic
soil group in four categories, from "A" to "D", and it relies partially on infiltration rates
and soil textures [28]. However, the designation is subjective and includes guidelines
to acknowledge the existence of impermeable layers such as clay horizons, shrink-swell
potential, and depth to bedrock. For EstSoil-EH, the labeling of the soil hydrologic groups
seems to be mostly based on the textures and fine earth fractions, and this might have
caused the overestimation of sandy soils in the catchment.

The low SOL_BD values additionally decrease runoff potential, which during cal-
ibration has to be compensated. The authors of EstSoil-EH describe that SOL_BD was
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derived with an inverse proportional pedo-transfer function from the soil organic carbon
content (SOL_CBN) [23]. This might have been supported by the higher soil organic carbon
values in EstSoil-EH. However, the large areas of histosols and peatlands in the catchment
naturally contain large carbon contents.

There are also differences in land use distribution: ETAK has 38% agriculture and 45.8%
forest, whereas CORINE labels 49.8% agriculture and 37.6% forests, almost an inverted
relationship of 10% shift. Furthermore, ETAK has more pasture (8.7%) and correctly
indicates the existence of wetlands (3.2%), whereas CORINE labels 6.8% of the catchment
with a range of shrublands and grasslands and less pasture (4.9%). However, the land use
differences of ETAK and CORINE regarding the number of forests and general vegetation
patterns are rather negligible. With CANMX being a sensitive parameter, we attribute
ETAK’s better performance to the larger fraction of forest over agricultural areas. The
larger forest areas in ETAK tend to reduce runoff and retain water. In CORINE, the larger
agricultural areas tend to allow increased surface runoff. In ETAK, the larger forest areas
have a stronger ability to store more water in the canopy, which is also visible as a tendency
in the parameter distributions for CANMX (Figures A6 and 4).

Lastly, we want to reflect on the methodology. SWAT sensitivity analysis can be
performed locally or globally. Local sensitivity analysis changes parameter values one-
at-a-time while in the global sensitivity analysis, all parameter values are changed. The
problem with the one-at-a-time analysis is that the sensitivity of parameters often depends
on the values of other parameters, but we do not know if the other fixed parameters have
the best values. On the other side, the strength of the global sensitivity analysis method is
the much more robust depiction of model uncertainty by comprehensively accounting for
parameter interactions. However, a disadvantage of a global sensitivity analysis method
is the high number of simulations needed, which can become computationally expensive.
We extended the global sensitivity and uncertainty analysis approach not only to account
for multiple parameters but also for several models, which are at least supposed to be
in the same modeling domain (the same catchment, the same spatial and observed data
to fit and force). By developing the common parameter list from the individual model
calibrations and applying this for the joint analysis in step 3, we can then assess the
tendencies of preferential parameter values by extracting only the top 5% performing
simulations. Conversely, only looking at the individual models’ parameter ranges does not
yield additional information: Figures A3 and A5 in the appendix show the results of this
Mann–Whitney-U analysis for the initial calibration and validation steps for the models.
Almost all parameter distributions are different from each other, which understandably
is rooted in their individual initial calibration and optimizations. One possible future
direction to improve the understanding of the effect of the input data on hydrological
models is to use a spatially explicit distributed hydrologic model, e.g., the mesoscale
Hydrologic Model mHM [35], which would also enable the use of spatial metrics, such as
SPAEF [36], to evaluate the results.

5. Conclusions

This study provides detailed insights into different input data quality impacts on
SWAT model uncertainty. Four model setups were created to compare pair-wise use of
low to medium resolution datasets and local high-resolution datasets of land use and soil
data. The overall performance of all models was good to very good, which indicates similar
conclusions to previous studies [6]: High-resolution data does not always provide a better
performance, and the trade-off with longer pre-processing and simulation times does not
necessarily equate to better data quality. In this study, the impact of soil data on model
performance was stronger than the land use data, whereas the global lower-resolution
HWSD-based models performed better than local-level soil data. However, in the case of
land use, the local high-resolution ETAK dataset improved model performance over the
CORINE data because, in ETAK, forested areas and agricultural areas are mapped more
accurately.
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Appendix A

Figure A1. Boxplots of NSE value distribution of top 5% performing simulations during: (a) calibra-
tion, (b) validation.
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Figure A2. Boxplots of parameter range distribution of top 5% performing simulations during initial
calibration. The parameter descriptions and units are listed in Table 3.

Figure A3. Crosswise comparison of model parameter ranges with the p-value of the Mann–Whitney-
U test during initial calibration.
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Figure A4. Boxplots of parameter range distribution of top 5% performing simulations during initial
validation. The parameter descriptions and units are listed in Table 3.

Figure A5. Crosswise comparison of model parameter ranges with the p-value of the Mann-Whitney-
U test during initial validation. The parameter descriptions and units are listed in Table 3.
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Figure A6. Density plots of parameter value distribution in top 5% performing simulations in
uncertainty analysis with the common parameter list. The parameter descriptions and units are listed
in Table 3.

References
1. Ghaith, M.; Li, Z. Propagation of parameter uncertainty in SWAT: A probabilistic forecasting method based on polynomial chaos

expansion and machine learning. J. Hydrol. 2020, 586, 124854. https://doi.org/10.1016/j.jhydrol.2020.124854.
2. Beven, K.J.; Lirkby, M.J. A physically based, variable contributing area model of basin hydrology / Un modèle

à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69.
https://doi.org/10.1080/02626667909491834.

3. Abbott, M.; Bathurst, J.; Cunge, J.; O’Connell, P.; Rasmussen, J. An introduction to the European Hydrological System—Systeme
Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986,
87, 45–59. https://doi.org/10.1016/0022-1694(86)90114-9.

https://doi.org/10.1016/j.jhydrol.2020.124854
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1016/0022-1694(86)90114-9


Water 2022, 14, 1988 17 of 18

4. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: model
development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

5. Lin, Q.; Zhang, D. A scalable distributed parallel simulation tool for the SWAT model. Environ. Model. Softw. 2021, 144, 105133.
https://doi.org/10.1016/j.envsoft.2021.105133.

6. Camargos, C.; Julich, S.; Houska, T.; Bach, M.; Breuer, L. Effects of Input Data Content on the Uncertainty of Simulating Water
Resources. Water 2018, 10, 621. https://doi.org/10.3390/w10050621.

7. Sharma, A.; Tiwari, K. A comparative appraisal of hydrological behavior of SRTM DEM at catchment level. J. Hydrol. 2014,
519, 1394–1404. https://doi.org/10.1016/j.jhydrol.2014.08.062.

8. Hoang, L.; Mukundan, R.; Moore, K.E.B.; Owens, E.M.; Steenhuis, T.S. The effect of input data resolution and complexity
on the uncertainty of hydrological predictions in a humid vegetated watershed. Hydrol. Earth Syst. Sci. 2018, 22, 5947–5965.
https://doi.org/10.5194/hess-22-5947-2018.

9. Dakhlalla, A.O.; Parajuli, P.B. Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient
transport using SWAT. Inf. Process. Agric. 2019, 6, 61–72. https://doi.org/10.1016/j.inpa.2018.08.007.

10. McMillan, H.; Seibert, J.; Petersen-Overleir, A.; Lang, M.; White, P.; Snelder, T.; Rutherford, K.; Krueger, T.; Mason, R.; Kiang, J.
How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications.
Water Resour. Res. 2017, 53, 5220–5228. https://doi.org/10.1002/2016WR020328.

11. Asante, K.; Leh, M.D.; Cothren, J.D.; Luzio, M.D.; Brahana, J.V. Effects of land-use land-cover data resolution and classification
methods on SWAT model flow predictive reliability. Int. J. Hydrol. Sci. Technol. 2017, 7, 39. https://doi.org/10.1504/
IJHST.2017.080956.

12. Al-Khafaji, M.; Saeed, F.H.; Al-Ansari, N. The Interactive Impact of Land Cover and DEM Resolution on the Accu-
racy of Computed Streamflow Using the SWAT Model. Water Air Soil Pollut. 2020, 231, 416. https://doi.org/10.1007/
s11270-020-04770-0.

13. Moges, D.M.; Kmoch, A.; Uuemaa, E. Application of satellite and reanalysis precipitation products for hydrological modeling in
the data-scarce Porijõgi catchment, Estonia. J. Hydrol. Reg. Stud. 2022, 41, 1–21. https://doi.org/10.1016/j.ejrh.2022.101070.

14. Geza, M.; McCray, J.E. Effects of soil data resolution on SWAT model stream flow and water quality predictions. J. Environ.
Manag. 2008, 88, 393–406. https://doi.org/10.1016/j.jenvman.2007.03.016.

15. Chaplot, V. Impact of spatial input data resolution on hydrological and erosion modeling: Recommendations from a global
assessment. Phys. Chem. Earth Parts A/B/C 2014, 67–69, 23–35. https://doi.org/10.1016/j.pce.2013.09.020.

16. Mander, Ü.; Uuemaa, E.; Roosaare, J.; Aunap, R.; Antrop, M. Coherence and fragmentation of landscape patterns as characterized
by correlograms: A case study of Estonia. Landsc. Urban Plan. 2010, 94, 31–37. https://doi.org/10.1016/j.landurbplan.2009.07.015.

17. Varep, E. The landscape regions of Estonia. In Publications on Geography, 156 ed.; IV. Acta Commerstationes Univ. Tartu.: 1964,
Tartu ; pp. 3–28.

18. Mander, Ü.; Kuusemets, V.; Ivask, M. Nutrient dynamics of riparian ecotones: A case study from the Porijõgi River catchment,
Estonia. Landsc. Urban Plan. 1995, 31, 333–348. https://doi.org/10.1016/0169-2046(94)01061-C.

19. Mander, Ü.; Kull, A.; Kuusemets, V.; Tamm, T. Nutrient runoff dynamics in a rural catchment: Influence of land-use changes,
climatic fluctuations and ecotechnological measures. Ecol. Eng. 2000, 14, 405–417. https://doi.org/10.1016/S0925-8574(99)00064-
6.

20. Pärn, J.; Henine, H.; Kasak, K.; Kauer, K.; Sohar, K.; Tournebize, J.; Uuemaa, E.; Välik, K.; Mander, Ü. Nitrogen and phosphorus
discharge from small agricultural catchments predicted from land use and hydroclimate. Land Use Policy 2018, 75, 260–268.
https://doi.org/10.1016/j.landusepol.2018.03.048.

21. Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrogra-
phy Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. https://doi.org/10.1029/2019WR024873.

22. Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-ecological Zones Assessment for
Agriculture (GAEZ 2008); 2008, FAO, Rome .

23. Kmoch, A.; Kanal, A.; Astover, A.; Kull, A.; Virro, H.; Helm, A.; Pärtel, M.; Ostonen, I.; Uuemaa, E. EstSoil-EH: a high-resolution
eco-hydrological modelling parameters dataset for Estonia. Earth Syst. Sci. Data 2021, 13, 83–97. https://doi.org/10.5194/essd-
13-83-2021.

24. European Environment Agency. CORINE Land Cover (CLC) Inventory. Available online https://land.copernicus.eu/pan-
european/corine-land-cover/clc2012 : (accessed on 18 February 2022).

25. Estonian Land Board. Estonian Topographic Database. Available online https://geoportaal.maaamet.ee/eng/Spatial-
Data/Estonian-Topographic-Database-p305.html : (accessed on 18 February 2022).

26. Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT
model. Environ. Model. Softw. 2016, 85, 129–138. https://doi.org/10.1016/j.envsoft.2016.08.004.

27. Abbaspour, K.C.; van Genuchten, M.T.; Schulin, R.; Schläppi, E. A sequential uncertainty domain inverse procedure for estimating
subsurface flow and transport parameters. Water Resour. Res. 1997, 33, 1879–1892. https://doi.org/10.1029/97WR01230.

28. Arnold, J.; Kiniry, J.; Srinivasan, R.; Williams, J.; Haney, E.; Neitsch, S. SWAT 2012 Input/Output Documentation. Available
online https://swat.tamu.edu/docs/ : (accessed on 18 February 2022).

29. Abbaspour, K.; Vaghefi, S.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water As-
sessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. https://doi.org/10.3390/w10010006.

https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1016/j.envsoft.2021.105133
https://doi.org/10.3390/w10050621
https://doi.org/10.1016/j.jhydrol.2014.08.062
https://doi.org/10.5194/hess-22-5947-2018
https://doi.org/10.1016/j.inpa.2018.08.007
https://doi.org/10.1002/2016WR020328
https://doi.org/10.1016/j.ejrh.2022.101070
https://doi.org/10.1016/j.jenvman.2007.03.016
https://doi.org/10.1016/j.pce.2013.09.020
https://doi.org/10.1016/j.landurbplan.2009.07.015
https://doi.org/10.1016/0169-2046(94)01061-C
https://doi.org/10.1016/S0925-8574(99)00064-6
https://doi.org/10.1016/S0925-8574(99)00064-6
https://doi.org/10.1016/j.landusepol.2018.03.048
https://doi.org/10.1029/2019WR024873
https://doi.org/10.5194/essd-13-83-2021
https://doi.org/10.5194/essd-13-83-2021
https://doi.org/10.1016/j.envsoft.2016.08.004
https://doi.org/10.1029/97WR01230
https://doi.org/10.3390/w10010006


Water 2022, 14, 1988 18 of 18

30. Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970,
10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.

31. Kmoch, A. Swatpy: A Set of Python Modules to work with SWAT2012 Models (v0.2). Available online
https://doi.org/10.5281/zenodo.6322023 : (accessed on 2 March 2022).

32. Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann.
Math. Stat. 1947, 18, 50–60. https://doi.org/10.1214/aoms/1177730491.

33. Abbaspour, K.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water
quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752.
https://doi.org/10.1016/j.jhydrol.2015.03.027.

34. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L.; Binger, R.; Harmel, R.D.; Veith, T.L.; Bingner,
R.L.; et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007,
50, 885–900. https://doi.org/10.13031/2013.23153.

35. Samaniego, L.; Kumar, R.; Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale.
Water Resour. Res. 2010, 46. https://doi.org/10.1029/2008WR007327.

36. Koch, J.; Demirel, M.C.; Stisen, S. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for
optimization of hydrological models. Geosci. Model Dev. 2018, 11, 1873–1886. https://doi.org/10.5194/gmd-11-1873-2018.

37. Moges, D.M.; Kmoch, A. Effect of Spatial Input Data Quality on SWAT Modelling in the Porijõgi Catchment (v1.0). Available
online https://doi.org/10.5281/zenodo.6321991 : (accessed on 2 March 2022).

https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1016/j.jhydrol.2015.03.027
https://doi.org/10.13031/2013.23153
https://doi.org/10.1029/2008WR007327
https://doi.org/10.5194/gmd-11-1873-2018

	Introduction
	Materials and Methods
	Description of the Study Area
	Input Data
	Model Setup
	Calibration and Validation
	Sensitivity Analysis
	Joint Parameter-Based Evaluation of Differences in Model Performance

	Results
	General Model Performance
	Joint Parameter Level Performance Assessment

	Discussion
	Conclusions
	Appendix A
	References

