
Citation: Sridharan, V.K.; Kumar, S.;

Madhur Kumar, S. Can Remote

Sensing Fill the United States’

Monitoring Gap for Watershed

Management?. Water 2022, 14, 1985.

https://doi.org/10.3390/w14131985

Academic Editor: Thomas Meixner

Received: 1 May 2022

Accepted: 20 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Can Remote Sensing Fill the United States’ Monitoring Gap
for Watershed Management?
Vamsi Krishna Sridharan 1,*, Saurav Kumar 2,* and Swetha Madhur Kumar 3

1 Fisheries Collaborative Program, University of California, Affiliated with Fisheries Ecology Division,
Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric
Administration, Santa Cruz, CA 95060, USA

2 Texas A&M Agrilife and Department of Biological and Agricultural Engineering, Texas A&M Agrilife
Research Center, El Paso, TX 79927, USA

3 Client Analytics, Evolent Health, Arlington, VA 22203, USA; mk.swetha89@gmail.com
* Correspondence: vamsi.sridharan@noaa.gov (V.K.S.); saurav@tamu.edu (S.K.)

Abstract: Remote sensing has been heralded as the silver bullet in water quality modeling and
watershed management, and yet a quantitative mapping of where its applicability is likely and most
useful has not been undertaken so far. Here, we combine geospatial models of cloud cover as a proxy
for the likelihood of acquiring remote scenes and the shortest time of travel to population centers as a
proxy for accessibility to ground-truth remote sensing data for water quality monitoring and produce
maps of the potential of remote sensing in watershed management in the United States. We generate
several maps with different cost-payoff relationships to help stakeholders plan and incentivize remote
sensing-based monitoring campaigns. Additionally, we combine these remote sensing potential maps
with spatial indices of population, water demand, ecosystem services, pollution risk, and monitoring
coverage deficits to identify where remote sensing likely has the greatest role to play. We find that the
Southwestern United States and the Central plains regions are generally suitable for remote sensing
for watershed management even under the most stringent costing projections, but that the potential
for using remote sensing can extend further North and East as constraints are relaxed. We also find
large areas in the Southern United States and sporadic watersheds in the Northeast and Northwest
seaboards and the Midwest would likely benefit most from using remote sensing for watershed
monitoring. Although developed herein for watershed decision support in the United States, our
approach is readily generalizable to other environmental domains and across the world.

Keywords: remote sensing; geographical information systems; watershed management; water
quality; decision support; ambient monitoring; data collection

1. Introduction

Of the 37.6 million waterbodies including canals, stream segments, ponds, and lakes
in the United States, fewer than three million are monitored in situ, with only about 60,000
monitoring sites providing information that can be compared with remotely sensed data
(Figure 1a) [1,2]. Of the millions of waterbodies, only 430,893 have been assessed for water
quality impairments as of 2022 (Figure 1b) [3,4]. Within the recent past, even for the assessed
waterbodies, ambient monitoring of general state of the water quality and synoptic data
collection of the load, transport, and fate processes associated with impairment happens
sporadically in only about a third of the cases [5]. Remote sensing, both with airborne and
space-borne platforms offers tremendous potential for bridging these massive data gaps.
But there are significant data gaps to even be able to use remote sensing everywhere in
the United States (Figure 1a). Our contribution herein is, albeit with several simplifying
assumptions, to map out the potential for remote sensing to be a viable monitoring tool
for all the subwatersheds—the smallest catchment class associated with waterbodies as
defined by the United States Geological Survey (USGS)—within the conterminous United
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States. As a corollary to these maps, we also present a geospatial estimate of where remote
sensing is likely to have the greatest impact in the country by mapping the intersection
of remote sensing potential and high risk of impairment and low data coverage. These
maps will serve as decision support tools for researchers and practitioners to plan where
to invest their energies and resources with respect to data collection for water quality
management approaches.
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Figure 1. Assessment and in-situ monitoring gap for water quality in the United States:
(a) 39.6 million stream segments, ponds, lakes and estuaries in the National Hydrography Dataset and
603,433 in-situ monitoring locations from the AquaSat database for Secchi disk depth, Chlorophyll-a,
total suspended solids and dissolved organic carbon that have been matched to landSat scenes,
and (b) the 430,893 assessed waterbodies in the United States obtained from the United states
Environmental Protection Agency’s Assessment and Total Maximum Daily Load Tracking and
Implementation System (ATTAINS) database. Red lines indicate state borders.

Our focus in this paper is not to limit our treatment to a specific land surface process,
water quality parameter, type of impairment or remote sensing data source. This is because
water quality is a complex system response within the watershed to surface, subsurface
and hydrologic processes that are modulated by human influence. Therefore, rather than
focusing on a specific aspect of watershed processes, we develop a comprehensive scoping
tool for adopting remote sensing in monitoring and data collection. Scoping tools such as
the one presented here can be developed for specific land surface process monitoring, or
water quality management of given impairments by using information relevant to certain
remote sensing platforms and data collection methods.

Over the past two decades, a large number of many aerial and space-borne platforms
and sensors that sample different parts of the electromagnetic spectrum have come on-
line [6]. Platforms such as LandSat, GeoEye, WorldView, and technologies such as Light
Detection and Ranging (LiDAR) are useful for water body delineation (e.g., [7]), while
bathymetry of waterbodies can be obtained either from LiDaR, or by analyzing spectral
band ratios of satellite and drone imagery [8,9]. Streamflow can be obtained using Ra-
dio Detection and Ranging (RaDAR) altimetry and rating curves from platforms such as
Jason-3, Sentinel-3, and Saral/ALtika [10]. The terrestrial water budget can be quantified
using gravimetric data, while floods can be characterized using optical sensors such as
the Advanced Very-High-Resolution Radiometer (AVHRR), the Visible Infrared Imaging
Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS),
Sentinel, Landsat, Satellite Pour l’Observation de la Terre (SPOT), the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), IKONOS, Worldview, RapidEye,
Ziyuan 3 and Gaofen and synthetic aperture radar data [10]. Water quality parameters that
are directly observable can be monitored using LandSat, Sentinel, MODIS, the MEdium
Resolution Imaging Spectrometer (MERIS) and other specialized sensors such as Hyperion
(chlorophyll-a), SPOT, AVHRR (Total suspended sediments), IKONOS (water clarity) and
the Coastal Zone Color Scanner (CZCS) [colored dissolved organic matter] imagery [10].
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Hyperspectral imagery [11], LiDAR and airborne laser scanning [12] can be used to infer
crop characteristics and tree canopies in agrarian and forested watersheds. Within water-
sheds, indices developed by using reflectances from different spectral bands are useful for
classifying land cover and land use types [13]. Also within watersheds, the state of best
management practices such as low impact developments and green infrastructure can be
monitored using visible and thermal imagery and spectral reflectance-based indices [14].

Authors have developed an array of methods ranging from the well-established to
the experimental frontier have emerged to quantify watershed loading and receiving
water quality pertaining to various types of impairment [15,16]. Broadly, for land surface
processes such as crop cycles, land cover and land use changes, observations of surface
reflectances and ratios of reflectance across multiple spectral bands are used with validation
datasets such as land use classification maps or photographs are common (e.g., [17]). For
water quality parameters that affect the inherent and apparent optical properties of the
water column and spectral properties of the reflectances, such as total suspended solids,
Chlorophyll-a, colored dissolved organic carbon, turbidity, and water surface temperature,
statistical models linking observations of surface reflectances and ratios of reflectance
across multiple spectral bands with the water quality parameters are popular [18]. For such
processes, bio-optical and bio-geo-optical models that mechanistically link the irradiance-
reflectance ratio across multiple spectral bands to the bulk water column properties are
a reliable alternative [19]. For impairments such as harmful algal blooms and oxygen
depletion, more sophisticated statistical (e.g., [20]) or mechanistic models (e.g., [21]) are
used to relate watershed nutrient loads with impairment. For water quality parameters that
do not directly affect the optical properties of the water column and spectral properties of
the reflectances (e.g., mercury and heavy metals), statistical, machine learning and artificial
intelligence models relating the quantities of interest with other water constituents (e.g.,
turbidity) are becoming increasingly common [15].

Two unifying requirements of all of these approaches are that for a given location,
(i) it must be possible to obtain remotely sensed spectral imagery in the first place, and
(ii) the land surface process such as fertilizer application, presence of a pollutant load
attenuation best management practice like a detention pond or bioswale, and the receiving
water quality must all be ground-truthed with in-situ observations [22–24]. This means
that the vast potential of remote sensing can only truly be exploited in those areas where
atmospheric conditions are generally conducive to remote sensing, and where some access
to the watershed is possible. We leverage geospatial datasets containing information
on atmospheric conditions and accessibility to rank subwatersheds according to their
propensity to being amenable to remote sensing for water quality monitoring under a
variety of cost-payoff scenarios.

Reasons for the gap between the number of this assessment and monitored waterbod-
ies and the total number of waterbodies in the United states can include (i) applicability,
(ii) accessibility, (iii) resource constrains and (iv) socioeconomics. First, in most cases,
waterbodies might be located in remote, locations with minimal human development
and limited beneficial uses to society apart from preserving pristine natural beauty and
bounty. Second, there may be access issues due to rugged landforms, impassable land use
features and limited mobility networks which make monitoring difficult or even impos-
sible. Third, state, tribal and local agencies tasked with assessing and programmatically
attaining designated uses for waterbodies may be hampered by resource constraints that
make regular ambient monitoring and synoptic data collection difficult or even impossible
in all watersheds. Fourth, there may be environmental justice issues with impairment
being linked to socioeconomic and demographic conditions (e.g., [25]). In this paper, we
only look at the first three factors, as we are only interested in the technical constraints of
feasibility of using remote sensing for water quality monitoring and data collection here.
The advantage of remote sensing over conventional monitoring programs is that for areas
where the former is applicable, ground-truthing need not be performed very often, and in
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the overall life cycle of monitoring and data collection programs, can be significantly less
expensive to implement, particularly if public domain data and tools are used.

The paper is organized as follows: in Section 2, we describe our classification approach,
the datasets we used and the geostatistical methods we adopted. In Section 3, we showcase
the remote sensing potential map. In Section 4, we discuss where in the country gaps
need to be filled, given the potential for remote sensing by looking at the applicability and
accessibility of the subwatersheds and the intersection of quantified risks of impairment,
ecological vulnerability and lack of coverage. Finally, also in Section 4, we outline the
caveats in our approach, and chart our future trajectory in making these classifications
more robust and readily accessible to the watershed management community.

2. Materials and Methods

Our fundamental premise is that we can determine the potential of remote sensing
to be useful for ambient monitoring and synoptic data collection in a given waterbody by
mapping this potential at the USGS’ Hydrologic Unit Code 12 (HUC-12) subwatershed
scale. The HUC-12 subwatershed classification allows us to analyze watersheds at the
1:24,000 scale. At this scale, these subwatersheds typically contain four stream segments,
except in a few larger subwatersheds in the Northeast and the Great Lakes. We feel that
this spatial scale is sufficient to identify the potential for remote sensing, as the streams
encompassed within these subwatersheds are usually higher order distributaries or small
areal bodies with similar climate, land use and terrain characteristics. In total, there
are 102,973 HUC-12 subwatersheds in the conterminous United States. We discuss our
approach in Section 2.1 below.

We used numerous Geographical Information System (GIS) resources in this study
to map access, acquisition, constraints and risks of impairment. All GIS operations and
visualizations were performed in QGIS [26], while the model development was performed
in MATLAB [27]. In determining the potential for remote sensing and its applications,
we used existing accessibility and image acquisition conditions, and did not account for
the effects of land use and land cover change or climate change. After determining the
potential of remote sensing as a data source within each subwatershed, we subsequently
subset subwatersheds on the basis of applicability and resource constraints as described in
Section 2.2 below. We have listed all the datasets we used in these analyses in Table 2.

Table 1. Data sources used in this study.

Serial Number Data Use Source Location

1 Hydrologic Unit Class 12
subwatersheds

Smallest hydrologic
feature for analysis

National Hydrography
Dataset

https://www.usgs.gov/national-
hydrography/national-

hydrography-dataset (accessed on
20 April 2022)

2 Digital Elevation Model Hillshade and basemaps

Advanced Spaceborne
Thermal Emission and
Reflection Radiometer

(ASTER)

https://earthexplorer.usgs.gov
(accessed on 20 April 2022)

3 Cloud cover database Acquisition analysis EarthEnv https://www.earthenv.org/cloud
(accessed on 20 April 2022)

4 Time to cities Accessibility analysis Malaria Atlas Project

https:
//malariaatlas.org/research-
project/accessibility-to-cities/

(accessed on 20 April 2022)

5 United States
administrative boundaries Basemaps Census cartographic

boundary files

https:
//www.census.gov/geographies/

mapping-files/time-series/geo/
cartographic-boundary.html
(accessed on 20 April 2022)

https://www.usgs.gov/national-hydrography/national-hydrography-dataset
https://www.usgs.gov/national-hydrography/national-hydrography-dataset
https://www.usgs.gov/national-hydrography/national-hydrography-dataset
https://earthexplorer.usgs.gov
https://www.earthenv.org/cloud
https://malariaatlas.org/research-project/accessibility-to-cities/
https://malariaatlas.org/research-project/accessibility-to-cities/
https://malariaatlas.org/research-project/accessibility-to-cities/
https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
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Table 2. Cont.

Serial Number Data Use Source Location

6 Assessed waterbodies Evaluating assessment
gaps

Assessment and Total
Maximum Daily Load

Tracking and
Implementation System

(ATTAINS)

https://www.epa.gov/
waterdata/attains (accessed on 20

April 2022)

7 Population by HUC-12 Evaluating human
footprint EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

8

Agricultural, domestic,
industrial and

thermoelectric water
demand by HUC-12

(MGD)

Evaluating water supply
needs EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

9

Protected areas under the
International Union for
Conservation of Nature
and the United States

protected areas by
HUC-12 (% of land cover)

Evaluating conservation
need EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

10

Big game and bird
hunting, fishing, and

migratory bird watching
demand by HUC-12

(days/year)

Evaluating recreational
need EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

11
Vulnerability index of

native aquatic species by
HUC-12

Evaluating biodiversity
needs EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

12

Wastewater discharge
(MGD), total permitted

discharge, daily
agricultural runoff (mm)

Evaluating environmental
needs EnviroAtlas

https:
//www.epa.gov/enviroatlas
(accessed on 20 April 2022)

Although our analysis pipeline extends to Alaska, Hawaii and other minor islands
and United States protectorates, we have restricted all figures to only the conterminous
United States for simplicity. To illustrate the role of topography on various watershed char-
acteristics, in most figures, we have superimposed our analytical products on a hillshade
relief we generated from the 30 m resolution ASTER digital elevation model obtained from
the USGS Earth Explorer portal.

2.1. Potential for Remote Sensing as a Tool to Collect Data on the Subwatershed Scale

We used the mean annual fraction of cloudy days from the EarthEnv global cloud
cover model dataset [28] as a surrogate to indicate how likely it is to acquire remote sensing
imagery of a 1 Km2 scene and how hard it is to process this imagery for use (Figure 2a).
This dataset includes 1 Km resolution mean conditions between the period of 2001 and 2014.
We used the global map of minimum travel times from a location to a population center
(defined as a city or township with more than 50,000 people) produced by the Malaria
Atlas Project [29] as a surrogate for accessibility to a given 1 Km2 grid cell (Figure 2b). This
raster map is the outcome of a geospatial travel time model that takes existing road and
rail networks, land cover and 30 m resolution digital terrain models of the entire globe.
The combination of these two datasets, respectively indicate how likely it is to acquire a
scene remotely, and how easy it is to ground-truth reflectances to link the remotely sensed
data to land cover characteristics and water quality impairments. The tacit assumption
is that it will be possible for stakeholders tasked with managing the watershed to reach
any major population center, and then travel from there to perform in-situ sampling work.
To link these datasets to the hydrological units of interest, we used the USGS’ National
Hydrography Dataset’s (NHDplus) HUC-12 layer [3].

https://www.epa.gov/waterdata/attains
https://www.epa.gov/waterdata/attains
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
https://www.epa.gov/enviroatlas
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1 2–6 h 50–75% 
2 1–2 h 25–50% 
3 <1 h <25% 

Figure 2. Datasets used to model potential for remote sensing in watershed monitoring: (a) mean
annual fraction of cloudy days, and (b) maximum shortest travel time to population center within
each HUC-12 subwatershed. These quantities are surrogates for acquisition and accessibility of
remotely sensed scenes and in-situ data needed to ground-truth them.

We modeled the potential for using remote sensing for monitoring and data collection
within each subwatershed as the product of various categorical levels of τShortest

max , the
maximum of the shortest time to reach a population center from anywhere within the
subwatershed, and various categorical levels of µCloud Cover, the mean annual fraction of
cloudy days within the subwatershed. Within each subwatershed, we estimated τShortest

max
as the maximum over all pixels within the area of the shortest time to reach a population
center. We estimated µCloud Cover as the mean over all pixels within the area of mean annual
fraction of cloudy days. Thus, for the ith subwatershed, we have

PRemote Sensing,i = C
(
τShortest

max,i

)
×C(µCloud Cover,i) (1)

Here, the function C(·) assigns a category from 0 to 3 to both the acquisition (µCloud Cover)
and access (τShortest

max ) variables according to Table 3. 0 indicates a low potential for success, and
3 indicates the highest potential for success. The possible values of PRemote Sensing obtained
in this way are binned into four categories for ease of application: 0 (unsuitable), 1–3 (low),
4–6 (good), and 9 (excellent). We note that the numeric values of PRemote Sensing themselves
are only meaningful when they contribute to the different categories of “unsuitable,” “low,”
“good” and “excellent.”

Table 3. Cost-payoff matrix for modeling potential of remote sensing for watershed monitoring.

Category Accessibility: Shortest Time to
Population Center

Acquisition: Fraction Cloudy
Days Per Year

Conservative
0 >6 h >75%
1 2–6 h 50–75%
2 1–2 h 25–50%
3 <1 h <25%

Normal
0 >24 h >90%
1 6–24 h 75–90%
2 3–6 h 50–75%
3 <3 h <50%

Optimistic
0 >48 h >95%
1 24–48 h 90–95%
2 6–24 h 75–90%
3 <6 h <75%

As stakeholders in the watershed management domain may weigh the costs associated
with the logistics of travel to remote locations for in-situ ground-truthing of remote sensing
data, and the careful planning of periods when to collect in-situ data in conjunction with
clear sky days, we represented these weights in cost-payoff matrices to set the categorical
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values of the acquisition and access variables (Table 3). These weights effectively lower the
τShortest

max and µCloud Cover threshold values, respectively for the accessibility and acquisition
criteria for the different categories going from conservative to normal to optimistic estimates
of the cost-payoff relationships (Table 3).

For example, one regulatory agency may be willing to send an engineer on a six-hour
long journey to collect water quality data. So, any value of τShortest

max,i smaller than six hours
for a subwatershed within the jurisdiction of this agency would get a C

(
τShortest

max
)

value
of 3. Another agency may decide that it does not want its engineers to spend more than
one hour traveling to a remote site. In this case, the C

(
τShortest

max
)

for any τShortest
max larger

than one hour would be 2 or lower. Similarly, a consultant may be willing to invest the
effort into building robust processing pipelines to deal with largely cloudy scenes or invest
time and resources in data fusion-based cloud removal algorithms that are becoming more
popular across various platforms [30,31]. This consultant would perhaps be willing to
assign a C(µCloud Cover) value of 2 or higher for a subwatershed where the sky is likely
to be cloudy for almost 75% of the days in the year. Another consultant who is perhaps
geared to directly use analysis-ready products may assign a C(µCloud Cover) value of 3 for
their subwatershed only if the sky is likely to be clear for 75% of the days in the year. By
presenting maps of the categorical levels of the potential across a range of C(·) values, we
allow decision-makers to choose the cost-payoff level they are comfortable with to plan
their workflows accordingly.

2.2. Quantifying Benefits of Remote Sensing in Watershed Monitoring

We modeled the potential for remote sensing using Equation (1) and surrogates for
accessibility and acquisition. However, these maps in themselves provide only one piece of
the puzzle. It is only when the potential for watershed monitoring using remote sensing
is combined with risk maps and lack of coverage by conventional monitoring that areas
can be identified where remote sensing can play a crucial role. To do this, we developed
maps of five metrics of risk using published GIS data from the EnviroAtlas [32] (Table 2):
(i) the human footprint, (ii) anthropogenic water demand, (iii) ecosystem vulnerability,
(iv) impairment, and (v) conventional monitoring and assessment coverage gaps. As the
units of these metrics are different from one another, we simply overlaid these maps and
determined the intersecting areas to determine where the remote sensing role would be
most useful.

Human footprint: We collected the human population in each subwatershed. The
conventional wisdom is that impairment and watershed management matter most where
human settlements are prevalent. The subwatersheds populations were then ranked from
0 to 6 with decadal increase from less than 10 to more than one million people.

Anthropogenic water demand: We combined the domestic, agricultural, industrial and
thermoelectric water demand in each subwatershed to estimate the total water demand
from each subwatershed. Watersheds with greater demand are likely to experience larger
ecological deficit flows and a higher propensity for critical conditions of impairment. The
subwatershed demands were then ranked from 0 to 6 with decadal increase from less than
12,000 Gallons Per Day (GPD) [the per capital daily water demand is 1200 GPD estimated
by dividing the total water demand by the total population].

Ecosystem vulnerability: We combined three key ecosystem services with equal weigh-
tage to each to estimate an overall vulnerability index. First, we summed the average
number of days in a year that hunting, fishing, and recreational activities are typically
engaged in within a subwatershed to obtain a fractional recreation time, fRecreation. Large
values of this number indicate greater pressure for recreational activities. Second, we com-
bined the total fraction of land cover earmarked for conservation by both the International
Union for Nature Conservation (IUCN) and the United States Government, fConservation.
Large values of this number indicate that additional monitoring, assessment, and restora-
tion effort must be expended in these subwatersheds. Third, we collected the native aquatic
species vulnerability index, fVulnerability, a key measure of how many endangered, native
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species are threatened [33]. This index is also a proxy for ecosystem health in general.
Higher values of this index imply generally poorer ecosystem health. All these numbers
range from 0 to 1. The overall ecosystem vulnerability of the subwatershed is then

f = w
(

fRecreationIRecreation + fConservationIConservation + fVulnerabilityIVulnerability

)
(2)

where Ii is an indicator that can either be 0 or 1 depending on whether the service i, i.e.,
recreation, conservation or species vulnerability, is being provided by the subwatershed or
not, and w is 1, 0.5 or 0.33 if there are one, two or all three of the services being provided by
the subwatershed. The subwatersheds ecosystem vulnerability indicator was then ranked
0 for no vulnerability, and then from 1 to 4 in increments of 0.25.

Impairment risk: We developed subindex curves of the total wastewater discharge in
Million Gallons per Day (MGD), the total permitted pollutant load in pounds per year, and
the total agricultural overland, tile and non-tile subsurface runoff in mm as described in
Walsh and Wheeler [34]. We then combined these subindices using a maximum subindex
measure as the overall index of impairment within a subwatershed. This index was deemed
to represent the impairment risk in the subwatershed. To develop these subindex curves
the following approach was adopted: first, we summed the total load in each class, i.e.,
wastewater, permitted sources, and agricultural runoff, and divided it by the total surface
area of waterbodies within the watershed to normalize loads across subwatersheds. Then
we omitted zero values and obtained the 25th, 50th and 75th quantiles of these normalized
loads across all the subwatersheds in the country and assigned rank values from 0 to
4 depending on whether there was no impairment from that loading class to whatever
quantile range the normalized loads fell into. This effectively positioned the normalized
loads in each load class onto a subindex curve. Then, as the nature of impairment is likely
to vary depending on the dominant economic sector, human activity, and land surface
processes in each subwatershed, we took the overall impairment risk to be the maximum
of the three rank values. Thus, higher values of this index (ranging from 0 to 4) represents
higher risk of impairment.

Conventional monitoring and assessment coverage gaps: For each subwatershed, we es-
timated the total length of assessed stream segments, LStream, the total area of assessed
ponds, lakes, and estuaries, ABody, and the total number of monitoring stations, NStation,
from the Assessment and Total Maximum Daily Load Tracking and Implementation System
(ATTAINS) database [4]. A subwatershed was determined to have a monitoring gap if
LStream + ABody + NStation = 0.

Finally, we also produced a remote sensing monitoring potential map using the normal
cost-payoff estimates from Table 3 to indicate where remote sensing would be likely feasible.
Subwatersheds where the role of remote sensing is likely to be most crucial were then
classified as those that met the decision tree in Figure 3, that is, where all the layers after
suitable thresholding to represent various risks intersect with at least good potential for
remote sensing.
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Figure 3. Flowchart for estimating where the role of remote sensing will be crucial in watershed
management. The operation represents the intersection of geospatial layers. The numbers indicate
threshold values of various index levels.

3. Results

We show the maps of potential for remote sensing in monitoring within watersheds for
various cost-payoff scenarios in Figure 4. These potential rankings represent an interplay
between the ambient cloud cover (Figure 2a) and the maximum of the shortest travel
time to a population center (Figure 2b). The model predicts that when cloud cover is low,
and travel times are short, the potential is maximized. Conversely, when cloud cover is
high and travel times are long, the potential is inhibited. Typically, cloud cover is lowest
in the Southwest, and increases generally through the Central Plains towards the East
and is highest over the North and the Rockies and Appalachian mountains (Figure 2a).
Travel times are generally relatively low (less than three hours) on the Eastern and Western
seaboards, and throughout the Central plains and in the South, and increase to more than
six hours in the mountainous Rockies and the remote Midwest. These patterns are reflected
in the model.

Going from left to right in Figure 4, the expense of effort to build pipelines for occluded
images and changing light conditions is budgeted increasingly generously. This reflects in
the improved potential for remote sensing in more parts of the Mideast and East. Going
from top to bottom in Figure 4, the effort required to collect in-situ data for ground-
truthing is budgeted increasingly generously. This reflects in the improved potential for
remote sensing in more parts of the Southwest and the Midwest, until in the bottom right of
Figure 4, there is more or less uniformly high potential throughout the country. Nonetheless,
most of the California Central Valley, Southern California, and the Central Plains have
uniformly good to excellent potential under all cost-payoff scenarios, owing to generally
clear skies and short travel times.
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Figure 4. Modeled maps of the potential of remote sensing for data collection and monitoring of
watersheds under various cost-payoff assumptions. As the effect of cloud cover decreases (more
cloudy days are acceptable), more cloudy areas display higher potential. As the effect of access
decreases (longer travel times are acceptable), more remote areas display higher potential. Thin red
lines are state boundaries.

In Figure 5, we show the various risk metrics (a through e) and the associated remote
sensing utility map (f) by applying the flowchart in Figure 3 to each subwatershed in these
layers. Population centers, as expected, are generally concentrated near the major cities
on the Eastern and Western seaboards and in the Mideast and the Gulf of Mexico coast
(Figure 5a). The water demand generally tracks the population centers, except in California,
the Midwest, and the Central Plains subwatersheds from where water is diverted to other
places (Figure 5b). For instance, in California, water is gravity fed from reservoirs in the
North to consumers in the South. Almost everywhere in the United States, ecosystems are
vulnerable (Figure 5c). In most of the Midwest, this is likely due to large tracts of lands
being designated as protected zones, and in the Sierra Nevada mountains in the West,
due to ecological disasters by sustained drought and forest fires. Most of the population
centers on the Eastern and Western seaboard are polluted by wastewater and permitted
discharges, while the Central plains and Midwest impairments reflect of agricultural runoff
into the Mississippi River tributaries (Figure 5d). The ATTAINS database indicates that
most of the nation’s subwatersheds have at least some waterbodies that have been assessed.
But many subwatersheds in the United States-Mexico border region, the remote Midwest,
and the Rockies remain unassessed (Figure 5e). Based on a combination of these layers in
conjunction with the remote sensing potential model under the assumption of a normal
cost-payoff scenario (middle panel in Figure 4 and Table 3), several hotspots emerge banded
predominantly in the South and the North where remote sensing could be crucial, and often
perhaps the only source of assessment of the condition of these subwatersheds (Figure 5f).
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Figure 5. Predicted subwatersheds where the role of remote sensing could be crucial as the intersec-
tion of greater than good remote sensing potential, high impairment risk indicators, and low coverage.
Across subwatersheds, (a) population, (b) total water demand, (c) ecosystem vulnerability index, (d)
pollution entering streams and waterbodies, (e) water quality monitoring gaps, and (f) intersection of
these layers with normal accessibility and normal cloud cover cost-payoff model predicted higher
than good remote sensing potential subwatersheds (blue polygons).

It is evident from these remote sensing potential maps and the combination of risk
metrics and remote sensing potential that there are specific areas within the country where
watershed researchers and managers can beneficially leverage remote sensing data at
various spatial scales ranging from stream segment-reach to the subwatershed scale. By
allocating resources preferentially to occluded and poorly-lit scene imagery usage pipelines,
the potential for using remote sensing can be tremendously maximized. This is borne out
by rapidly improving potential going left to right in Figure 4, than by going from top to
bottom in Figure 4.

4. Discussion and Conclusions

We have presented a set of maps that chart the potential of remote sensing to augment
the monitoring and data collection in watersheds for land surface and water quality pro-
cesses. These are available for open source download in a Git repo [35]. To enable easy
access to, and visualization of these maps, the risk factors for impairment, and summary
statistics of the potential of remote sensing under various assumptions within the cost-
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payoff matrix, we have also developed an app [36] using Google Earth Engine [37]. This
app contains an interactive map within which the user can click on a specific subwatershed
of interest to obtain additional information (Figure 6). A summarization of this paper
is available as a guide to using the app in a separate panel. Once a subwatershed has
been clicked, a summary visual report will be generated, and the relevant information on
the impairment risk factors and the potential for remote sensing can be downloaded as
comma-separated value files.
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Additionally, we have shown how such maps can be modified within a cost-payoff
landscape to be truly customizable by watershed decision-makers. The cost-payoff analysis
also shows that improving the data processing pipelines for occluded and poorly lit scenes
can tremendously benefit the power of remote sensing (going left to right in Figure 4). By
combining the regions of high remote sensing potential with other risk factors describing
human footprint, impairment risk, ecosystem vulnerability, and conventional monitoring
coverage gaps, we can identify those subwatersheds where remote sensing is likely to have
the highest benefit, and in fact, likely be an integral source of primary data. Large areas
in the Southern United States, particularly in California, New Mexico, Texas, Mississippi,
Georgia, and the Carolinas, and sporadic watersheds in the Northeast and Northwest
seaboards (Washington and Maine) and the Midwest would likely benefit most from using
remote sensing for watershed monitoring (Figure 5f).

Our approach represents a seminal and necessary step in aiding the decision-making
process for resource-constrained regulatory agencies and contractors. By augmenting these
maps with other socio-economic geospatial data, deeper insights can be gained to tackle
challenges of environmental justice and equity. Rather than focusing on specific watershed
processes, impairments, and remote sensing platforms, we have developed a method of
assessing the general potential for remote sensing for whatever applications are envisioned
by system managers in their monitoring and data collection workflows. This approach
allows us to explore the benefits of remote sensing further, as (i) not all parts of the country
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are monitored regularly, and even when they are, in-situ monitoring costs can typically
exceed several hundred thousands of dollars a year within a small watershed [38], and (ii)
remote sensing can provide long-term cost savings. Remote sensing potential maps could
be constructed for specific applications outlined in the introduction by suitably modifying
the factors considered in the model presented in Section 2.1. For example, if a consultant
proposes a data fusion pipeline using Sentinel 2, MODIS, and Planet imagery [39] to study
watershed health, heavy metal concentrations in a nearby lake, and the role of watershed
best management practices, then the principal costs of image acquisition will likely be the
cost of procuring high-resolution Planet imagery, while in-situ monitoring costs will likely
be driven by personnel costs rather than access time.

There are several caveats to the maps we have produced here. First, the assumptions
built into the EarthEnv cloud cover and the Malaria Atlas travel time databases carry over to
our maps. While these data sources are excellent for global coverage at the kilometer-scale,
our pipeline may be refined with source DEMs and spectral imagery for specific watersheds
to systematically downscale our national coverage maps. The shortest time to reach a
population center, while somewhat ad-hoc, is an appropriate metric to characterize the
difficulty of ground-truthing remote sensing imagery because typically waterbodies outside
major population centers are not monitored. However, as we show in Figure 5d, such areas
are also at high risk of impairment. Second, our remote sensing potential model is extremely
simple and steady state, and yet captures the underlying tradeoff between scene acquisition
and ground-truthing. Within a watershed, multiple process-scales exist, ranging from
storms and coastal upwelling events that happen on hourly to daily timescales, land use
and land cover changes that happen on annual to decadal timescales, and landform changes
that happen over many decades to centuries [40]. Our maps do not factor in these different
timescales. More sophisticated models, including spatial kriging approaches and Gaussian
process models that incorporate seasonal variability in scene acquisition and travel time
can be developed. Cloud cover, for instance, can vary seasonally so that even in areas
with many cloudy days, there can be periods with clear skies during which period field
campaigns could be planned. We do not capture such nuances here. For simple applications
that require only a single remote sensing image such as a National Agricultural Image
Program [41] or LandSat scene, cloud cover may not even be an issue if the acquisition
window can be carefully determined. Although many non-dimensional metrics for land
use and land cover classification for characterizing the environment can be derived from
multi- and hyperspectral imagery in most locations within the United States, as we showed
in Figure 1, there are still significant data gaps that require physical ground-truthing for
which our maps will be useful. Third, we have operated at the HUC-12 subwatershed scale
in this project for computational tractability. However, much finer reach-scale resolution
of the impaired waterbodies can be incorporated within our pipeline by combining the
NHDplus and ATTAINS datasets using cloud platforms such as Google’s Earth Engine [37].
Fourth, our thresholds for cloud cover and minimum travel time to population centers
for the various cost-payoff scenarios are somewhat arbitrary, but still indicate sensible
and meaningful trends in the remote sensing potential maps. This is a reflection of the
fact that we have sacrificed specificity to different remote sensing technologies for the
generality of our guidance maps. These thresholds can be more rigorously defined for
different types of remote sensing platforms by combining the atmospheric conditions and
ground-truthing needs of specific technologies. Fifth, while we have chosen risk metrics
that largely encompass most risk factors for watershed impairments, a more thorough
exploration of available datasets, particularly socioeconomic data, is possible to identify
other, transdisciplinary benefits of remote sensing within a watershed. It is likely that such
exhaustive inclusion must be done on a local municipal, county, or state scale than on the
national scale for disparate factors to sensibly be combined at meaningful physical scales.
In subsequent iterations of these products, we will tackle these advances. Sixth, we only
considered terrestrial subwatersheds in our current pipeline, and excluded all coastal and
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Great Lakes impairments. In subsequent iterations of these maps, we will include these
areas as well.

While we have developed the pipeline for the United States, a similar workflow could
be developed anywhere in the world, or even for the entire planet. The only consideration
is that while Earth Explorer, the United States Environmental Protection Agency, and the
EnviroAtlas catalog a wide array of geospatial datasets for immediate use, such data may
be difficult to find in the international landscape, and may have to be stitched together from
disparate sources of information. Nonetheless, for any serious, reproducible, and scalable
application of remote sensing for monitoring and data collection on watershed loads and
impairments, this is a necessary first step. For the first time ever, a product is available that
will allow researchers and managers to evaluate the potential of remote sensing to augment,
or even fulfill ambient monitoring and data collection needs throughout the United States.
We hope that our maps will be useful for the watershed managers within the United States,
even as we continue to improve them with finer granularity and additional factors.
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