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Abstract: The variability of the 12S gene fragment of the mtDNA for taxa belonging to subgenus
Daphnia (Daphnia) O.F. Müller, 1776 (Crustacea: Cladocera) in NE Russia is studied, and their phylo-
genetic analysis performed. We identified (based both on morphological and molecular data) nine
species belonging to four species complexes, namely: (A) D. longispina s.l.: (1) D. longispina O.F. Müller,
1776; (2) D. dentifera Forbes, 1893; (3) D. galeata Sars, 1864; (4) D. umbra Taylor, Hebert et Colbourne,
1996; (B) D. cristata s.l.: (5) D. cristata Sars, 1862; (6) D. longiremis Sars, 1862; (C) D. curvirostris s.l.:
(7) D. curvirostris Eylmann, 1887; (D) D. pulex s.l.: (8) D. pulex Leydig, 1860; (9) D. middendorffiana
Fischer, 1851. Rare arcto-mountainous taxon D. umbra was found in the mountains of the Sakha
(Yakutia) Republic for the first time. Species diversity in NE Asia is relatively low, and the most
revealed taxa are trans-Beringian. We also performed a phylogeographic analysis of D. dentifera and
D. pulex s.l., the two most common species in NE Russia. Our new data allow us to assume that the
daphniids of NE Asia have undergone various evolutionary scenarios during the Pleistocene period:
survival is within some local refugia, and re-colonization from these areas and from North America
through the Beringian land bridge, etc. We agree with previous authors who revealed that the
patterns in the studied species groups are relatively recent (of Late Pleistocene or even Holocene age),
although the main phylogenetic daphniid lineages (mainly congruent with the biological species)
are very old. Our results provide convincing evidence for the hypothesis that NE Russia is a very
important source of modern haplotypic diversity for the cladocerans.

Keywords: Daphnia; species diversity; 12S gene; phylogeography; evolution history; subarctic;
Beringian zone; Russia

1. Introduction

The biodiversity in continental waters has undergone intensive studies recently, i.e.,
due to an understanding of the need for its conservation and its dramatic decline due to
human activity [1,2]. It is obvious that we need to “enhance the taxonomic, ecological and
genomic knowledge of freshwater organisms to increase the efficient monitoring across
organismal groups and geographical areas” [3]. However, there still are large regions with
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inadequately studied freshwater biodiversity due to their remoteness and low human
population, which, as a result, are almost non-transformed by man to date. Arctic and
subarctic zones are among such regions, and it is well-known that their continental water
bodies (as well as communities of organisms inhabiting them) are fragile and especially
vulnerable to harmful human impacts [4,5].

The biodiversity in the arctic–subarctic hydrobionts is relatively low compared to
other regions [4,6]. An especially interesting portion of the arctic–subarctic is the Beringian
zone, which has had a very important role in the history of the freshwater ecosystems of
Eurasia and North America. In the geological history of the Earth, the two continents were
interconnected several times by a wide land bridge, Beringia [7,8]. The Beringian region
has a special role in the zoogeography of different animal groups [9,10], i.e., because it
served as a refugium for terrestrial and freshwater fauna during the coldest phases of the
Pleistocene [11,12]. Note that the Beringian region is bound to the east by the Mackenzie
River in Canada and in the west by the Lena River in Russia; therefore, all of NE Siberia
belongs to this zone.

Water fleas (Crustacea: Cladocera) are dominant in the different types of continental
water bodies in all climatic zones [13]. The recent intensification of such works in NE
Asia is explained by the influence of global climate changes and anthropogenic impacts
on high altitude ecosystems. However, all such investigations are based on the morpho-
logical analysis only [14–24]. Several recent investigations have demonstrated a special
significance of the Beringian region in the cladoceran phylogeography, i.e., as a center
of dispersion of some taxa through the whole of Eastern Asia [25–27]. Additionally, the
region is populated by endemic taxa [28] and very locally distributed phylogroups of
widely distributed taxa [25,26]. Moreover, a trans-Beringian distribution is demonstrated
for several cladoceran taxa or phylogroups [29,30]. Some endemic phylogroups revealed by
molecular biologists still are waiting for their formal description as new species [29,31,32].

Usually, the genus Daphnia O.F. Müller is among the best studied freshwater microfau-
nal groups in the world and a model group for the study of biogeographic patterns [33–36].
Several taxa were studied in detail in east Beringia [37,38]. However, despite the impor-
tance of the genus, our knowledge of the exact species composition, genetic diversity
and phylogeography of its representatives in NE Russia are rather intuitive and inade-
quate. Populations from several species groups such as D. pulex [39–41], D. magna [27]
and D. curvirostris [26,42] were analyzed in the course of previous trans-Holarctic studies,
but west Beringia was never an object of study of the genus diversity based on molecular
phylogenetic methods.

The aims of this study are: (1) to investigate the species diversity of Daphnia from
different water bodies of NE Russia (Beringian zone); (2) to reconstruct the phylogenetic
relationship between the species; (3) to provide preliminary data on their demographic
history. We expect that our study will contribute to a more complete understanding of
the specific and haplotype Daphnia diversity and distributions across the whole northern
portion of the Holarctic.

2. Materials and Methods
2.1. Ethic Statement

Field collection on public property in Russia does not require permissions. Verbal
permission to collect in private farm ponds was obtained from local owners. Sampling in
the natural reserves of Russia was conducted with special permission of their directors
(A.L. Strelnikov, Komandorsky State Natural Reserve; T.I. Shpilenok, Kronotsky Biosphere
Reserve).

2.2. Sampling and Used Material

Zooplankton samples were collected using the Apstein-type plankton net (125 µm
mesh size) during summer seasons of 2017–2020. Immediately after collection, the samples
were fixed by 96% ethanol and stored at –20 ◦C. Different water bodies were situated mainly
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in the Russian part of the arctic–subarctic zone, mostly from the Beringian region: Bering
Island, Kamchatka Peninsula, Chukotka Peninsula, Magadan region and Sakha (Yakutia)
Republic (Figure 1, Table S1). Daphnia specimens were identified to species level according
to modern keys [43].
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Figure 1. Map of the Daphnia sampling localities and species distribution in the water bodies of
Russian part of the arctic–subarctic zone; red circle—D. longispina s.str., yellow circle—D. dentifera,
upside black triangle—D. galeata, red triangle—D. umbra, blue square—D. cristata, turquois square—
D. longiremis, blue diamond—D. curvirostris, black triangle—D. middendorffiana, green triangle—
D. pulex. Numbers of sampling sites correspond to Table S1.

2.3. DNA Sequencing

Previous to DNA extraction, each Daphnia specimen was photographed in lateral view
using an Altami microscope (Altami, Russia, under 4× and 10× magnification) in order to
document its body and head shape. Genomic DNA was extracted with a 5% suspension
of Chelex 100 resin (Bio-Rad, Hercules, CA, USA) from single ethanol-preserved Daphnia
specimen. Two to twelve individuals per population were selected for mitochondrial DNA
analysis. Fragment of the 12S ribosomal RNA of the mtDNA were amplified for each
specimen. The PCR conditions and protocols were identical to those used by Zuykova
et al. [44,45]. The PCR products were separated on 1% agarose (low EEO standard agarose,
BIOZYM, Moscow, Russia) with ethidium bromide and photographed under UV light. The
amplified products were purified using a kit from BIOSILICA (Novosibirsk, Russia) and the
samples were sequenced in both the forward and reverse direction at the company “Syntol”
(Moscow, Russia). The nucleotide sequences were automatically aligned using the ClustalW
v.2.0 [46] and MAFFT v.7 algorithms [47] and then manually edited with BioEdit v.7.0 [48]
when it was necessary. Total of 159 nucleotide sequences of 567–572 bp fragment of the 12S
gene were newly obtained and were deposited into the GenBank database according to
revealed haplotypes under accession numbers OL333450-OL333526, OL333529-OL333532
and ON713422 (Table S1).
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2.4. Phylogenetic Analyses

Reconstruction of the phylogenetic relationships based on the fragment of the 12S gene
of the mtDNA between the Daphnia species from the water bodies of NE Siberia included
three stages. First, we needed to identify their position in the general subgenus phylogeny
(i.e., within D. longispina and D. pulex complexes). For this, we used both original and
NCBI GenBank sequences. Second, it was necessary to assess the 12S phylogeny for each
complex separately to obtain more suitable schemes (i.e., because particular substitution
models could be different from a general model). The D. cristata–longiremis group was
used as an outgroup for the D. longispina complex, while D. ambigua sequences were used
as an outgroup for the D. pulex complex. Third, we tried to detect relationships between
haplotypes among widespread Daphnia species, which were most common in water bodies
of NE Russia. In this analysis the additional 12S sequences of D. dentifera were involved. In
sum, 194 sequences from the NCBI GenBank database were used (see Table S2).

The best fitting models of nucleotide substitution for the 12S dataset were selected
in jModelTest v.2.1.7 based on the likelihood scores for 88 different models and under
the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) [49,50].
The best models were Tamura 3-parameter with invariant sites and gamma distribution
(T92+I+G, б = 0.308; Tamura, 1992) and general time reversible with invariant sites and
gamma distribution (GTR+I+G, б = 0.610; [51]). The phylogenetic trees based on the 12S
dataset were reconstructed in MEGA v.7.0.26 using the maximum likelihood (ML) algorithm
with pairwise deletion of the gaps and missing sites [52]. One thousand bootstrap replicates
were run to assess the statistical support for the tree nodes [53].

Bayesian analysis was performed with MrBayes v.3.2 [54] under the GTR+I+G model.
Two simultaneous runs with four Markov chains each were run for 1 × 106 generations
and sampled every 500 generations. The first 25% of generations were discarded as burn-in.
Convergence of runs was assessed by examination of the average standard deviation of
split frequencies and the potential scale reduction factor. In addition, a stationarity was
confirmed by examining posterior probability, log likelihood, and all model parameters
by the effective sample sizes (ESS > 500) and trace plots of MCMC output in the program
Tracer v.1.7 [55]. The 12S datasets for the D. longispina and D. pulex complexes were tested
for redundancy and saturation and were collapsed into haplotypes using METAPIGA
v.3.01 [56]. In addition, the circular trees using SeaView v.5.05 [57] were constructed for the
D. dentifera and D. pulex–D. middendorffiana.

The haplotype networks were constructed by the median-joining method (MJ) [58]
using Network v.5.0 (available on www.fluxus-engineering.com, accessed on 1 May 2022 )
based on the 12S sequences for widespread species in water bodies of NE Russia D. dentifera,
D. pulex and D. middendorffiana.

Based on the phylogenetic reconstruction and the haplotype networks, unique haplo-
types of Daphnia from NE Russia only were identified.

Evolutionary distances (uncorrected p-distances) were estimated among and between
Daphnia species in MEGA v.7.0.26 [52]. This analysis was carried out for all Daphnia species,
including sequences, obtained from the GenBank database. The mitochondrial DNA
polymorphism for the studied species and clades of D. longispina s.str. was estimated for
12S dataset, which consists of only original nucleotide sequences; the following parameters
were calculated: the number of haplotypes (h), number of segregating sites (S), haplotype
diversity (Hd) and nucleotide diversity (π) using DnaSP v.5.10 [59]. The neutrality tests of
Fu’s FS [60] and Tajima’s D [61] were performed with Arlequin v.3.5.2.2 [62] to investigate
the historical population demographics in water bodies of NE Russia and test whether the
sequences conformed to the expectations of neutrality. The significance of these tests was
proved using the coalescent simulation with 1000 permutations.

www.fluxus-engineering.com
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3. Results
3.1. Mitochondrial Phylogeny and Haplotypes Distribution

Nine species were identified morphologically in the water bodies of NE Siberia be-
longing to the subgenus Daphnia (Daphnia) O.F. Müller, 1776, namely:

(1) D. longispina O.F. Müller, 1776 s.str.;
(2) D. dentifera Forbes, 1893;
(3) D. galeata Sars, 1863;
(4) D. umbra Taylor, Hebert & Colbourne, 1996;
(5) D. curvirostris Eylmann, 1887;
(6) D. cristata Sars, 1862;
(7) D. longiremis Sars, 1862;
(8) D. middendorffiana Fischer, 1851;
(9) D. pulex Leydig, 1860 s.l.

The most common and widespread species were D. dentifera, D. middendorffiana and
D. pulex s.l.

The function of Figure 2 is to demonstrate the position of the original sequences in the
general tree of Daphnia (Daphnia) based on the original and the GenBank data, therefore
we do not discuss such phylogeny as it is identical to that previously obtained by many
authors [33,45]. The tree topologies are identical in both analyses. According to BI and ML
analyses, all new 12S sequences from NE Russia were also clearly subdivided into nine
large clusters corresponding well to the morphological species. All 12S sequences (original
and GenBank) form two large, well-supported monophyletic clusters corresponding to the
D. longispina and D. pulex complexes; separate trees for each complex are represented in
Figure 3A,B.

There are divergent mitochondrial lineages (subclades) within all specific clades with
branch support up to 100%, except for D. cristata and D. longiremis that are represented by
few sequences. Conventionally, the D. longispina sequences form two well-supported sub-
clades, “Siberian” (A) and “European” (B); all new haplotypes from Yakutia and Evenkiya
belong to the “Siberian” one (Figure 3A). Several earlier derived subclades are found within
the D. dentifera cluster consisting of the haplotypes from the Kamchatka Peninsula and
Sakha (Yakutia) Republic. Within D. galeata, the divergent subclades are formed by the
haplotypes from the water bodies of Yakutia and Irkutsk Area. The haplotypes of D. umbra
from a single lake in Sakha (Yakutia) Republic also form a well-supported distinct subclade
(Figure 3A). The 12S haplotypes of D. curvirostris s.str. are divided into two divergent
subclades consisting of the haplotypes from Yakutia and the Novosibirsk region, and Tuva
Republic.

In the tree of the D. pulex complex, D. pulex s.lat. sequences are grouped into four large
subclades, LI–LIII plus D. cf. pulex from Japan. (Figure 3B). Note that the D. pulicaria Gen-
Bank sequences have an unclear position in the 12S phylogenies; moreover, the specimens
of D. pulicaria AY626355 from Germany and D. pulex JN903685 from Russia (Chany Lake)
are combined into a distinct subclade associated with the D. middendorffiana specific cluster
(Figure 3B). D. middendorffiana is represented by two subclades, with one of them endemic
to the Sakha (Yakutia) Republic, while the second is widely distributed in the subarctic of
Eurasia. Such taxa as D. obtusa, D. parvula, D. izpodvala and D. ambigua are not found in the
region.



Water 2022, 14, 1946 6 of 18

Figure 2. Bayesian phylogenetic tree for the Daphnia species based on the 12S sequences (original and
obtained from the GenBank database, Table S2). Bayesian posterior probabilities BI and bootstrap
values from ML analysis above 72% expressed as a percentage are indicated for each significant node;
red *—new nucleotide sequences; blue—ambiguous specific status of the GenBank sequences. Scale
is given in expected substitutions per site.
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The 12S circular phylogenetic tree of D. dentifera (the most widespread species) con-
firms that all 12S haplotypes are subdivided into four haplogroups: I (Japan–USA); II
(Japan–China–USA), III (Russia–Mongolia) and IV (Japan–Canada, USA) (Figure 4A). Re-
markably, no 12S haplotypes of D. dentifera within Russia–Mongolia and Japan–China
(Tibet) –North America were found, while three clades had a trans-Beringian distribution.
The 12S haplotypes forming subclade IV (Japan–USA–Canada) are closely related to those
distributed in Kamchatka (the Beringian region) and the Baikal basin (Figure 4B).The central
12S haplotype of clade III (H1) occurs in eastern Siberia (Yakutia and the Baikal basin) and
Kamchatka, while clade IV also has a central haplotype present in the USA and Canada
but absent in Japan (Figure 4B). Note that unique regional haplotypes of D. dentifera are
found in Yakutia, Mongolia and Chukotka.
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Similarly, the 12S circular phylogenetic tree of D. middendorffiana–D. pulex (Figure 5A)
reveals four haplogroups: D. middendorffiana (Dm) and three others comprised of the
D. pulex haplotypes (Dp_I, Dp_II, Dp_III). Several ambiguous 12S sequences of D. pulex
and D. pulicaria belong to the divergent mitochondrial lineages II and III (Figure 2). The
12S median-joining network of the D. pulex haplogroup Dp_II has a very characteristic
star-like pattern with the central haplotype H16, which occurs in the Russian part of the
arctic–subarctic zone (Kamchatka, Chukotka, Yakutia), western Siberia, Western Europe,
the USA and even Africa (Figure 5B). The haplotypes from New Zealand and the USA are
closely related with the central haplotype. However, the haplotypes from the Magadan
Area (H14, H16–H20), which is an adjacent region to Kamchatka and Chukotka, form a
distant haplogroup; also, the haplotype H15 in this area is a very specific one.
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clade (B) and D. middendorffiana clade (C). The scale is given in expected substitutions per site.

The median-joining network of D. middendorffiana (Dm) haplotypes is more reticulated:
the haplotypes are subdivided into four groups with central haplotypes H4, H6, H7 and
H8 (Figure 5C). Two groups exclusively consist of the haplotypes from Chukotka; the third
group is formed by the haplotypes from Chukotka, Yakutia and the Pechora River (H1,
KY196421), and the central haplotype is found in Chukotka only. The fourth group consists
of the haplotypes from Yakutia and the Magadan area (Figure 5C).

3.2. Mitochondrial Polymorphism, Evolutionary Distances and Neutrality Tests

Evolutionary divergence (under uncorrected p-distances over the 12S sequence pairs)
within and between studied Daphnia species belonging to different specific complexes
is high (up to 24.1%, D. pulex LIII–D. dentifera, Table 1). P-distances between species
within each complex are smaller, 2.0–7.8% in the D. longispina complex) and 3.2–17.2%
in the D. pulex complex. In regards to certain species, the highest values for p-distances
are found in D. obtusa—6.3% (Table 1). The highest values are also registered for such
species and mitochondrial lineages as D. curvirostris (0.9%), D. pulex LIII (1.0%), D. umbra
(1.1%), D. middendorffiana (1.2%), D. ambigua (1.3%) and D. pulex LII (1.9%). Evolutionary
divergence within D. cristata and D. longiremis is the lowest—0.1%.
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Table 1. Evolutionary divergence over sequence pairs within and between Daphnia species (below
the diagonal—uncorrected p-distances, %; above the diagonal—standard error estimates) based
on the full 12S dataset (original sequences plus GenBank). The analysis involved 295 nucleotide
sequences. Note: 1—D. longispina s.str. “Siberian” clade A; 2—D. longispina s.str. “European” clade
B; 3—D. dentifera; 4—D. galeata; 5—D. umbra; 6—D. curvirostris; 7—D. cristata; 8—D. longiremis; 9—
D. middendorffiana; 10—D. pulex LIII; 11—D. pulex LI; 12—D. pulex LII; 13—D. parvula; 14—D. obtusa;
15—D. ambigua.

Within
Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.3 ± 0.1 0.5 0.7 1.0 1.3 1.5 1.5 1.5 1.6 1.6 1.6 1.7 1.6 1.5 1.6
2 0.7 ± 0.2 2.0 0.7 1.0 1.2 1.5 1.5 1.5 1.6 1.6 1.6 1.7 1.6 1.5 1.6
3 0.3 ± 0.1 3.5 3.5 1.1 1.2 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1.6 1.5 1.6
4 0.6 ± 0.2 7.1 7.9 7.8 1.3 1.6 1.5 1.5 1.6 1.6 1.6 1.7 1.7 1.5 1.6
5 1.1 ± 0.3 12.7 12.9 12.4 13.3 1.4 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.6 1.6
6 0.9 ± 0.2 18.2 17.7 18.1 18.6 18.2 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.5 1.6
7 0.1 ± 0.1 17.3 17.8 17.6 17.1 18.5 18.2 1.3 1.6 1.5 1.6 1.6 1.6 1.4 1.4
8 0.1 ± 0.1 18.8 18.5 19.4 18.1 18.9 19.2 11.9 1.6 1.6 1.6 1.6 1.6 1.5 1.6
9 1.2 ± 0.2 22.3 22.7 22.6 21.6 21.2 21.7 19.8 19.3 0.9 1.0 0.6 1.4 1.2 1.4
10 1.0 ± 0.1 23.0 23.7 23.1 22.2 21.7 22.7 19.5 20.7 5.9 1.0 0.6 1.4 1.3 1.4
11 0.4 ± 0.2 23.1 23.6 23.1 22.5 22.6 22.7 19.8 20.7 7.4 6.9 0.9 1.3 1.3 1.5
12 1.9 ± 0.5 23.8 24.3 24.1 22.4 22.1 23.0 21.1 20.3 3.2 6.2 7.6 1.5 1.2 1.4
13 0.2 ± 0.2 22.7 23.1 23.1 23.8 24.1 21.3 20.5 20.0 14.0 14.3 12.6 15.0 1.3 1.4
14 6.3 ± 0.7 22.0 22.2 22.2 21.7 22.5 19.1 18.1 18.7 12.7 13.0 13.1 13.4 11.8 1.5
15 1.3 ± 0.2 21.5 22.1 22.7 22.5 21.7 21.7 18.1 20.2 14.9 16.2 17.1 16.1 17.2 16.1

The level of polymorphism based on the fragment of the 12S gene of the mtDNA
was different for the studied Daphnia species. Only one species is characterized by the
relatively low level of genetic polymorphism—D. cristata (Table 2). All studied species
except for the abovementioned and D. longiremis have a large number of the haplotypes (h)
and polymorphic sites (S). The highest haplotype diversity (Hd) and nucleotide diversity
(π) values are found in the “European” clades of D. longispina s.str., D. galeata, D. umbra,
D. curvirostris, D. middendorffiana and D. pulex. The “Siberian” clades of D. longispina s.str.,
D. dentifera and D. longiremis are characterized by relatively high Hd values at lower π

values (Table 2).

Table 2. Polymorphism of the 12S gene fragment of mtDNA for Daphnia species and neutrality tests
based on original sequences only. Note: n—number of sequences used; S—polymorphic (segregating)
sites; h—number of haplotypes; Hd—haplotype (gene) diversity; π—nucleotide diversity; st.d.—
standard deviation; * p < 0.05, *** p < 0.001.

Species n h S Hd ± st.d. π ± st.d. Tajima’s D Fu’s FS

D. longispina s.str. clade A 20 8 10 0.805 ± 0.070 0.0029 ± 0.0007 −1.421 −2.851 *
D. longispina s.str. clade B 4 4 8 1.000 ± 0.177 0.0073 ± 0.0016 −0.446 −0.768

D. dentifera 45 16 22 0.665 ± 0.080 0.0032 ± 0.0006 −2.087 ** −9.913 **
D. galeata 18 11 20 0.915 ± 0.050 0.0064 ± 0.0011 −1.462 −3.550 *
D. umbra 9 5 12 0.833 ± 0.098 0.0095 ± 0.0013 1.045 1.386

D. curvirostris 15 8 21 0.848 ± 0.071 0.0103 ± 0.0016 −0.377 0.278
D. cristata 16 5 4 0.533 ± 0.142 0.0011 ± 0.0003 0 1.061

D. longiremis 8 3 2 0.607 ± 0.164 0.0012 ± 0.0004 1.826 13.378
D. middendorffiana 43 17 34 0.907 ± 0.029 0.0115 ± 0.0006 −0.113 −0.047

D. pulex 73 40 130 0.941 ± 0.019 0.0231 ± 0.0045 −2.293 ** −5.486 **

Most of the studied Daphnia species are characterized by negative values of Tajima’s D
and Fu’s FS tests (Table 2). Positive (but insignificant) values of Fu’s FS test are registered
for D. cristata and D. longiremis. The significant negative values for both neutrality tests are
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found in D. dentifera and D. pulex, and for Fu’s FS for the “Siberian” clade of D. longispina
s.str. and D. galeata (Table 2).

4. Discussion
4.1. Comments of Revealed Species and Phylogroups

Most species of D. longispina s.l. are well-known from the region (see above). D. longispina
s.str. haplotypes from Eurasia are clearly divided into two clades—A (“Siberian”) and B
(“European”) with different evolutionary histories [38,63]. As was expected, clade B is absent
in NE Russia. However, our previous conclusion that the distribution of the “Siberian” clade
A in the eastern direction is limited to the basin of the Yenisei River is now thrown into doubt
by our results as few populations of this clade were noted in the Sakha (Yakutia) Republic.
However, the finding of a single haplotype here may be evidence of recent dispersion or
incidental drift.

In contrast, D. dentifera haplotypes are widespread in the water bodies of the north-
eastern part of Russia, from Kamchatka to the western portion of the Sakha (Yakutia)
Republic, and some of them are divergent mitochondrial lineages. In addition, the coexis-
tence of D. longispina s.str. (haplotypes of the “Siberian” clade A) and D. dentifera is detected
in two water bodies (Lake Baikal basin and Central Yakutia). Thus, our assumption that
the Baikal region and Yakutia could be a contact zone of two vicariant species, D. longispina
s.str. and D. dentifera [63], is confirmed by these data.

The most studied D. galeata haplotypes belong to a widely distributed clade in Eurasia,
and such haplotypes are common in NE Siberia. Within this cluster, specific mitochondrial
lineages are detected in the water bodies of Yakutia, Evenkiya and the Irkutsk area. Two
earlier derived deeply divergent haplogroups are found: the first is from Tuva (Central
Siberia) and was already recorded by Zuykova et al. [44,64]; the second one is a newly
found basal lineage of D. galeata s.lat. from the Sakha (Yakutia) Republic. Its status must
be specially checked as it could represent a separate biological species, endemic to eastern
Siberia.

D. umbra from Vorota Lake (located at 1109 m.a.s.l. in the Sakha (Yakutia) Republic
represents an interesting new record. This species was detected in the Canadian and
European arctic–subarctic, the western portion of eastern Siberia [63], the mountains of
Kamchatka Peninsula and the mountains of south Siberia [65]. Our finding confirms the
ideas of its arcto-mountainous distribution, covering all the arctic–subarctic regions of the
Holarctic (although being rare in all of this huge territory). This finding also supports our
hypothesis of a strong effect of the Pleistocene glaciation on populations of this species [45].
Most probably, this species was distributed on the entire territory of the northern Holarctic
and differentiated during the pre-Pleistocene epoch. A similar hypothesis was proposed
for its sister species, D. lacustris [66]. Deeply divergent mitochondrial lineages within the
D. umbra (clearly seen in the 12S tree, see Figure 3A) are consistent with the idea of the
long-term isolation of separate populations in some Pleistocene glacial refugia, i.e., in the
mountain valleys [45].

We did not discuss D. curvirostris here as it was revised in detail previously [26,42], and
the resolution of our tree is strongly lower than that in the two aforementioned publications.

Closely related species D. cristata and D. longiremis are also detected in the north-
eastern part of Russia (Chukotka and Yakutia), but only few sequences were obtained and
a further study of these taxa is necessary for adequate conclusions.

As mentioned above, species of the D. pulex complex are widely distributed in the
arctic–subarctic water bodies of Eurasia and North America. D. middendorffiana and D. pulex
are investigated studied using molecular genetic methods [40,41,67–71]. The analysis of
the variability of the mitochondrial DNA gene fragments (COI, ND4 and ND5) within
the D. pulex complex allow the detection of four to 12 deeply divergent lineages, which
were characterized by different demographic histories and origins [41]. Moreover, the
phylogenies reconstructed in these studies [41,67] are similar to the 12S phylogeny that is
obtained above.
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Generally, all studied D. pulex-like haplotypes are separated into three large distinct
mitochondrial subclades, supporting the earlier hypothesis that this taxon includes several
closely related species [43]. However, only a single large clade LII is detected in NE Siberia,
the 12S haplotypes belonging to it are widely distributed in water bodies here. This clade
is congruent with the “panarctic D. pulex” of Crease et al. [41] detected based on the
mitochondrial ND5 gene; the latter authors have already reported this clade from this
region. In reality, the “panarctic D. pulex” of Crease et al. [41] is a very widely distributed
mitochondrial phylogroup rather than a biological species. Based on our data, we also
cannot discuss a possible hybrid status of some our specimens and/or populations. Several
specimens of D. pulex and D. pulicaria from the GenBank have ambiguous specific status.
Our assumption is based on their uncertain and unclear positions in phylogenetic trees. In
particular, it should be noted that two specimens of D. pulicaria from Canada (AY626354)
and Japan (LC534941) are associated with the D. pulex LII mitochondrial clade, which also
includes 12S haplotypes from Kamchatka, Chukotka, Yakutia; as well as D. pulex from
Russia (JN913685) and D. pulicaria from Germany (AY626355), which formed a distinct
subclade within D. middendorffiana clade on the common phylogenetic tree. All the studied
populations have a pulex-like morphology, but real specific status of each population must
be checked with this based on nuclear genes.

D. middendorffiana is very common in the water bodies of Chukotka and Yakutia and
several divergent mitochondrial lineages were found within this specific cluster. This fact
suggests that this taxon (in common with D. pulex) is also actually a mix of species and
needs careful taxonomic revision.

In toto, we reveal nine morphospecies of Daphna (Daphnia) in NE Russia. This number
is lower than in more southern regions, like Southern Europe [72], South Siberia [63] and,
especially, the Far Eastern endemic zone [26]. The following taxa are very common taxa
in Northern Eurasia, but not found in our study: D. cucullata Sars, 1862; D. obtusa Kurz,
1874; D. pulicaria Forbes, 1893. Note that these species were also not recorded by the
morphological methods from Chukotka Peninsula [15], Central Yakutia [20], the northern
portion of Yakutia [73], Bering Island [21] and neighboring regions.

Such daphniid poorness may be explained by harsh climatic conditions in the arctic
and subarctic zones, which occupy a significant portion of the studied territory. Therefore
species diversity of the arctic–subarctic crustaceans is depleted. Most researchers note that
cladocerans have an advantage in colonizing new water bodies compared to copepods, but
at the same time they are more sensitive to low temperatures and also more abundant in
warmer water bodies [74–77].

D. cristata, D. longiremis, D. middendorffiana and D. pulex are most common in the
arctic–subarctic water bodies [14,22,23,73,78,79]. D. cucullata is detected in the Western
Arctic only [80–82]. D. curvirostris is relatively common in Central Yakutia, but rare in
more northern and eastern regions, while it was common there during some phases of the
Pleistocene [83].

Note that the arctic and subarctic water bodies of Canada are characterized by similar
specific diversity of Daphnia; however, additionally, D. rosea Sars, 1862, D. ambigua Scour-
field, 1947, D. schoedleri Leydig, 1860 were found there [74]. If we consider that the first
taxon in the author’s understanding is a synonym of D. dentifera. and the last one is a junior
synonym of D. pulex s.lat. [43], then the high degree of similarity of the daphniids fauna
on both sides of the Bering Strait is obvious. In reality, most revealed species have a trans-
Beringian distribution, with D. longispina absent in North America [38] and D. curvirostris
present only in a few localities in its NW corner [42].

No endemic Daphnia taxa are present in NE Siberia in contrast to South Siberia [63]
and the Amur basin [43], although numerous local endemic phylloclades and haplotypes
are detected.
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4.2. Demographic History: Preliminary Data on Mitochondrial DNA

A combination of genetic polymorphism indexes and neutrality test values allows us
to reconstruct a demographic history of some Daphnia species in the studied region. We
found that the mitochondrial 12S gene demonstrates high values of Hd at high values of π
in the most Daphnia species from the NE Russia. As a rule, such a combination supports a
mixing of historically heterogeneous and geographically differentiated Daphnia populations
and the existence of a large stable population [84]. However, the exact phylogeographic
patterns are somewhat different in different taxa.

To date, it should be recognized that the area of haplotype distribution of the “Siberian”
clade of D. longispina s.str. extends in a northeastern direction from the Yenisei River basin
to Central Yakutia and the Baikal Lake basin, where this species coexists with the vicariant
D. dentifera. However, such findings did not change an earlier proposed scheme for the
explanation of the D. longispina–dentifera complex in Eurasia, including the influence of the
Pleistocene glaciation on its geographic history. No shared haplotypes of D. dentifera in
NE Russia and Mongolia vs. Japan and North America were found. Similarly, no shared
haplotype was found in the previous studies of the D. dentifera populations, but a lot of
unique haplotypes and distinct mitochondrial lineages were detected within this species [38,
85,86]. We revealed a central 12S haplotype H1 occurring in Baikal Lake basin, Yakutia
and Kamchatka. Based on the aforementioned and published data [85–87], D. dentifera
needs to be designated as an arcto-mountain taxon. Previously, we speculated that this
species was widespread throughout northeast Asia in a pre-Pleistocene time, and during
the cold phases of the Pleistocene survived in some periglacial refugia [63,65] similar to
D. umbra [45]. The northeast D. dentifera populations may have undergone a “bottleneck”
event with subsequent spatial expansions. What this indicates is the star-like 12S haplotype
network and the significant negative values of Tajima’s D and Fu’s Fs tests. Most likely, a
secondary contact happened between different mitochondrial lineages of this species, which
is indicated by the existence of intermediate clade IV (Figure 3A,B) closely related with the
Japanese–North American and Russian–Mongolian clades. Thus, with an increase in the
number of populations of D. dentifera from NE Russia the level of genetic polymorphism
changed, essentially in comparison with previously data [63].

Taking into consideration the highest values of Hd and π in the “European” clade of
D. longispina s.str., D. galeata, D. umbra, D. middendorffiana and D. pulex, we believe that
these species were subjected to mixing of historically heterogeneous populations and dis-
tinct mitochondrial lineages, presumably having different origins. Statistically significant
negative values of neutrality tests [60,61] for the “Siberian” clade of D. longispina s.str.,
D. dentifera, D. galeata and D. pulex more likely argue for a recent post-glacial colonization
of the studied region. Likewise, for other species under consideration, the neutrality tests
possess negative, but insignificant, values. However, we believe that this also indicates
their post-glacial colonization as previously noted [63]. The presence of a large number
of divergent mitochondrial lineages within different species of Daphnia also justifies this
assumption.

A well-recognizable star-like shape with central haplotype H16 in the D. pulex clade
Dp_II suggest a rapid expansion of this group. Crease at al. [41] concluded that the Panarctic
D. pulex clade (widely distributed over Holarctic) experienced a great spatial expansion
in the Holarctic between 8800 and 22,000 years BP, after the last glacial maximum. There
is some discord between our data and the published data related to the D. pulex complex,
especially for D. pulicaria delimitation (in particular, Hd and π values indicate mixing
lineages or different species), but we agree with a very recent (late Pleistocene–Holocene)
differentiation of this large clade and its rapid colonization of the Holarctic. Unfortunately,
we expect that the phylogeographic results on this very usual and easily dispersed taxon
may be strongly affected by recent anthropogenic long-distance transitions [88], which
were detected many times for the D. pulex group [89–91]. Interpretation of the dispersion
pattern through the world is difficult for this clade, as the central haplotype H16 (Figure 5B)
(found in NE Siberia) may be the result of anthropogenic introductions in some countries
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(such as Kenya). In reality, all populations of this clade in the southern hemisphere could
have an anthropogenic origin [41].

The network of D. middendorffiana is represented by four subclusters subdivided by
3–5 substitutions, with Chukotka being the center of haplotypic diversity (Figure 5C). In
the case of the central haplotype cluster H4, we propose a colonization of Yakutia from
Chukotka. However, to date, we cannot definitively say whether Chukotka is a dispersion
center from a separate refugium, or a bridge for the colonization of NE Russia from North
America. It is known that the D. middendorffiana–tenebrosa group has several clades in North
America, but no 12S dataset exists for it. In any case, our preliminary data also provide
further evidences of a cryptic diversity within the D. middendorffiana and D. pulex groups.

5. Conclusions

In general, our data on mitochondrial phylogeny and the distribution of the Daphnia
species in NE Russia are concordant with the published results, and suggest a more
complete understanding of the diversity and distribution of the daphniid taxa across the
northern Holarctic. Our new data allow us to assume that the daphniids of NE Russia have
undergone various evolutionary scenarios during the Pleistocene period: survival in some
local refugia, followed by re-colonization from them plus from North America through the
Beringian land bridge, etc. All revealed patterns are relatively recent (of Late Pleistocene
or Holocene age) as compared to more southern territories within East Asia, although
main phylogenetic daphniid lineages (mainly congruent with the biological species) are
very old [26,33]. Species diversity in NE Russia is relatively low and most taxa are trans-
Beringian. However, our results provide convincing evidence for the hypothesis that NE
Russia is a very important source of modern haplotype diversity for the Cladocera [63].
The newly obtained data confirm our previously assumption about the different regimes of
natural selection on different Daphnia species inhabiting the same territory [63].
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