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Abstract: As an alternative resource, reclaimed water is rich in the various nutrients and organic
matter that may irreparably endanger groundwater quality through the recharging process. During
groundwater recharge with reclaimed water, hot spots and hot moments (HSHMs) in the hyporheic
zones, located at the groundwater–reclaimed water interface, play vital roles in cycling and pro-
cessing energy, carbon, and nutrients, drawing increasing concern in the fields of biogeochemistry,
environmental chemistry, and pollution treatment and prevention engineering. This paper aims to
review these recent advances and the current state of knowledge of HSHMs in the hyporheic zone
with regard to groundwater recharge using reclaimed water, including the generation mechanisms,
temporal and spatial characteristics, influencing factors, and identification indicators and methods
of HSHMs in the materials cycle. Finally, the development prospects of HSHMs are discussed. It is
hoped that this review will lead to a clearer understanding of the processes controlling water flow and
pollutant flux, and that further management and control of HSHMs can be achieved, resulting in the
development of a more accurate and safer approach to groundwater recharge with reclaimed water.

Keywords: reclaimed water; the hyporheic zone; hot spots and hot moments; groundwater recharge;
identification methods; influencing factors

1. Introduction

With the increase in population, lifestyle changes, and the expansion of industrial
and agricultural activities, aquifer recharges, fluxes, and contaminant infiltration have
been substantially impacted, and thus water scarcity has become a global problem [1–5].
The United Nations has estimated that 2.7 billion people will face water shortages by
2025 [6]. Accordingly, increasing attention is being paid to the sustainable utilization
of water resources [7]. As a result, reclaimed water is being widely used as a potential
alternative water source, with the highest annual reclaimed water consumption in China,
Mexico, and the United States [8].

Several technologies are used to treat wastewater, including ozonation, ultrafiltration,
membrane bioreactor systems, forward osmosis, reverse osmosis, advanced oxidation, chlo-
rine disinfection, nanofiltration, and ozone disinfection [9–13]. Nevertheless, it is difficult
to completely remove all contaminants from reclaimed water. Studies have shown that irri-
gation with reclaimed water is beneficial to crop growth because nutrients such as nitrogen
and phosphorus in reclaimed water can increase soil fertility [14–16]. However, with the
deepening of the research on reclaimed water, it has been found that reclaimed water after
treatment still contains problematic micropollutants, such as perfluorinated compounds
(PFCs) [17], endocrine-disrupting chemicals [18–21], pharmaceuticals and personal care
products (PPCPs) [22,23], antibiotics [24,25], antibiotic resistance genes [26,27], antibiotic-
resistant bacteria [28,29], and pathogens [30,31], which may pose risks to environmental
quality and human health.
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Groundwater recharge with reclaimed water mainly includes irrigation using wells,
surface spreading, and riverbank filtration (RBF). Riverbank filtration has proven to be
a low-cost and energy-efficient alternative to traditional and advanced drinking water
treatments [32,33]. Ding et al. [34] suggested that surface spreading with reclaimed water
had much less impact on groundwater quality than direct injection due to the purification
effect of river sediments. Therefore, RBF has been widely used globally to improve the
water quality of urban water plants [35]. The study in this paper focuses on the hot spots
and hot moments (HSHMs) during groundwater recharge with reclaimed water through
riverbank filtration.

The HSHMs of material transformation determine the destination of most substances
and the influence of reclaimed water on groundwater quality. During groundwater recharge
with reclaimed water, the interaction between reclaimed water and groundwater and the
exchange process between them produce significant changes in the physical and chemical
water quality characteristics, and these changes occur mainly in the hyporheic zone [36].
The hyporheic zone is a complex place and a time-dynamic area [37,38]. In the hyporheic
zone, especially during the process of groundwater recharge using reclaimed water, steep
physical, chemical, and biogeochemical gradients at the interface tend to result in an ac-
tive biogeochemical process, and a local enhancement of biogeochemical activity may
occur [39,40], called HSHMs, that may have a disproportionate impact on the cycling of en-
ergy, carbon, and nutrients [41]. Regarding this disproportionate contribution, we have ad-
dressed related research in multiple fields, including hydrochemical evolution [42–44], en-
vironmental pollution [45–49], human health risk assessment [50], pollution control [51–53],
and the survival of fish or invertebrates [54,55].

As unique phenomena arising during reclaimed water artificial recharge processes,
HSHMs occur when geological heterogeneity is high and reaction conditions are met.
Reaction conditions include: (i) the presence of reactants (including electron donors and
electron acceptors); (ii) adequate advective conditions; and (iii) a continuous supply of
reactants [56]. RBF provides the most favorable conditions for the occurrence of HSHMs.

Spatially, the structure of the aquifer media, the spatial distribution of geochemical sub-
stances, and the microorganisms are highly heterogeneous. In addition, on the time scale,
the recharge rate, water chemistry, and temperature are time-varying. This heterogeneous
and time-varying nature causes HSHMs to be difficult to capture.

According to statistics, although hot spots only occupy less than 2% of the study area,
they explain up to 99% of the reactions [57–60]. Figure 1 illustrates the relationship between
sediment volume, time, and process rates. The reaction rates in most sediment volumes
are very low. Hot spots occupy only small volumes, but the reaction rates are relatively
high. Hot moments are periods of high-speed reaction. As shown in Figure 1, the raised
red parts are HSHMs.

Although some studies have explored the influencing factors of HSHMs, there are few
studies with detailed explanations. As for the environmental problems caused by HSHMs
associated with aquifer recharge using reclaimed water, we urgently need to identify
HSHMs and find methods and indicators that can signal HSHMs for the management and
control of the pollution of reclaimed water recharge. However, a summary of methods
and indicators for identifying HSHMs has not been provided in previous studies. In this
review, we summarize the features of HSHMs in the process of groundwater recharge
with reclaimed water, including the spatial and temporal characteristics, influence factors,
identification indicators, and methods. We focus on the HSHMs in reclaimed water reuse
for two reasons: (i) the HSHMs of material transformation determine the destination of
most substances and the influence of reclaimed water on groundwater quality; and (ii) the
influencing factors of HSHMs are explained in detail, and the identification indicators are
summarized to provide guidelines for future studies on reclaimed water reuse.
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Figure 1. Schematic diagram of hot spots and hot moments (HSHMs). The table above shows the
differences in relative volume, time, and process rates between HSHMs and general areas or time.
The gray areas in the figure below represent average reaction rates, while the colored and elevated
areas represent above-average reaction rates, and the reaction rates gradually increase from dark
blue to green to red. The red areas represent the highest reaction rates, indicating that the areas are
hot spots. The three gray planes represent three moments along time: t1, t2, and t3. The reaction
rate of t2 is significantly higher than t1 and t3, so t2 is a hot moment. Adapted from Kuzyakov and
Blagodatskaya [61].

The purpose of this paper is to provide a comprehensive and systematic summary
of the formation mechanisms, influencing factors, and identification methods of HSHMs
formed during groundwater recharge with reclaimed water. This study on HSHMs can pro-
vide a scientific basis for substance cycling in the process of reclaimed water reuse, particu-
larly the exchange of substances resulting from surface water and groundwater interactions.

2. Introduction of HSHMs
2.1. The Concept of HSHMs

Hot spots were first proposed in 1987 and described as extremely high rates [60]. Later,
hot spots were statistically identified as outliers in denitrification rates [62]. However,
there is considerable uncertainty and subjectivity associated with this approach. A com-
prehensive concept of biogeochemical HSHMs was proposed in 2003 [63]. Hot spots (hot
moments) were defined as patches (short periods of time) that exhibit disproportionately
high reaction rates compared with the surrounding matrix (longer interval) [63]. This
concept is concerned with reaction rates. With the deepening of the research, transport
HSHMs, microbial HSHMs, and hydrological flux HSHMs were proposed on the previ-
ous bases, focusing on solute flux, microbial processes, and hydrological exchange flux,
respectively [61,64,65]. However, the above concepts of HSHMs were only qualitatively
proposed, and the lack of identification and quantitative methods for HSHMs also limited
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its application to a certain extent [66]. Later, the concept of HSHMs was further extended
to “ecosystem control points” [66]. Recently, the concept of HSHMs has been associated
with higher human health and environmental risks [67]. In terms of the development of
the HSHM concept, the focus has gradually shifted to the hazards and risks to ecosystems
and human health caused by the transformation of substances, rather than their reaction
rates or fluxes. In this review, we are more concerned with the decay of contaminants in
any form.

There is no consensus on defining a “higher” reaction rate. The attenuation rate of
pollutants can be used to define hot spots in reclaimed water recharging. Vidon et al. [64]
proposed that the magnitude of the disproportionately high reaction rates was at least
one order of magnitude larger than that of normal reaction rates, and the periods of hot
moments were less than 20% of the total time. In Table 1, we summarize the differences
in reaction rates between hot spots and conventional areas as found in the literature. The
reaction rate of a hot spot is at least 1.8 times higher than that of a normal area (Table 1).
From the perspective of microbial abundance, Bochet et al. [68] showed that the microbial
abundance at intersections of oxic–anoxic fractures (that is, hot spots) increased by five
times compared with the background. Given this situation, a deep understanding of
HSHMs is vital.

Table 1. Comparison between the reaction rates of hot spots and conventional areas.

Research Materials Reaction Rates of Hot Spots Conventional Reaction Rates Type References

N 35 kg N ha−1 yr−1 (lab rates) 20 kg N ha−1 yr−1 (lab rates) HSHMs [69]
N 1.26–15.2 ug N2O-N kg soil−1 h−1 1.8–1.26 ug N2O-N kg soil−1 h−1 HSHMs [70]

N 0.54 mg-N/L (the highest
concentration of nitrate produced)

0.03 mg-N/L (concentration of
denitrification) HSHMs [71]

As 738 mol (the amount of As released) 225.6 mol (the amount of
As released) Hot spot [56]

N 17,053 nmol 15N-N2 L−1 h−1 (max) 25 nmol 15N-N2 L−1 h−1 (min) Hot spot [72]
U (VI) 3.5–4.5 umol/g sediment/d (max) 0 Hot spot [53]

Hg 7.62 ng/L (concentration of
methylmercury) Detection limit (0.06 ng/L) Hot spot [73]

N 5.40 ug N2O L−1 min−1 2.91 ug N2O L−1 min−1 Hot spot [74]
N 55,400 ng N2O-N g−1 d−1 (max) Undetectable (min) Hot spot [60]
N 1.9 gd−1 m−1 (max) 0 Hot moment [75]

Notes: N, nitrogen; U, uranium; Hg, mercury; As, arsenic.

2.2. The Formation Mechanism of HSHMs

Reaction materials, an appropriate residence time, and a suitable temperature are all
required for the production of HSHMs. The most typical hot spots occur at the juncture
of hydrological flow paths carrying complementary reactive materials [63]. Hot moments
usually take place when the hydrological flow path is reactivated or changed due to changes
in the external environment [63]. Therefore, we often refer to the interfaces between streams
and groundwater as biogeochemical HSHMs [76]. HSHMs may coincide or be mutually
exclusive [64].

Figure 2 reveals the two primary mechanisms by which hot spots occur. Figure 2a
indicates that there is a large amount of reactant A at a certain location, and it is possible
that some condition stimulates reactant B to arrive at the location of A and then react with
A. Figure 2b indicates that reactants A, B, and C meet at a location via transport and then
react. Both cases have the potential to decay the reactants, convert the reactants to product
D through biogeochemical reactions, or for both substances to form immobile substances C
through adsorption or complexation. However, immobilization is a non-sustainable process;
for example, a depletion of adsorption sites or desorption may occur [77]. Moreover, one
of the main transformation mechanisms is biodegradation, which is the most desirable
mechanism for contaminant removal [77]. For instance, Wallis et al. [56] investigated
an arsenic-containing aquifer in Hanoi where continuous groundwater extraction over
many years led to water flow reverse, and the river began to recharge groundwater. As
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a result, the reaction of reactive organic matter in the river muds with electron acceptors
in the Red River, such as O2, NO3

−, and SO4
2−, led to the reductive dissolution of As-

hosting Fe-oxides, creating a hot spot of arsenic release at the groundwater–surface water
(GW–SW) interface.
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Figure 2. Schematic diagram of HSHM formation, adapted from McClain et al. [63]. (a) reactant
B meets and reacts with the original reactant A to produce product C or D by immobilization or
transformation, respectively, (b) reactant A, B, C meet at a certain place and react by immobilization
or transformation to produce product C or D, respectively.

Typically, hot moments can be generated by periodic or emergency events by an
alteration of the redox state or an introduction of the necessary reactants. A hot moment
can be generated by short-term changes in groundwater flow direction [75]. The most
common causes of hot moments fall into two broad categories: natural events (precipita-
tion, snowmelt, and tides) and anthropogenic disturbances (groundwater abstraction and
recharge, and dam operations). These events can cause fluctuations in river and ground-
water tables, producing an exchange of materials between groundwater and rivers that
provides the reactants needed to trigger biogeochemical reactions.

2.3. Spatial and Temporal Characteristics of HSHMs
2.3.1. Location of Hot Spots

The location of a hot spot is divided into three scales according to the size of the spatial
scale (Figure 3). First, the biofilm coating the surface of deposited particles usually develops
hot spots on a microscopic scale, usually from micrometers to millimeters [61,78]. On an
intermediate scale, hot spots generally occur at the GW–SW interface [79,80], including in
streambeds and in parts of riparian zones [81–83]. In the riparian zone, hot spots are usually
found at the interface between coarse, permeable materials and fine, organic-rich materials
in the subsurface [64], such as the interface between sand and peat, the interface between
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coarse gravel and a sand aquifer [81,84], and the interface between gravel and a coarse
sand aquifer and loam soil [85]. Natural reduction zones (NRZs) in riparian zones are rich
in organics, sulfides, and reducing metals, and can also serve as hot spots [86]. In addition,
riparian edges can also act as hot spots [87]. Besides streambeds and riparian zones, hot
spots may also occur at the confluence of shallow and deep groundwater [88]. Mesoscales
may range from centimeters to tens of meters. On a regional scale, the confluence of two
rivers [89,90], entire riparian zones, and wetlands [73,91] can be hot spots, ranging from
tens of meters to kilometers.
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Figure 3. Locations and periods where and when HSHMs may occur on different scales. The red
circles represent hot spots, and the black circles represent hot moments. In the red circles, 1 is
microbial biofilms on sediment particles, 2 is the streambed, 3 is the confluence of shallow and deep
groundwater, 4 is the interface between coarse and fine materials or sandy clay, 5 is the natural
reduction zone, 6 is the riparian edge, 7 is the riparian zone, 8 is the wetland, and 9 is the confluence
of two rivers. In the black circles, 1 is the precipitation, 2 is the snowmelt, 3 is the dam operation, and
4 is the groundwater abstraction. The horizontal axis below represents the scale corresponding to the
locations of hot spots.

The size of hot spots is not constant [64], and their location may vary with the hydro-
logical conditions [92]. Knights et al. [93] found that the nitrate removal zone expands or
decreases with tidal pumping. Zachara et al. [94] declared that a dissolved uranium hot
spot varies with a rise in the groundwater table. Mitchell et al. [73] showed that a hot spot
for methylmercury occurs as discrete points and strips of variable length with a maximum
width of 3 m, and that it changes with time.

2.3.2. Duration of Hot Moments

There have been few studies pointing out the duration of hot moments because there
are no corresponding technical conditions in the field to capture their duration. In each
study, the duration of hot moments varies significantly due to different field conditions.
In a study by Gu et al. [75], a transient (1–2 days) reversal of water flow was caused by a
single storm, which allowed the river to enter the aquifer. The reactants in the river then
began to come into contact with materials in the groundwater at the riparian storage area,
and denitrification occurred. The riparian storage water completely returned to the river
at 3.7 days, when the denitrification rate reached its maximum. However, the reactants
remaining in the groundwater were continuously consumed in denitrification until they
were completely consumed (approximately 7–8 days). The period in which denitrification
occurs is the denitrification hot moment. Hot moments in NRZs last approximately three
months [42]. The decay of total organic carbon (TOC) mainly occurs during the initial
2–5 days of RBF [33]. Hot moments usually have a delayed effect on the changes in
hydrological conditions caused by sudden events [75].
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3. Influencing Factors of HSHMs during RBF
3.1. Temperature

Many variations in organic and inorganic substances are caused by temperature
fluctuations [76]. The influence of temperature on HSHMs is mainly reflected in microbial
activity and the associated biochemical processes [95,96]. As the temperature increases,
the growth rate, activity, and diffusion rate of bacteria also increase accordingly [97,98].
Studies have shown that denitrification is most rapid between 25 ◦C and 35 ◦C [99–101],
and possibly doubles for each 10 ◦C rise in temperature [102], while the temperature does
not affect the decay caused by adsorption [33].

Generally, river temperatures in summer are higher than that of groundwater and
lower in winter [103]. The mixing and thermal budget of groundwater and surface water
determine the temperature pattern at the GW–SW interface [95]. From the perspective of
seasonal alternation, low swamps with long-term water flooding and large plants exhibit
the highest denitrification rate during spring and summer [98]. Goto et al. [104] proposed
that river water temperature fluctuation has a depth of thermal activity in groundwater
propagation—that is, the depth at which the subsurface temperature is lowered to 37%
of the surface temperature. The depth of thermal activity determines the area of biogeo-
chemical reaction [105]. Zheng and Bayani Cardenas [106] simulated the effect of the
diurnal temperature change on nitrate concentration, and the results showed that hot
spots of denitrification occurred in the riverbed due to the diurnal temperature change.
However, Ren et al. [107] observed that the depth of diurnal temperature change is less
than 1.7 m, and that deeper underground temperature patterns are only affected by sea-
sonal variations based on temperature monitoring at various depths of the riparian zone.
Of course, this value varies slightly from site to site, depending on the lithological and
hydrogeological conditions.

With the development of monitoring technology, temperature monitoring can be
carried out in real time using temperature probes with a high temporal resolution [107,108].
However, such single temperature probes usually have a low spatial resolution [109].
In recent years, distributed temperature sensing (DTS) devices with a higher spatial and
temporal resolution have been widely used [109–111]. For situations where field monitoring
is not feasible, the relationship between temperature and reaction rate can be clarified by
coupling the Arrhenius equation with a numerical model [112,113].

3.2. Residence Time

Residence time is the period between the entry of nutrients into the aquifer and the
discharge with water flow, while groundwater age is the period in which water is stored in
the entire aquifer system [114]. River and groundwater mixing assessments are often based
on residence time, which is a valuable indicator of biogeochemical potential [115,116]. The
distribution of residence time in subsurface environments is affected by several factors,
such as advection, dispersion, hydraulic conductivity, and length of the hydrological flow
path [117]. The effective porosities and yields of the rock strongly affect the residence time
in all fractured bedrock aquifers [118]. Boano et al. [119] showed that the reaction rate is
a function of the hyporheic residence time, identifying the shortest and longest residence
times in the neck and apex of a meander, respectively. Due to the difference in residence
times, the most intense biogeochemical reactions occur at the apex. Therefore, residence
time can control solute cycling and biogeochemical zoning in the hyporheic zone [119–121].

The highest rates are often observed in long-term residence time, indicating that
residence time could also affect reaction rates [119,122]. Due to longer residence times,
solutes can interact more effectively with active sediments and microbial communities
in aquifers and streambeds [80,123]. Maeng et al. [77] summarized the removal rates of
pharmaceutically active compounds (PhACs) at riverbanks and artificial recharge sites as a
function of residence time, and the results showed that the removal rates of most PhACs
increased with increasing residence time. Therefore, the duration of solute contact with
streambed sediments determines the biogeochemical response in the hyporheic zone [124].
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Nevertheless, not all biogeochemical reactions follow the rule stating that the longer the
residence time, the more intense the biogeochemical reaction. It essentially depends on the
relationship between reaction time and residence time. As the solute input flux increases,
the residence time decreases. The reaction rate depends on the result of the interaction
of two opposite reactions [125]. The final result may be that an increase in reaction rate
resulting from a higher solute supply is more significant than a decrease in reaction rate
resulting from a shorter residence time, according to Bardini et al. [126], where the reaction
rate of several redox-sensitive compounds increases with an increasing flow rate.

Zarnetske et al. [71] revealed that nitrification and denitrification hot spots exhibit
threshold behavior with respect to residence time, and that residence time thresholds can
be used to differentiate between nitrate production and removal. It was found that 6.9 h is
the residence time threshold for denitrification hot spots. However, this threshold may vary
depending on variations in temperature and hydraulic and hydrochemical conditions [71].
Briggs et al. [120] subsequently confirmed this and demonstrated a threshold of 1.3 h
for the residence time of net NO3

− production, and 2.3 h for the residence time of net
NO3

− uptake.
For the relationship between residence time and reactive substances, most residence

time probability density functions assume that they are time-invariant, such as power-
law [127,128], normal [129], lognormal [130,131], and exponential [122] distribution. Previ-
ous studies have mainly focused on GW–SW interactions caused by an emergency (e.g.,
rainfall). However, these studies ignore the fact that certain emergencies, such as dam
operations, and a variability in precipitation intensity may happen continuously, so the dis-
tribution of the probability density functions of residence time is usually dynamic in these
cases [115,132,133]. The dynamic distribution of the residence time probability density
function is much less well studied and requires further research.

Tracers [71,134] and numerical models [135,136] help to estimate residence time. How-
ever, tracer sampling may lead to an irreconcilable mixture of residence times in groundwa-
ter samples, which can cause real reaction rates in the field to differ significantly from those
derived from groundwater samples [137]. This phenomenon also makes it very difficult
to analyze the reaction rate [138]. Therefore, most studies use numerical simulations to
investigate residence time [139].

3.3. Hydrogeological Features

Hydrogeological features mainly include the hydro-geomorphological characteristics
of the riparian zone (including river hydrological morphology and riverbed morphology)
and the hydraulic parameters of the aquifer in this paper.

The formation of HSHMs is strongly influenced by microtopography [140,141]. The
hydro-geomorphological characteristics of the riparian zone and the riverbed affect both
the substance input and residence time of HSHMs. The effect of residence time on HSHMs
has been clarified in the previous section. Therefore, only the effect of material input on
HSHMs is discussed in this section. Riverbed microtopography and channel morphol-
ogy, such as riffle-pool sequences [136,142], dunes [143], riffles [144], steps [145], river
meanders [146], obstacles [95,147], and dams [109,148,149], can greatly promote the ex-
change capacity between stream water and groundwater, and correspondently increase the
proportion of solute input [135,145], which provides favorable conditions for biogeochemi-
cal reactions. Rapid water exchange between streams and groundwater can occur when
the river hydrological morphology and riverbed morphology are heterogeneous [82,145].
Zheng et al. [150] simulated and compared the effects of mobile and immobile ripples on
nitrogen cycling, and showed that the movement of ripples changes the flow path of the
hyporheic zone and ultimately changes the reaction position. The results also indicated
that immobile ripples were more effective than mobile ripples in removing nitrate.

HSHMs are also affected by particle size distribution, permeability, sediment thick-
ness, and dispersion in the riparian zone [76,151,152]. In coarse-grained sediments, nitrate-
producing HSHMs may result from increased hydraulic conductivity and further oxy-
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gen [82]. In contrast, fine-grained sediments may promote increased bioavailable dissolved
organic carbon (DOC) and further oxygen depletion, thereby maintaining nitrate removal
efficiency and potentially acting as nitrate-attenuating HSHMs [95,151]. Liu et al. [17] and
Ma et al. [35] investigated the distribution of PPCPs and PFCs in groundwater receiving
reclaimed water through riverbank filtration, and the results showed that sandy clay is
much more efficient at removing these two types of organic pollutants than fine sand or
gravel. Hydraulic conductivity can control biogeochemical hot spots by positively affecting
the hyporheic zone size and exchange rates, and negatively impacting biogeochemical
and microbial activity gradients [152,153]. Shuai et al. [154] used a two-dimensional reac-
tive transport model to investigate the effect of river table fluctuation on nitrate removal.
Sensitivity analysis showed that increasing the permeability coefficient increased the den-
itrification zone area, thereby increasing the amount of nitrate removal, but decreasing
nitrate removal efficiency. This is consistent with the findings of Knights et al. [93] and
Duval and Hill [87], who indicated that denitrification hot spots occur in poorly permeable
sediments or along riverbank edges [87,93]. The heterogeneity of the hydraulic conductivity
of sediments in the hyporheic zone can facilitate the mixing of reclaimed water and ground-
water, and hydraulic gradients can amplify this mixing [116]. Gu et al. [75] and Vidon and
Hill [155] suggested that high-amplitude and persistent reach fluctuations in flat flood-
plains lead to more significant nitrate-removing HSHMs in the riparian zone with coarse
grain and low regional gradients [75,155]. Regarding sediment thickness, Liu et al. [156]
experimentally investigated the effect of different sediment thicknesses on contaminant
removal during groundwater recharge with reclaimed water, and the results showed that
the contaminant removal efficiency increases with increasing sediment thickness. This
laboratory conclusion should be applied with caution in field studies due to the complex
site conditions. In addition, solute migration and reaction are also affected by dispersion.
If high dispersion causes solute mixing, it may expand the reaction area and improve
the reaction efficiency [154,157]. The effect of dispersion deserves more attention [158],
especially with regard to mixing-dependent reaction simulation.

3.4. Availability of Electron Donor/Acceptor

Biogeochemical reactions require sufficient energy and reactants. Constrained by
either party, the highest reaction rates may not be achieved, or there may even be no
reaction. For example, organic carbon availability can significantly limit denitrification
rates [102,159–162]. Organic carbon can serve as both an electron donor and an energy
source for biogeochemical reactions during heterotrophic denitrification [162,163]. Au-
totrophic denitrification can also utilize other substances as electron donors, such as reduced
sulfides, reduced iron, and manganese [164–166]. Starr and Gillham [162] investigated the
importance of organic carbon in controlling denitrification in two shallow Canada aquifers,
which were mainly Quaternary glacial deposits with fine- and medium-grained sand and
medium sand as the dominant lithology, and found that the organic carbon utilization rate
decreases with an increasing depth in the subsurface [167,168]. Rivett et al. [100] concluded
that the denitrification rate is related to the amount of dissolved or soluble organic carbon
in groundwater, but not to the total solid organic carbon ( foc) content in the formation.
Determining how much organic carbon is bioavailable depends on geological history and
DOC influx [56,161,169]. When electron donors are limited, NO3

− can inhibit a reduction
in nitrite, leading to nitrite accumulation [170]. Denitrification is the conversion of nitrate
first to nitrite, and then to nitrogen through intermediates [171]. When the electron donor
is limited, nitrate is preferred as an electron acceptor compared with nitrite, so a temporary
accumulation of nitrite is formed [172]. Thus, the amount and bioavailability of DOC in
groundwater systems determine the degree of denitrification.

In addition, as an electron acceptor of denitrification, nitrate concentration influences
denitrification in a certain way. Excessive nitrate concentrations can inhibit N2 production,
terminating denitrification and N2O production [173]. Therefore, sufficient electron donors
and acceptors are more likely to result in biogeochemical HSHMs [174].
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3.5. Redox Potential and pH

The redox interface is a biogeochemical hot spot in the aquatic system [175]. A clear
change from aerobic to anaerobic conditions can be observed during RBF. Redox conditions
not only affect the morphology and transformation direction of substances, but also have
an essential influence on microorganisms in groundwater [175–180]. For example, arsenic
tends to form soluble arsenate complexes under aerobic conditions, but adsorbed arsenate
may be released upon reduction. Furthermore, arsenate tends to be reduced to soluble
arsenite under reduction conditions [180]. Denitrification is favorable when redox potential
is lower than +200 to +300 mV [181,182]. Redox potential higher than +300 mV is conducive
to nitrification [182]. Heberer et al. [183] studied the residual behavior of antibiotic drugs
in an RBF site in Berlin, Germany, and found that the degradation of clindamycin and
sulfamethoxazole exhibited redox dependence, i.e., clindamycin was eliminated more
efficiently under aerobic conditions, while sulfamethoxazole was eliminated more rapidly
under anoxic conditions. In addition, redox conditions vary spatially in groundwater [175],
which may result in variable hot spots.

In aquatic ecosystems, pH is positively correlated with methylation [184] but does
not affect demethylation [177]. The metabolism of heterotrophic microorganisms generally
requires a pH between 5.5 and 8.0 [185].

3.6. Climate

Climate factors, including precipitation, floods, and snowmelt, are more likely to
influence hot moments. Precipitation may reverse the flow between river and groundwater,
carrying the necessary material into the reaction zone [86,186]. In addition to influenc-
ing groundwater table fluctuations, precipitation may change the connection between
hillsides and riparian zones, and control the transformation of solutes [187]. Flooding
can change hydrological flow paths. A mixture of different flow paths can result in an
entirely different mixing of groundwater at different ages in the riparian zone [188]. On
one hand, HSHMs are facilitated by flooding and precipitation, which carry high loads of
reactive substances [69,189]. On the other hand, the extended residence time in flooded
areas caused by flooding and precipitation provides enough time for the reaction [69].

Studies have shown that denitrification rates are twice as high during floods or
snowmelt as during base flow [69,74]. Snowmelt increases dissolved solute levels, and, in
rivers flowing through snow-covered regions, snowmelt is often the primary water source
throughout the year. In river water, snowmelt can increase inorganic nitrogen [190,191]. It
is estimated that up to 50% of DOC, total mercury, and methylmercury fluxes occur dur-
ing snowmelt [192,193]. Snowmelt has high denitrification potential owing to the readily
available nitrates [194].

3.7. Human Activities

Human activities can enhance or decrease the occurrence of HSHMs. On one hand, hu-
man activities such as the construction of wells and dams increase the intensity of elements
entering the aquatic environment, and enhance the exchange frequency between surface
water and groundwater. On the other hand, human activities can separate the connectivity
of surface water and groundwater, reduce the contact between materials, and affect the
transformation of substances [78]. The most obvious example of enhancing source strength
in the aquatic environment is the application of nitrogen fertilizers. Over the past 100 years,
nitrogen fertilizers have been used extensively in agriculture as they are good fertilizers
for increasing crop productivity and penetrating the aquatic environment [195]. Nitrogen
is also found in animal waste [196]. These nitrogen sources enter the aquatic ecosystem
through precipitation leaching or runoff and play a vital role in the nitrogen cycle of the
aquatic environment. The increase in material input caused by human activities aggravates
the occurrence frequency of HSHMs. The human activities that have a significant impact on
groundwater flow are mainly dam building and groundwater extraction. The construction
of dams on large rivers is now commonplace. The need for hydroelectricity, irrigation,
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and flood control can lead to dramatic changes in the stages of rivers that are regulated by
dams [197]. Operating dams can facilitate the exchange of surface water and groundwater,
providing favorable conditions for potential biogeochemical processes [65]. In many coun-
tries, groundwater is available for use in drinking water and irrigation, and for industrial
purposes [198]. Long-term groundwater pumping can alter the local groundwater flow
direction, introducing new reactants into the local system, thus generating hot moments.
Of course, the above events can also trigger hot spots.

3.8. Other Factors

Other factors mainly include the O2 concentration and nutrient availability.
Denitrification is generally considered at dissolved oxygen concentrations of less than
2–3 mg/L [85,160,182]. The microbial-mediated conversion of mercury to methylmercury
also occurs at low oxygen concentrations or other low-oxygen times [199]. Macronutrients
such as carbon, nitrogen, and phosphorus, and micronutrients such as iron, copper, zinc,
and molybdenum, are essential for the growth and metabolic functions of microorgan-
isms [200]. For instance, microbial growth slows down when the phosphorus content is less
than 100 ug/L, and stops when the phosphorus content is below 10 ug/L [201]. Enzymes
utilizing zinc can synthesize proteins, generate energy, and keep biofilms structurally
integrated [202]. Microbial growth relies on iron, which is found in many proteins and
enzymes [203].

4. HSHM Identification Indicators and Methods during RBF
4.1. Identification Indicators of HSHMs

Identification indicators of HSHMs during RBF can be divided into three categories:
reaction rate, attenuation ratio, and others. First, the reaction rate and attenuation ratio
are direct indicators of HSHMs. However, it is difficult to calculate reaction rates in actual
situations, especially in situ reaction rates. Some indicators that indirectly express reaction
rates have been derived. The identified HSHM indicator system is summarized in Table 2.

Table 2. A summary of HSHM indicators.

Comprehensive
Indicators Specific Indicators Applications/Substances of

Concern References Description

Reaction rates

Reaction rates
Denitrification/N [75]

Detailed field information suitable
for a small scale is required

during simulation.

Denitrification/N [70] Measuring reaction rates in the
field is likely to miss HSHMs.

Attenuation ratio
Nitrification and
denitrification/N;

Biodegradation/TOC

[204];
[33]

Simple and easy to use, but not
precise enough.

Isotopic enrichment
factor Denitrification/N [205]

Suitable for large-scale
biogeochemical

HSHM indications.

Microbial community
distribution or enzyme

activity

Denitrifying enzyme
activity/N;

Microbial community
distribution and
bssA a/BETX b

[92];
[206]

Substantial evidence is needed to
show that this index is the key to

the occurrence of
biogeochemical reactions.
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Table 2. Cont.

Comprehensive
Indicators Specific Indicators Applications/Substances of

Concern References Description

Metabolites
Microbial degradation/

BETX, PAHs c, and
heterocyclic compounds

[207]
It is generally applicable to

small-scale pollutants with known
degradation paths.

Inundation history
Flood history triggered the
conversion of mercury to
methylmercury/mercury

[208] It needs unique scenes and is
not universal.

Isotopic and residence
time threshold

Nitrification and
denitrification/N [71]

The resulting threshold may vary
with temperature and surrounding
water flow conditions and requires

constant monitoring.

Others Magnetic susceptibility
signal Iron oxide precipitates [209]

It is highly specific and can only
identify hot spots associated with
magnetic minerals and needs to be

combined with
complementary techniques.

Notes: The superscript a: bssA refers to benzylsuccinate synthase genes; b: BETX refers to benzene, toluene,
ethylbenzene, and xylene; c: PAH refers to polycyclic aromatic hydrocarbons.

4.2. Approaches for HSHM Identification

HSHMs in groundwater environments are multi-component biogeochemical processes
that are highly dynamic, and carrying out laboratory experiments and field monitoring is
time-consuming. As for the heterogeneity of biogeochemical reactions, laboratory experi-
ments and field monitoring may not wholly capture the occurrence of HSHMs. Therefore,
numerical simulation technology is the most widely used system to identify HSHMs at the
present stage. In addition to numerical simulation, other methods have been applied to
identify HSHMs, including isotopic, experimental, and statistical methods.

4.2.1. Numerical Simulation Method

Since river water and groundwater simulation are involved simultaneously, many
software programs have been used to simulate streamflow and groundwater flow, so-
lute transport, and biogeochemical reactions—for example, MODFLOW and PHT3D [56],
HYDRUS and PHREEQC [169], Open-FOAM and MIN3P [157,210], PFLOTRAN [86],
COMSOL [150,211], and CrunchFlow [53].

In general, reaction rates are usually expressed as zero-order or first-order kinet-
ics [91,99,212]. However, first-order kinetics could not fully reflect the changes in the
reaction rates throughout a study. Subsequently, numerical models that utilized water
flow, a solute transport equation, and microbial dynamics were established to accurately
assess the changes in the concentrations of various substances within the surrounding
environment [210]. The reactions are expressed by the multiple Monod kinetics, which
consider the electron donors, acceptors, and inhibition terms. The general form of Monod
kinetics is as follows:

R = µmax

(
CD

KD+CD

)(
CA

KA+CA

)(
KI

KI+CI

)
(1)

where R is the reaction rate; µmax represents the maximum reaction rate; CD, CA, and CI are
the concentrations of the electron donors, acceptors, and inhibitors, respectively; KD and
KA denote the half-saturation constants for electron donors and acceptors, respectively; and
KI stands for the inhibition constant. As for the simulation scale of hot spot identification, it
has been studied from reach scale [213,214] to floodplain scale [215] and then to catchment
scale [216]. The advantage of numerical simulation technology is that the location, time, and
duration of a reaction can be accurately revealed using a three-dimensional model, and the
influence of biogeochemical HSHMs in the future can be predicted. It is disadvantageous
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that detailed field hydrogeology is required, and field monitoring data and continuous
sampling may be needed [67], resulting in high time and labor costs.

4.2.2. Field Monitoring

A possible transformation process is usually inferred from the collected sample infor-
mation. According to the attenuation of contaminants, the attenuation position and the
attenuation ratio or reaction rates are judged [217]. An assessment of the areas prone to
substance conversion is often required to provide a basis for sampling. However, collected
samples are not necessarily representative of all reaction rates in field samples. There is a
risk of missing biogeochemical HSHMs due to insufficient judgment of biogeochemical
transformations in the field.

4.2.3. Laboratory Experiments

In general, laboratory experiments are a precursor to field studies. Laboratory exper-
iments can explore various influencing factors meticulously and comprehensively, and
can explain the transformation mechanism of elements in a more in-depth way. However,
laboratory conclusions may not be directly applicable to the field. Mineral dissolution rates
observed in laboratory studies have been shown to be 1–3 orders of magnitude higher
than in situ dissolution rates [218,219]. At the same time, conclusions drawn in laboratory
situations should be applied with caution in field studies, as laboratory conditions do not
necessarily match field conditions.

4.2.4. Other Methods

Isotope tracers can identify sources of contamination and indicate the extent of the
reaction. Microbial growth can selectively bind lighter or heavier isotopes, resulting in
isotopic fractionation [220]. A lighter isotope is generally preferred. Therefore, isotope
enrichment trends in water samples can be an indirect indicator of the magnitude of the
response. Isotopic enrichment factors can be used to identify biogeochemical HSHMs [205].
The Rayleigh equation can be used to calculate the enrichment factor [221]:

δ
δ0

= f
ε

1000 (2)

where δ is the isotopic composition that remains after fractionation; δ0 denotes the initial
composition of the isotope; ε represents the enrichment factor; and f stands for the ratio
of the unreacted matter to the total matter at some point in time. Isotope methods can
quantify the rates of transformation and reaction of substances, but field conditions also
limit the use of isotope methods, and sampling and testing are time-consuming and costly.

Statistical methods are also applied in the identification of HSHMs. Lautz and
Fanelli [82] used multivariate statistical analysis to indicate the biogeochemical hot spots
caused by a small wooden dam. Chen et al. [67] developed a statistical framework to
quantify the occurrence and uncertainty of HSHMs, with the mathematical model shown
as follows:

IHSHM(Ω∗, t∗) =
{

1, i f C(x, t∗) > Cth; x ⊆ Ω∗

0, otherwise
, or

IHSHM(Ω∗, t∗) =
{

1, i f R(x, t∗) > Rth; x ⊆ Ω∗

0, otherwise

(3)

where Ω∗ and t∗ represent the spatial components of hot spots and the temporal compo-
nents of hot moments, respectively; C(x, t∗) and R(x, t∗) are the concentration and reaction
rates at position x and time t∗, respectively; Cth and Rth denote the concentration and
reaction rate thresholds, respectively; and IHSHM(Ω∗, t∗) = 1 represents the pair (Ω∗, t∗)
as the location and time of an HSHM. The method determines the probability of HSHMs
occurring and estimates the occurrence of future HSHMs. The advantage of this method
is that multiple variables can be combined into a single random variable, and only the
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most relevant parameters need to be considered, reducing the cost of large samples. The
disadvantage is that by using one variable for multiple parameters, the effect of some
parameters can be neglected.

Other methods for indicating hot spots have been applied, such as the probability
mapping of known hot spots using induction polarization imaging technology (a non-
invasive geophysical technology) [222], and metabolites associated with biogeochemical
reactions [207].

5. The Prospect of Studying HSHMs during RBF

HSHMs are the most biogeochemically reactive areas or periods in an ecosystem and
significantly impact the cycling of materials throughout the ecosystem. Our exploration of
HSHMs enables us to discover more quickly and efficiently when and where contaminants
can be removed [81], to strengthen the management of the circulation of materials during
RBF, and to control the negative impacts on ecosystems. However, research on HSHMs
with regard to groundwater recharge with reclaimed water is still in its infancy and needs
to be further explored in the future.

1. There is no unified standard for quantifying and predicting HSHMs. Previous
studies have defined the different types of HSHMs and enriched the study of HSHMs.
However, these concepts do not specify the magnitude of the reaction rates required for
biogeochemical HSHMs. Therefore, a unified standard is needed to quantify HSHMs. More-
over, most studies rely on numerical modeling techniques to accurately predict HSHMs.
Due to limitations in sampling, detection devices, and human, material, and financial
resources, it is often difficult to accurately display large-scale hydrogeological features.
Thus, it is necessary to develop a simple and feasible method to quantify and predict
HSHMs in the future.

2. It is essential to combine studies of HSHMs with groundwater pollution risk man-
agement. HSHMs are not only the areas/periods of contaminant degradation, but are also
the areas/periods of contaminant production. Studies on HSHMs have focused on nitrogen
cycling, especially nitrogen removal, while HSHMs of hazardous substances should be
more worthy of our attention because the hot spots that produce harmful substances may
persist over time [73]. Integrating HSHMs with groundwater contamination risk manage-
ment may be an important topic for future research. Henri et al. [50] developed a model to
quantify how hot spots contribute to health problems, called Incremental Lifetime Cancer
Risk (ILCR), which will improve human health risk assessment. Correlating HSHMs with
risk assessment will provide a clearer understanding of the impact of substance cycling in
key areas on human society. By predicting the occurrence of HSHMs, potentially harmful
HSHMs can be more effectively controlled and managed.

3. Most current research has focused on the HSHMs of a single substance, which
significantly simplifies the environment where biogeochemical reactions occur. However,
the subsurface is a complex site for reactions involving multiple substances. Some sub-
stances have synergistic effects on the responses of the target substances, while others
inhibit the circulation of the target substances. To understand material circulation in a
real aquatic environment, we need to study the HSHMs generated in response to the
interaction of multiple substances. For instance, bicarbonate promotes the bioreduction of
U (VI) [52,53], and sulfates contribute to the removal of nitrate [223]. In addition, sulfate
reduction products can inhibit the nitrification process [91]. The synergistic/antagonistic
effects of different substances in a real aquatic environment have essential implications
for HSHMs. An in-depth understanding of the interactions between multiple substances
can lead to a better understanding of the mechanisms of material circulation and provide
a theoretical basis for an accurate analysis of material circulation and transformation in
aquatic systems.

4. Clogging has always been a major problem during RBF. There are four principal
types of clogging: physical clogging (the most dominant type of clogging), chemical
clogging, biological clogging, and mechanical clogging [224]. An effective solution for, and
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control of, the clogging issue in reclaimed water reuse for groundwater recharge is key to
the effective use of reclaimed water and has been a prevalent topic in research. In addition,
most studies on clogging have mainly focused on studying a single clogging mechanism.
In reality, clogging is a result of multiple mechanisms, and needs to be evaluated as a whole
in subsequent studies.

5. The scale of the study areas is still a difficulty for the research. The positions of
HSHMs vary on different scales. For example, on the riparian scale, the riparian edge
can be regarded as a hot spot in the riparian zone [87], while the riparian zone and the
whole wetland can be considered as hot spots on the landscape scale [73,91]. At the same
time, the biogeochemical reaction rates vary significantly on different scales. As shown
in Figure 4, denitrification rates were highest on the laboratory scale and differed from
average field-scale reaction rates by 1–6 orders of magnitude. Therefore, the differences in
HSHMs’ reaction rates still require further investigation due to these scaling issues.
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6. Conclusions

A more complete understanding of the migration, transformation, and attenuation
mechanisms of various contaminants is fundamental to assessing the environmental effects
of groundwater recharge with reclaimed water. However, our understanding of when and
where contaminants are removed or produced during reclaimed water infiltration remains
limited, and this is a major reason for the continuous development of HSHMs. Therefore,
this paper reviews the progress of HSHMs in recent decades to provide a reference for
further understanding and an in-depth exploration of the quantification and prediction of
HSHMs. The quantification and evaluation of HSHMs in the hyporheic zone can provide
timely and accurate information for pollution prevention and decision making. A more
comprehensive understanding of HSHMs is beneficial for predicting possible exposure and
reducing the risk of ecosystem pollution. In addition, this understanding alerts those in
management to the related hazards and provides encouragement to take corresponding
measures as early as possible, providing a certain theoretical basis for later prevention and
comprehensive treatment.
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