Effects of Calcium on the Removal of Ammonium from Aged Landfill Leachate by Struvite Precipitation
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Struvite Precipitation Batch Tests
2.3. Analytical Methods
2.4. X-ray Powdered Diffraction
2.5. Activity Ratio Diagram Modeling
3. Results and Discussion
3.1. Leachate Characterization
3.2. Ammonium Removal Using Magnesium Chloride Salt
3.2.1. Effects of Malar Ratios
3.2.2. Effects of pH
3.3. Ammonium Removal Using Dolomite-Derived Compounds
3.4. Effects of Calcium
3.5. XRD Results
3.6. Activity Ratio Diagrams
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Shin, K.W.; Kim, S.-H.; Kim, J.-H.; Hwang, S.D.; Kang, J.-C. Toxic effects of ammonia exposure on growth performance, hematological parameters, and plasma components in rockfish, Sebastes schlegelii, during thermal stress. Fish. Aquat. Sci. 2016, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chamem, O.; Fellner, J.; Zairi, M. Ammonia inhibition of waste degradation in landfills–A possible consequence of leachate recirculation in arid climates. Waste Manag. Res. 2020, 38, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ngo, H.H.; Guo, W.; Peng, L.; Wang, D.; Ni, B. The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environ. Int. 2019, 123, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Hafner, S.D.; Bisogni, J.J.; Jewell, W.J. Measurement of un-ionized ammonia in complex mixtures. Environ. Sci. Technol. 2006, 40, 1597–1602. [Google Scholar] [CrossRef]
- Liu, T.; Sung, S. Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci. Technol. 2002, 45, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Procházka, J.; Dolejš, P.; Máca, J.; Dohányos, M. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl. Microbiol. Biotechnol. 2012, 93, 439–447. [Google Scholar] [CrossRef]
- Strik, D.; Domnanovich, A.; Holubar, P. A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem. 2006, 41, 1235–1238. [Google Scholar] [CrossRef]
- Sung, S.; Liu, T. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 2003, 53, 43–52. [Google Scholar] [CrossRef]
- Cheung, K.C.; Chu, L.M.; Wong, M.H. Ammonia stripping as a pretreatment for landfill leachate. Water Air Soil Pollut. 1997, 94, 209–221. [Google Scholar] [CrossRef]
- Jurczyk, Ł.; Koc-Jurczyk, J.; Masłoń, A. Simultaneous stripping of ammonia from leachate: Experimental insights and key microbial players. Water 2020, 12, 2494. [Google Scholar] [CrossRef]
- Kim, D.; Ryu, H.-D.; Kim, M.-S.; Kim, J.; Lee, S.-I. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J. Hazard. Mater. 2007, 146, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Warmadewanthi, I.; Zulkarnain, M.A.; Ikhlas, N.; Kurniawan, S.B.; Abdullah, S.R.S. Struvite precipitation as pretreatment method of mature landfill leachate. Bioresour. Technol. Rep. 2021, 15, 100792. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Molinari, R. Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability 2020, 12, 7538. [Google Scholar] [CrossRef]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of slow release crystal fertilizer from wastewaters through struvite crystallization–A review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, Q.; Hao, X. Ammonium removal from landfill leachate by chemical precipitation. Waste Manag. 1999, 19, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, A. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environ. Sci. Pollut. Res. 2016, 23, 5949–5959. [Google Scholar] [CrossRef]
- Darwish, M.; Aris, A.; Puteh, M.H.; Jusoh, M.; Kadir, A.A. Waste bones ash as an alternative source of P for struvite precipitation. J. Environ. Manag. 2017, 203, 861–866. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, D.; Zhang, Q.; Ding, L. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. J. Environ. Manag. 2014, 145, 191–198. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, C.H.; Zhang, H.; Tong, D.S.; Yu, W.H.; Yang, H.M.; Chu, M.Q. Capture and recycling of ammonium by dolomite-aided struvite precipitation and thermolysis. Chemosphere 2017, 187, 302–310. [Google Scholar] [CrossRef]
- Kataki, S.; West, H.; Clarke, M.; Baruah, D.C. Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour. Conserv. Recycl. 2016, 107, 142–156. [Google Scholar] [CrossRef]
- Enyemadze, I.; Momade, F.W.; Oduro-Kwarteng, S.; Essandoh, H. Phosphorus recovery by struvite precipitation: A review of the impact of calcium on struvite quality. J. Water Sanit. Hyg. Dev. 2021, 11, 706–718. [Google Scholar] [CrossRef]
- Le Corre, K.S.; Valsami-Jones, E.; Hobbs, P.; Parsons, S.A. Impact of calcium on struvite crystal size, shape and purity. J. Cryst. Growth 2005, 283, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, J. Impact of calcium on struvite crystallization in the wastewater and its competition with magnesium. Chem. Eng. J. 2019, 378, 122121. [Google Scholar] [CrossRef]
- Moragaspitiya, C.; Rajapakse, J.; Millar, G.J. Effect of Ca:Mg ratio and high ammoniacal nitrogen on characteristics of struvite precipitated from waste activated sludge digester effluent. J. Environ. Sci. 2019, 86, 65–77. [Google Scholar] [CrossRef]
- Li, W.; Ding, X.; Liu, M.; Guo, Y.; Liu, L. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation. Front. Environ. Sci. Eng. 2012, 6, 892–900. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Q. MAP precipitation from landfill leachate and seawater bittern waste. Environ. Technol. 2002, 23, 989–1000. [Google Scholar] [CrossRef] [Green Version]
- Amrulloh, H.; Simanjuntak, W.; Situmeang, R.T.M.; Sagala, S.L.; Bramawanto, R.; Fatiqin, A.; Nahrowi, R.; Zuniati, M. Preparation of nano-magnesium oxide from Indonesia local seawater bittern using the electrochemical method. Inorg. Nano-Met. Chem. 2020, 50, 693–698. [Google Scholar] [CrossRef]
- Bagastyo, A.Y.; Sinatria, A.Z.; Anggrainy, A.D.; Affandi, K.A.; Kartika, S.W.T.; Nurhayati, E. Resource recovery and utilization of bittern wastewater from salt production: A review of recovery technologies and their potential applications. Environ. Technol. Rev. 2021, 10, 295–322. [Google Scholar] [CrossRef]
- Shin, H.-S.; Lee, S. Removal of nutrients in wastewater by using magnesium salts. Environ. Technol. 1998, 19, 283–290. [Google Scholar] [CrossRef]
- Etter, B.; Tilley, E.; Khadka, R.; Udert, K.M. Low-cost struvite production using source-separated urine in Nepal. Water Res. 2011, 45, 852–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halwani, J.; Halwani, B.; Amine, H.; Kabbara, M.B. Waste management in Lebanon—Tripoli case study. In Waste Management in MENA Regions; Springer: Cham, Switzerland, 2020; pp. 223–239. [Google Scholar]
- Camargo, C.; Guimarães, J.; Tonetti, A. Treatment of landfill leachate: Removal of ammonia by struvite formation. Water SA 2014, 40, 491–494. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, A.; Stillitano, M.A.; Limonti, C.; Marchio, F. Ammonium removal from landfill leachate by means of multiple recycling of struvite residues obtained through acid decomposition. Appl. Sci. 2016, 6, 375. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Ma, L.Q.; Chen, M.; Singh, S.P.; Harris, W.G. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ. Sci. Technol. 2002, 36, 5296–5304. [Google Scholar] [CrossRef] [PubMed]
- McGowen, S.; Basta, N.; Brown, G. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J. Environ. Qual. 2001, 30, 493–500. [Google Scholar] [CrossRef]
- Sposito, G. The Chemistry of Soils; Oxford Univ. Press: New York, NY, USA, 1989. [Google Scholar]
- Gustafsson, J.P. Visual MINTEQ 3.0 User Guide; KTH, Department of Land and Water Recources: Stockholm, Sweden, 2011. [Google Scholar]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 2020, 703, 135468. [Google Scholar] [CrossRef]
- Teng, C.; Zhou, K.; Peng, C.; Chen, W. Characterization and treatment of landfill leachate: A review. Water Res. 2021, 203, 117525. [Google Scholar] [CrossRef]
- Anthonisen, A.C.; Loehr, R.C.; Prakasam, T.; Srinath, E. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 1976, 48, 835–852. [Google Scholar]
- Çelen, I.; Türker, M. Recovery of ammonia as struvite from anaerobic digester effluents. Environ. Technol. 2001, 22, 1263–1272. [Google Scholar] [CrossRef]
- El Diwani, G.; El Rafie, S.; El Ibiari, N.; El-Aila, H. Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination 2007, 214, 200–214. [Google Scholar] [CrossRef]
- Lee, S.; Weon, S.; Lee, C.; Koopman, B. Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere 2003, 51, 265–271. [Google Scholar] [CrossRef]
- Siciliano, A.; Rosa, S.D. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents. Environ. Technol. 2014, 35, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.; Jiang, Y.; Ding, L. Treatment of swine wastewater combined with MgO-saponification wastewater by struvite precipitation technology. Chem. Eng. J. 2014, 254, 418–425. [Google Scholar] [CrossRef]
- Tonetti, A.L.; de Camargo, C.C.; Guimarães, J.R. Ammonia removal from landfill leachate by struvite formation: An alarming concentration of phosphorus in the treated effluent. Water Sci. Technol. 2016, 74, 2970–2977. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.D.; Parsons, S.A. Struvite formation, control and recovery. Water Res. 2002, 36, 3925–3940. [Google Scholar] [CrossRef]
- Maekawa, T.; Liao, C.-M.; Feng, X.-D. Nitrogen and phosphorus removal for swine wastewater using intermittent aeration batch reactor followed by ammonium crystallization process. Water Res. 1995, 29, 2643–2650. [Google Scholar] [CrossRef]
- Korchef, A.; Saidou, H.; Amor, M.B. Phosphate recovery through struvite precipitation by CO2 removal: Effect of magnesium, phosphate and ammonium concentrations. J. Hazard. Mater. 2011, 186, 602–613. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, P. Turning hazardous waste into value-added products: Production and characterization of struvite from ammoniacal waste with new approaches. J. Clean. Prod. 2013, 43, 59–70. [Google Scholar] [CrossRef]
- Caceres, P.; Attiogbe, E. Thermal decomposition of dolomite and the extraction of its constituents. Miner. Eng. 1997, 10, 1165–1176. [Google Scholar] [CrossRef]
- Valverde, J.M.; Perejon, A.; Medina, S.; Perez-Maqueda, L.A. Thermal decomposition of dolomite under CO2: Insights from TGA and in situ XRD analysis. Phys. Chem. Chem. Phys. 2015, 17, 30162–30176. [Google Scholar] [CrossRef] [Green Version]
- Kiani, D.; Silva, M.; Sheng, Y.; Baltrusaitis, J. Experimental insights into the genesis and growth of struvite particles on low-solubility dolomite mineral surfaces. J. Phys. Chem. C 2019, 123, 25135–25145. [Google Scholar] [CrossRef]
- Li, B.; Boiarkina, I.; Young, B.; Yu, W. Quantification and mitigation of the negative impact of calcium on struvite purity. Adv. Powder Technol. 2016, 27, 2354–2362. [Google Scholar] [CrossRef]
- Romero-Güiza, M.; Astals, S.; Mata-Alvarez, J.; Chimenos, J.M. Feasibility of coupling anaerobic digestion and struvite precipitation in the same reactor: Evaluation of different magnesium sources. Chem. Eng. J. 2015, 270, 542–548. [Google Scholar] [CrossRef]
Parameter | Value (mg/L) |
---|---|
pH | 8.26 |
BOD5 | 1130 |
COD | 12,050 |
TOC | 3400 |
Cl− | 2676.4 |
NO3− | 2.5 |
PO43− | 57.6 |
SO42− | 47.7 |
Ca2+ | 58.78 |
K+ | 2483 |
Mg2+ | 31.82 |
Na+ | 2000 |
NH4+ | 4584 |
Al | 3.38 |
As | 0.062 |
Cd | <0.005 |
Cr | 1.77 |
Cu | 0.536 |
Hg | 0.007 |
Pb | 0.127 |
Zn | 0.430 |
Experiment No. | Mg2+:NH4+:PO43− Molar Ratios | Mg2+ Source | Ca2+:Mg2+ Molar Ratio | Ca2+ Source | pH |
---|---|---|---|---|---|
1 | 1:1:1 | MgCl2 | 0 | - | 9.5 |
2 | 1.25:1:1 | MgCl2 | 0 | - | 9.5 |
3 | 1:1:1.25 | MgCl2 | 0 | - | 9.5 |
4 | 1.25:1:1.25 | MgCl2 | 0 | - | 9.5 |
5 | 1.25:1:1.25 | MgCl2 | 0 | - | 8.5 |
6 | 1.25:1:1.25 | MgCl2 | 0 | - | 10.5 |
7 | 1.25:1:1.25 | MgCl2 | 0.1 | CaCl2 | 9.5 |
8 | 1.25:1:1.25 | MgCl2 | 0.2 | CaCl2 | 9.5 |
9 | 1.25:1:1.25 | MgCl2 | 0.5 | CaCl2 | 9.5 |
10 | 1.25:1:1.25 | MgCl2 | 1.0 | CaCl2 | 9.5 |
11 | 1.25:1:1.25 | CaMg(CO3)2 | 1.0 | CaMg(CO3)2 | 9.5 |
12 | 1.25:1:1.25 | MgO | 1.0 | CaCO3 | 9.5 |
13 | 1.25:1:1.25 | MgO | 1.0 | CaO | 9.5 |
Solid Phase | Log k | ||
---|---|---|---|
Struvite | = | Mg2+ + NH4+ +PO43− | −13.26 |
Ca3(PO4)2am1 | = | 3Ca2+ +2PO43− | −25.5 |
Ca3(PO4)2am2 | = | 3Ca2+ +2PO43− | −28.25 |
Ca3(PO4)2(beta) | = | 3Ca2+ +2PO43− | −28.92 |
Ca4H(PO4)3·3H2O | = | 4Ca2+ +H+ +3PO43− +3H2O | −47.95 |
CaHPO4 | = | Ca2+ +H+ +PO43− | −19.275 |
Hydroxyapatite + H+ | = | 5Ca2+ + 3PO43− + H2O | −44.333 |
Mg3(PO4)2 | = | 3Mg2+ + 2PO43− | −23.28 |
MgHPO4.3H2O | = | Mg2+ +PO43− + H+ +3H2O | −18.175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayshouni, H.; Wazne, M. Effects of Calcium on the Removal of Ammonium from Aged Landfill Leachate by Struvite Precipitation. Water 2022, 14, 1933. https://doi.org/10.3390/w14121933
Rayshouni H, Wazne M. Effects of Calcium on the Removal of Ammonium from Aged Landfill Leachate by Struvite Precipitation. Water. 2022; 14(12):1933. https://doi.org/10.3390/w14121933
Chicago/Turabian StyleRayshouni, Hussein, and Mahmoud Wazne. 2022. "Effects of Calcium on the Removal of Ammonium from Aged Landfill Leachate by Struvite Precipitation" Water 14, no. 12: 1933. https://doi.org/10.3390/w14121933
APA StyleRayshouni, H., & Wazne, M. (2022). Effects of Calcium on the Removal of Ammonium from Aged Landfill Leachate by Struvite Precipitation. Water, 14(12), 1933. https://doi.org/10.3390/w14121933