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Abstract: Under a changing environment, the effect of climate change and human activities on
maize yield is vital for ensuring food security and efficient socio-economic development. The
time series of maize yield is generally non-stationary and contains different frequency components,
such as long- and short-term oscillations. Nevertheless, there is no adequate understanding of the
relative importance of climate change. In addition, human activities on maize yield at multiple
timescales remain unclear, which help in further improving maize yield prediction. Based on the
ensemble empirical mode decomposition method (EEMD), the method of dependent variable variance
decomposition (DVVD) and the Sen-slope method, the effect of climate change including growing-
season precipitation and temperature (i.e., GSP, GEP, CDD, GST, GSMAT, and GSMT) and human
activities including effective irrigation area (EIA) and the consumption of chemical fertilizers (CCF)
on maize yield were explored at multiple timescales during 1979–2015. The Heilongjiang Province, a
highly important maize production area in China, was selected as a case study. The results of this work
indicate the following: (1) The original maize yield series was divided into 3.1-, 7.4-, 18.5-, and 37-year
timescale oscillations and a residual series with an increasing trend, where the 3.1-year timescale
(IMF1), the 18.5-year timescale (IMF3), and the increasing trend (R) were dominant; (2) the original
sequence was mainly affected by human activities; (3) climate change and human activities had
different effects on maize yield at different timescales: The short-term oscillation (IMF1) of maize
yield was primarily affected by climate change. However, human activities dominated the mid-
and long-term oscillations (IMF3 and R) of maize yield. This study sheds new insight into multiple
timescale analysis of the role of climate and human activities on maize yield dynamics.

Keywords: multiple timescale analysis; maize yield; climate change; human activities; relative contribution

1. Introduction

In the past few decades, climate change has turned into one of the most studied
topics, with its serious impact on socio-economic, environmental, and biological issues,
by numerous domestic and foreign scholars [1–3]. Notably, agriculture in developing
countries is likely one of the sectors most negatively affected by climate change [4,5].
Despite significant advances in technology and crop yields, food production and safety
remain deeply dependent on weather and climate change, as temperature and precipitation
are the main drivers of crop growth [6–8].

As a result, food security problems caused by extreme climate events have sparked
research and public interest in the analysis of climate change [9,10] and agricultural pro-
duction [11]. A number of studies have explored the effect of climate change on crop
yield [12]. As mentioned above, long-term fluctuations in crop yield are closely related
to climatic factors, such as temperature and precipitation [13,14]. Nevertheless, most of
these studies focused on single timescales using the traditional time series analysis (correla-
tion analysis and linear regression models) or crop growth models [13,15–17]. The effect
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of climate variables on crop yields is scale-dependent [18–20]. Single timescale analysis
cannot comprehensively reveal the response of crop yield to climate change, and may
ignore some important information on other timescales. Meanwhile, climate variability is
traditionally very well characterized across timescales, such as annual, inter-annual, and
inter-decadal scales [21–25].

In addition to climate change, human activities are a major driver of crop yields [26–29].
Over the past two decades, crop yields have increased dramatically, driven by the use
of fertilizers, improved crop varieties, and agronomic management [30,31]. For example,
Niu et al. [32] indicated that at the present cultivation levels (planting of 67,500 plants/ha
with 225 kg/ha nitrogen application), the genetic improvement, agronomic-management
improvement, and genotype–agronomic management interaction had resulted in yield
increases in Northeast China during the last six decades. During this time, contributions
leading to increases were 45.4%, 30.9%, and 23.7%, respectively. However, how crops
respond to climate change and human activities on different timescales remains unresolved.
In fact, the time series of crop yield and climate variables containing different frequency
components, such as long- and short-term oscillations, are generally non-stationary [33–36].
To increase our awareness of the impacts of climate change and develop adaptation prac-
tices, it is necessary to separate the effect of climate change from the effect of each climate
variable on observed changes in crop yield [37]. Therefore, selecting an appropriate method
to divide those non-stationary time series into variations on multiple timescales tends to be
critical, which may be conducive to truthfully and comprehensively reveal the relationship
between crop yield and climate change at different timescales.

The ensemble empirical mode decomposition (EEMD) method used to linearize and
smooth the nonlinear and non-stationary signals [38] has a significant advantage in dealing
with non-stationary signals. The method can separate the fluctuations of different timescales
and produce a series of intrinsic mode functions (IMFs) containing local characteristic
information on different timescales of the original signal and residual (R), which retains the
data in the process of decomposition characterization [38]. In this study, we employ the
EEMD method to explore the multi-scale characteristics of crop yield fluctuations and their
correlations between major influencing factors, which provide new insight into the impact
of various climatic influencing factors on maize yield fluctuations at multiple timescales.
This work helps in quantifying the impact of climate change on grain production variations,
thereby providing support for reliable grain production forecasting. Maize is the crop with
the largest planting area and production in China. In accordance with the FAO, the planted
area of maize in 2016 was 36.8 million ha and production was 219.6 million tons [39]. The
main crop in Heilongjiang Province is maize, which is also an important commodity grain
production base in China. Consequently, this study selected maize yield in Heilongjiang
Province as the research object. Moreover, since the overall trend in enhancing food
production is predominantly caused by human activities (e.g., technological advances,
fertilization, irrigation, etc.) [40,41], the impact of human activities on food production was
also investigated in this study.

In this study, maize yield, climate change, and human activities at multiple timescales
were extracted using the EEMD method. Their effect at multiple timescales was further
explored to provide scientific knowledge for food security. Therefore, the main objectives
of this study are: (1) To determine which timescale is dominantly responsible for maize
yield; (2) to evaluate the relative importance of climate change and human activities on
maize yield. Section 2 describes the study database and methods.

2. Materials and Methods
2.1. Data Sources

Heilongjiang Province is located in the northeast frontier of China and one of the
major crop producing areas in China (Figure 1). Fertile soil and abundant photo-thermal
resources provide a high-yield potential for maize production [42,43].
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Figure 1. Distribution of meteorological stations in Heilongjiang Province, China.

This study used annual, province-level yield per acre data for corn as well as the
effective irrigation area (EIA) and the consumption of chemical fertilizers (CCF) data during
1979–2015 from the Ministry of Agriculture and Rural Affairs of the People’s Republic
of China (http://sjcx.fldj.agri.cn/moazzys/nongqing.aspx accessed on 1 January 2019).
Daily precipitation and temperature data during the period of 1979–2015 were collected
by a network of approximately 23 weather stations (Figure 1) provided by Climatic Data
Center, National Meteorological Information Center, China Meteorological Administration
(http://cdc.cma.gov.cn/ accessed on 1 January 2019). The daily precipitation and daily
temperature of the 23 weather stations were averaged over the whole provincial scale. The
growing-season precipitation (GSP), the growing-season extremely wet day precipitation
amount (GEP), the growing-season consecutive dry days (CDD), the growing-season mean
temperature (GST), the growing-season mean maximum temperature (GSMAT), and the
growing-season mean minimum temperature (GSMT) were calculated here as the seven
main influencing climatic factors since they had strong relationships with maize yield in
Heilongjiang Province, China.

2.2. Methods
2.2.1. The Ensemble Empirical Mode Decomposition

Ensemble Empirical mode decomposition (EEMD) is an adaptive method for sepa-
rating the spectrum of nonlinear and non-stationary signals [44]. It decomposes a given
time series or signal in components with different frequencies and amplitudes, known as
intrinsic mode functions (IMFs). These IMFs have two attributes that differentiate them
from other signals:

The number of extreme and zero crossings must differ at most by one.
The mean value between the upper and lower envelope is zero.
The original time series X(t) can be written as Equation (1).

X(t) =
m

∑
i=1

ci(t) + r(t) (1)

where ci is the ith component, r is the residual, and m is the number of IMFs.
However, for EEMD, there is a problem caused by mode mixing, which can result in

an overestimation of the noise in the signal [38]. Therefore, the ensemble empirical mode
decomposition (EEMD) method was advanced by adding white noise to the original series,
as follows [38]:

http://sjcx.fldj.agri.cn/moazzys/nongqing.aspx
http://cdc.cma.gov.cn/
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First, we added a number (l) of Gaussian white noise Pj(t) to the original signal X(t)
to obtain a number of noisy pseudo signals Xj(t).

Xj(t) = X(t) + Pj(t), j = 1, 2, . . . l (2)

l is adopted as 1000 in this paper.
Second, the EEMD method was applied to these noisy pseudo signals Xj(t).
Finally, the ith EEMD IMF ci(t) and rn(t) are obtained by averaging the corresponding

EEMD IMFs and residual of these noisy pseudo signals, as follows:

ci(t) =
1
l

l

∑
j=1

ci j(t) and rn(t) =
1
l

l

∑
j=1

rnj(t) (3)

where cij and rnj denote the ith IMF and rn(t) from Xj(t).
Therefore, EEMD produces a finite number of IMFs and a residual rn(t). Each IMF

component represents the oscillation of the original time series at one timescale. The
residual reflects the long-term trend of the original sequence.

The mean period of the ith IMF component can be obtained by counting the number
of its peaks (local maxima), and then dividing it by the time length (n). The variance
contributions were determined to assess the relative importance of each IMF component:

Vci = Var(ci)/[
n

∑
i=1

Var(ci) + Var(rn(t))] (4)

The residual is as follows:

Vrn(t) = Var(rn(t))/[
n

∑
i=1

Var(ci) + Var(rn(t))] (5)

where Vci and Vrn(t) are the variance contributions of the ith IMF component and residual
(rn(t)), respectively. Var(ci) and Var(rn(t)) are the variance of the ith IMF component and
residual (rn(t)).

2.2.2. Method of Dependent Variable Variance Decomposition

Fan [45] was the first to propose the method of dependent variable variance decom-
position (DVVD), and then theorized it to study the income gap. It is specifically used to
decompose the contribution of each variable that affects the income gap. Theoretically, this
method can be used to study the contribution of an independent variable to the variance of
a dependent variable based on linear regression equation [45,46]. This paper introduced
the method to quantitatively evaluate the sensitivity of climatic factors on maize yield.

Suppose the regression equation is expressed as:

Y = α0 + α1X1 + α2X2 + . . . + αhXh (6)

where Xi is the ith independent, αi is the coefficient of Xi, and h is the number of inde-
pendent variables. VE, the explainable part of the regression equation, can be obtained by
multiplying R2 by the variance V of Y, namely:

VE = R2V (7)

The following estimates the contribution of Xi to VE, including two aspects:
First, the direct contribution VD

i of sample variance of the sample itself to sample
variance of Y, namely:

VD
i = α2

i Var(Xi) (8)
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Second, Xi indirectly contributes V I
i to the variance of Y sample due to its correlation

with other variables Xj, j = 1, 2, . . . , h, namely:

V I
i = ∑

j
αiαjCov(Xi, Xj) (9)

Finally, we added these two together and divided by VE, which is the contribution of
Xi to sample variance of Y and can be explained, namely:

Vi =
VD

i + V I
i

VE
(10)

n

∑
i=1

Vi = 1 (11)

The estimated contribution to the variation of maize yield can be understood as the
sensitivity of different climatic factors on individual maize yield differences. In this study,
the threshold of 3% was selected as it represented a relatively large response of the main
influencing factors for the quantitative analysis of the impact of climate change and human
activities on maize yield.

2.2.3. Residual Analysis

In this study, the residual trend method was used to distinguish the effect of climate
change and human activities on maize yield [47,48]. To deeply understand the relationship
between maize yield and climate change and human activities, multivariate regression
analysis was conducted [49,50]. The relationship between maize yield and human activities
was calculated using multivariate regression analysis. This relationship was used to obtain
the predicted maize yield. The difference between the observed maize yield (MYobs) and
the predicted maize yield (MYpre) was evaluated at different timescales. This difference is
the residual (MYres), which is the maize yield change and is not due to human activities.
The trend of MYobs, MYpre, and MYres were calculated by the Sen-slope method [51].

Sen-slope method uses the median value of the slope sequence as the basis of the trend
judgment, which can eliminate the influence of data deletion or abnormality on the trend
test to a certain extent [51]. The Sen-slope formula is:

Sen = Median
[
(MYs −MYt)

s− t

]
, ∀s > t (12)

where Sen is the Sen-slope value, MYn and MYm are the sequence values of s and t,
respectively, and 1 ≤ t < s ≤ k, k is the sequence length. Then, we can calculate the
SenMYobs, SenMYpre, and SenMYres in accordance with Equation (12).

Finally, we calculated the relative role of climate variations and human activities in veg-
etation change based on SenMYobs, SenMYpre, and SenMYres, as shown in Table A1 [34,52]
in Appendix A.

3. Results
3.1. Multiple Timescale Analysis
3.1.1. Multiple Timescale Analysis of Maize Yield

To explore the effect of climate change on maize yield in Heilongjiang Province, China
at different timescales, multiple timescale analysis was performed using EEMD for maize
yield during 1979–2015. Figure 2 exhibits the temporal change in original signal of maize
yield. There was a clear upward trend in the temporal change (Mann–Kendall test value
is 4.95). Figure 3 and Table 1 indicated the temporal changes in maize yield, and the average
periods with their respective variance contributions at different timescales.
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Figure 2. The temporal changes in original signal of maize yield during 1979–2015.

Figure 3. The temporal changes in maize yield during 1979−2015 at different timescales based on the
EEMD method.

Table 1. Average periods and their respective variance contributions of maize yield changes at
different timescales in Heilongjiang Province, China.

IMF1 IMF2 IMF3 IMF4 Residual

Period (year) 3.1 7.4 18.5 37
Variance contribution (%) 7.34 1.86 19.19 0.79 70.82

Maize yield sequence (original sequence) is divided into four IMF components and
a residual (Figure 3 and Table 1). IMF3 shows the greatest variance contribution in IMFs,
followed by IMF1. The contributions of IMF2 and IMF4 were very small (1.86 and 0.79%,
respectively), and thus were not considered in the following analyses. The residual showed
an increasing trend, with 70.82% variance contribution, which was much larger than
the other components. Therefore, the result suggested that maize yield in Heilongjiang
Province, China was mostly characterized by 18.5- and 3.1-year timescale oscillations and
an increasing trend.
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3.1.2. Multiple Timescale Analysis of Climate Change

To reveal the changes in GSP, GEP, CDD, GST, GSMAT, and GSMT at different
timescales, multiple timescale analysis was performed using EEMD during 1979–2015.
Figure 4 and Table 2 indicated the temporal changes, and the average periods and their
variance contributions of GSP, GEP, CDD, GST, GSMAT, and GSMT at different timescales.

Figure 4. The temporal changes in seven main influencing climatic factors (GSMAT, GSMT, GST, GEP,
CDD, and GSP, respectively corresponding to subplots (a–f) during 1979–2015 at different timescales
based on the EEMD method.

The GSP changes in Heilongjiang Province, China showed four oscillations at
3.3-, 7.4-, 12.3-, and 33-year timescales and a residual, among which the 3.3- and 12.3-year
timescale oscillations and the long-term trend were the main components (Figure 4 and Table 2).
The GEP and CDD showed similar oscillation characteristics with GSP. Notably, the CDD
exerted a slight decreased trend, which was contrary to GSP and GEP. In addition, for the
long-term trend, the GST increased rapidly and then gradually, with variance contribution
smaller than the 3.3-year oscillation. The GSMT had the same variability as GST. However,
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the temporal changes in GSMAT were slightly different from GST and GSMT. The variance
contribution of the long-term was less than GST and GSMT, which suggested that GSMAT
mainly focused on the oscillation characteristics rather than the trend.

Table 2. The average periods and their variance contributions of climatic factors: GSP, GEP, CDD,
GST, GSMAT, and GSMT changes at different timescales in Heilongjiang Province, China during
1979–2015.

IMF1 IMF2 IMF3 IMF4 Residual

GSMAT
Period (year) 2.5 5.2 12.3 18.5

Variance contribution (%) 57.2 13.6 18.1 3.8 7.3

GSMT
Period (year) 2.8 6.1 12.3 37

Variance contribution (%) 44.6 14.3 5.4 1.2 34.5

GST
Period (year) 3.3 6.1 12.3 37

Variance contribution (%) 57.7 4.5 1.6 1.2 35.0

GEP
Period (year) 3.1 7.4 12.3 37

Variance contribution (%) 67.1 13.1 6.1 10.3 3.4

CDD
Period (year) 4.1 12.3 18.5 34

Variance contribution (%) 53.3 24.9 7.5 3.7 10.6

GSP
Period (year) 3.3 7.4 12.3 33

Variance contribution (%) 66.6 12.2 7.9 10.1 3.2

3.1.3. Multiple Timescale Analysis of Human Activities

To reveal the changes in the effective irrigation area (EIA) and consumption of chemical
fertilizers (CCF) at different timescales, multiple timescale analysis was performed using
EEMD during 1979–2015. Figure 5 and Table 3 indicated the temporal changes, and the
average periods with their variance contributions of EIA and CCF at different timescales.

Figure 5. Cont.
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Figure 5. The temporal changes in human activities (EIA (a) and CFF (b)) during 1979−2015 at
different timescales based on the EEMD method.

Table 3. The average periods and their variance contributions of changes in human activities, EIA,
and CFF at different timescales in Heilongjiang Province, China during 1979–2015.

IMF1 IMF2 IMF3 IMF4 Residual

EIA
Period (year) 2.6 7.4 18.5 37

Variance contribution (%) 0.40 0.51 0.65 0.96 97.48

CFF
Period (year) 3.4 7.5 18.5 37

Variance contribution (%) 0.51 0.43 0.60 0.15 98.32

EIA changes in Heilongjiang Province, China showed four oscillations at 2.6-, 7.4-,
18.5-, and 37-year timescales and a residual, among which the long-term trend was the
main component (Figure 5a and Table 3). CFF had similar changes with EIA, which also
exhibited four oscillations at 3.4-, 7.5-, 18.5-, and 37-year timescales and a residual, and the
long-term trend was the main component (Figure 5b and Table 3).

3.2. The Effect of Climate Change and Human Activities on Maize Yield at Multiple Timescales
3.2.1. Sensitivity Analysis of Maize Yield to Climate Change and Human Activities

In this study, the sensitivity of maize yield to climate change and human activities
was examined using the DVVD method. The sensitivity is defined as the contribution of
independent variables (climatic factors and human activities) to the variance of dependent
variable (maize yield). The results of sensitivity were shown in Figure 6.

As shown in Figure 6, the factors sensitive to the original sequence of maize yield were
GSMT, CDD, EIA, and CFF, the contributions of which to the variance of maize yield were
more than 3%. In addition, the contributions of EIA and CFF to the variance of maize yield
were significantly greater than CDD and GSMT, which indicated that maize yield was more
sensitive to human activities than to climate change. However, it can be found that IMF1
of maize yield had more sensitivity to GSMAT, GSMT, GST, CDD, EIA, and CFF, among
which the IMF1 was highly sensitive to GSMAT, GSMT, GST, and CDD than EIA and CFF,
indicating that the short-term oscillation (3.1-year oscillation) of maize yield were more
sensitive to climate change than human activities (shown in Figure 6). By contrast, there
were some differences in IMF3 (18.5-year oscillation) of maize yield. At this timescale, there
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were only four factors, GSP, GEP, CDD, and CFF, to which IMF3 of maize yield was more
sensitive. Notably, the long-term oscillation showed more sensitivity to GSMAT, GSMT,
GST, GSP, GEP, CDD, EIA, and CFF, which illustrated that the trend component of maize
yield was highly sensitive to climate change and human activities.

Figure 6. The sensitivity analysis of maize yield (original (a), IMF1 (b), IMF3 (c), and R (d)) to climate
change and human activities at different timescales based on the DVVD method.

In summary, in different timescales, the sensitive factors influencing the change in
maize yield were not the same. The main sensitive factors of short-term oscillation were cli-
matic factors, while the main sensitive factors of mid- and long-term fluctuations (18.5-year
oscillation) were human activities. In addition, the long-term trend in maize yield was
sensitive to both climate change and human activities.

3.2.2. The Detailed Effect of Climate Change and Human Activities on Maize Yield at
Different Timescales

Our study found that the sensitivity of maize yield to climate change and human
activities varied with the timescales. To further confirm the above analysis results, the
linear correlation method (the Pearson correlation method) was used to further explore the
effect of climate change and human activities on maize yield at multiple timescales (shown
in Table 4). In this case, only the correlation coefficients between maize yield and sensitive
factors were identified in Section 3.2.1 in Table 4.

Table 4. Relationship between maize yield and climatic factors and human activities at different
timescales.

GSMAT GSMT GST GEP CDD GSP EIA CFF

original - 0.573 ** - - −0.383 * - 0.671 ** 0.787 **
IMF1 −0.230 0.249 −0.195 - −0.244 - 0.173 0.199
IMF3 0.007 0.365 * 0.186 0.547 ** −0.696 ** 0.594 ** 0.418 * 0.833 **

R 0.912 ** 0.999 ** 0.997 ** 0.961 ** −0.974 ** 0.741 ** 0.833 ** 0.953 **

** Passing 99% significance test; * passing 95% significance test.
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Table 4 indicated that CDD was negatively correlated with maize yield [53] at different
timescales, while other factors (climatic factors and human activities) were positively
correlated with maize yield [28]. The relationship indicated that both climate change and
human activities had a significant effect on maize yield, whether at different timescales
or without multiple timescales. Furthermore, there was a significant increasing trend
(shown in Figure 3) in maize yield. It can be found that CDD had a decreasing trend
(Figure 4e) and other factors had increasing trends (Figures 4a–d and 5b). Based on the
combined results listed in Table 5, we can conclude that due to the increase in precipitation
in Heilongjiang Province, the trend of dryness was alleviated, which was beneficial to the
growth of maize [49,53–56]. In addition, increasing temperatures have changed the thermal
conditions in Heilongjiang Province, leading to earlier sowing and increased accumulation
time of dry matter, which has increased maize yields. The important increase in maize
yields is a comprehensive result of human activities and climate change [13,14,57,58]. At
the same time, the increased use of fertilizer increased the maize yield [28,29,59].

Table 5. The Sen-slope value of human activities and climate change for maize yield over different
timescales.

SenMYobs SenMYpre SenMYres

Original 3.56 3.04 0.20
IMF1 −0.01 0.01 −0.07
IMF3 0.30 0.26 0.07

R 5.13 2.67 2.46

3.2.3. Relative Importance of Climate Changes and Human Activities for Maize Yield at
Different Timescales

To reveal the relative importance of climate change and human activities for maize
yield, the multivariate regression analysis and Sen-slope trend method for maize yield
based on sensitivity factors were determined in Section 3.2.1, with and without the multiple
timescale (original sequence). Table 5 and Figure 7 indicated the Sen-slope values, and
the relative contributions of climate change and human activities on maize yield with and
without the multiple timescale analysis.

As shown in Table 5, except for the trend changes in IMF1, maize yield showed an in-
creasing trend, in which the original sequence and the residual term increased significantly.
For the original sequence, the 18.5-year timescale, and long-term trend, the increasing
trends were caused by human activities and climate change (Figure 7), among which hu-
man activities were the main factors (the relative contributions of human activities were
94%, 77%, and 52%, respectively). These results indicated that human activities had a
stronger influence on maize yield than climate change in the mid- and long-term timescales.
For regression accounting for multiple timescales (the main ones were 18.5-year timescale
and the long-term trend), the relative contribution of climate change to maize yield was
still lower than human activities to maize yield change, with the increase in timescale,
the impact of climate change on maize yield increased gradually, while the impact of
human activities on maize yield decreased gradually (Table 5 and Figure 7). Indeed, this
suggested that climate change significantly affects maize yield, which illustrated that ig-
noring timescales may strikingly underestimate the impact of climate change on maize
yield. Among multiple timescales, the 3.1-year timescale (IMF1) was an exception. In this
timescale, the relative contribution of climate change for maize yield was 87% (Figure 7b).
Over the 3.1-year timescale (in IMF1 of maize yield), climate change was the dominant
factor, which led to the declining trend of maize yield.
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Figure 7. The relative contributions of human activities and climate change for maize yield over
different timescales (original (a), IMF1 (b), IMF3 (c), and R (d)).

4. Discussion

Possible causes of the dominant effect of climate and human activities on maize yield
were explored at different timescales. As shown in this study, the DVVD and Sen-slope
methods were used to analyze the effect of climate change and human activities on maize
yield at 3.1-year timescale, which showed that climate change had a significant impact
on maize yield (Figure 7b). In accordance with the results in Table 2, the change cycle of
the IMF1 of climatic factors is basically consistent with the IMF1 of maize yield, and the
variance contribution rate of the IMF1 of these climatic factors accounts for more than 50%
of the total variance contribution rate. Therefore, climate change mainly affects the 3.1-year
timescale oscillation in maize yield. Moreover, previous studies considered the relationship
between maize yield and climate change (temperature and precipitation) in Heilongjiang
Province, China [13,60].

For the 18.5-year timescale and the long-term trend, human activities were the dom-
inant factor. On the one hand, it can be found in Table 3 that the long-term increasing
trend was the main component for EIA and CFF, which indicated that the effect of hu-
man activities on maize yield was mainly reflected in the trend [36,61]. On the other
hand, agricultural policies in Heilongjiang Province have a significant impact on maize
yield [38,62–65]. During the period 1979–1994, the implementation of the household con-
tract responsibility system resulted in a significant increase in maize production [64,65].
There was a clear downward trend of maize yield in 1995–2007, for which the main reason
was that from the early stage of reform and opening up to the first half of the 1990s, the
increase in grain production brought by the increase in agricultural production enthusiasm
led to the “difficulty in selling grain” of farmers. The problem of increasing production
and not increasing the income of farmers became increasingly serious, which seriously
affected the enthusiasm of farmers to engage in agricultural production [38,62]. In addition,
it was found that there was a significant increasing trend in maize yield during the period
2008–2015, which was mainly due to the fact that under the influence of the central policy
of benefiting farmers and the revitalization of the old industrial base in northeast China, the
agricultural production efficiency in Heilongjiang Province had been greatly improved [63].
Moreover, the change cycles of food policies are basically the same as the IMF3 of maize
yield (at 18.5-year timescale). Food policies mainly work on maize yield through measures,
such as fertilizer application and irrigation improvement by farmers.
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5. Conclusions

In this study, multiple timescale analysis for the relationship between maize yield and
climate change and human activities was performed employing the EEMD method. Maize
yield in Heilongjiang Province can be divided into 3.1-, 7.4-, 18.5-, and 37-year timescale
oscillations and a long-term trend during the period 1979–2015. Maize yield dominated
by 3.1- and 18.5-year timescale oscillations and the long-term trend with high variance
contributions. The DVVD and Sen-slope methods with multiple timescale analysis showed
that human activities predominated the original sequence of maize yield series. As the
timescale increased, there were different effects of climate change and human activities on
maize yield, in which climate change mainly affected maize yield at short timescales, and
human activities mainly influenced the original sequence, 18.5-year oscillation, and long-
term trend of maize yield. As a whole, human activities had a stronger impact on maize
yield than climate change at the 18.5-year timescale and long-term trend, but the effect of
climate change on short-term fluctuations in maize yield was stronger than human activities.
The findings of this study indicated that the effect of human activities on the original
sequence of maize yields has obscured the effect of climate change. Therefore, it is beneficial
to carry out multiple timescale studies to help better characterize the impact of human
activity and climate change on maize yields, which will improve maize yield forecasting
and modelling. This study facilitates a better understanding of the relationship between
crop yield and climate change and human activities at multiple timescales. Furthermore, it
provides few scientific references for food security under global climate change.
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Appendix A

Table A1. Methods for assessing the relative roles of climate changes and human activities in
vegetation changes under different scenarios.

SenMYobs SenMYpre SenMYres
Relative Contribution of

Human Activities (%)
Relative Contribution of

Climate Change (%) Explanation

<0 >0 <0 0 100 Climate-dominated
maize yield decrease

<0 <0 100 0 Human-dominated
maize yield decrease

<0 <0 |SenMYpre|
|SenMYpre|+|SenMYres |

× 100
|SenMYres |

|SenMYpre|+|SenMYres |
× 100

Both climate and human
induced maize
yield decrease

>0 >0 - - Error

>0 <0 >0 0 100 Climate-dominated
maize yield increase

>0 <0 100 0 Human-dominated
maize yield increase

>0 >0 |SenMYpre|
|SenMYpre|+|SenMYres |

× 100
|SenMYres |

|SenMYpre|+|SenMYres |
× 100

Both climate and human
induced maize
yield increase

<0 <0 - - Error
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