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Abstract: Suspended sediment yield (SSY) prediction plays a crucial role in the planning of water
resource management and design. Accurate sediment prediction using conventional models is very
difficult due to many complex processes. We developed a fully automatic highly generalized accurate
and robust artificial intelligence models for SSY prediction in Godavari River Basin, India. The
genetic algorithm (GA), hybridized with an artificial neural network (ANN) (GA-ANN), is a suitable
artificial intelligence model for SSY prediction. The GA is used to concurrently optimize all ANN’s
parameters. The GA-ANN was developed using daily water discharge, with water level as the input
data to estimate the daily SSY at Polavaram, which is the farthest gauging station in the downstream
of the Godavari River Basin. The performances of the GA-ANN model were evaluated by comparing
with ANN, sediment rating curve (SRC) and multiple linear regression (MLR) models. It is observed
that the GA-ANN contains the highest correlation coefficient (0.927) and lowest root mean square
error (0.053) along with lowest biased (0.020) values among all the comparative models. The GA-
ANN model is the most suitable substitute over traditional models for SSY prediction. The hybrid
GA-ANN can be recommended for estimating the SSY due to comparatively superior performance
and simplicity of applications.

Keywords: genetic algorithm; artificial neural network; suspended sediment yield; Godavari River

1. Introduction

Sediment load is one of the most significant of nature’s landscape transformation
processes on Earth and is a result of weathering. Rivers contain the sediment and transport
the weathered materials of continents into the ocean. Rivers are the most important
dynamic geological transportation media on the earth and serve as a vital link between the
land and the ocean. Sediment movement in a river is a complicated nonlinear phenomena
that involves the interaction of components of hydrology and geology with geographical
and temporal variations. The accurate estimation of a river’s carried sediment load is
critical for the management, planning and project management of water resources [1].
It is also necessary for information on a variety of river improvement and utilization
issues [2]. The sediment load in river basin system can influence dam filling, safety of
fish and wildlife habitats, water pollution, understanding of flood volume and life of
hydroelectric equipment etc. [3–9]. The harmful effects of suspended sediment yield (SSY)
in a river system and the need to understand SSY behavior has drawn substantial attention
over recent decades. Dam failure is possible as a result of loss of storage capacity caused
by sedimentation [10,11], where the dam’s effectiveness, built for flood control, irrigation
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and power generation, decreases due to sedimentation. Sediment load can also impair
navigation channels, the capacity of roadside streams, rivers and ditches to move sediment,
and the storage capacity of lakes and reservoirs resulting in an increased frequency of
flooding [12]. Many people are affected and can lose their properties as a result of such
flooding. Various studies regarding flooding due to high sedimentation and its harmful
impacts have also been undertaken by many researchers [13,14].

Over the past few decades, the necessity to ensure the correct modelling of SSY has
increased rapidly. However, sediment estimation is not an easy task because of its non-
linear nature and complex processes in sedimentations. Quantitative estimation of SSY is
quite tough either manually, or by means of instrument for automated sampling, which
both involve more labor demanding, time consuming and costly procedures [15,16]. Due
to the incidence of multiple complex procedures, determination of sediment data is not
very accurate with traditional methods. A conventional multiple linear regression (MLR)
regression approach has been utilized for the prediction of SSY [17–19]. However, this
model can capture only linear relationships in hydro-climatic data and is unable to do so in
the presence of any non-linearity phenomenon. The sediment rating curve (SRC) was the
first non-linear model extensively used for the estimation of sediment discharge [20,21]. It
uses only a function of power law to capture the non-linearity [22,23]. The major limitation
of using the SRC model is the use of a single independent variable (water discharge (WD))
using power law function only; however, sediment also depends on other features such as
water level (WL), temperature(T), rainfall(R) and other nonlinear functions [19,24,25].

An alternative method, recommended in relation to the existing procedures and physi-
cal frameworks, is to an employ artificial intelligence technique for more accurate estimation
of SSY. Artificial intelligence promises techniques that improve on classical methods. These
techniques include deterministic, linear and non-linear regression and conceptual models
that can solve complex hydrological problems [26]. These artificial intelligence techniques
have been used widely by various researchers in many interdisciplinary domains [27–37].
One appropriate artificial intelligence model is the ANN which has the capability to han-
dle multiple variables of both linear and non-linear dependencies. The ANN aims to
develop various learning methods by recognizing patterns by identifying data-learning
patterns and predicting output as SSY [38]. The ANN is a non-parametric technique with
an adaptable mathematical structure which can model any non-linear complex process [39].
The ANN operates iteratively to minimize the errors in the model [40]. It was also noted
that ANN models have delivered better performance as compared to classical MLR and
SRC for prediction of sediment load [17–19,41,42]. Over the past two decades, numerous
ANN-based techniques have been successfully applied for the estimation of sediment by
various researchers in Indian river basins and other river basin systems [18,43–46].

Kisi [43] developed ANN approaches for estimation of daily SSY using water flow and
antecedent (lagging) SSY data at Rio Valenciano and Quebrada Blanca stations, Puerto Rico.
The ANN results were compared with SRC and MLR methods. It was found that the ANN
model provided better result performances as compared with the regression-based models
(SRC and MLR). Jothiprakash et al. [44] established an ANN model for the estimation
of sedimentation in Gobindsagar Reservoir in the Satluj River, India. Prediction of SSY
was done using the ANN approach on a yearly basis. After evaluating the performances
of various models, it was observed that the ANN techniques are well suitable for the
estimation of sediment in reservoirs and that it provided better results as compared with
other traditional models. Patil and Shetkar [45] developed a multi-layer perceptron-based
ANN model for estimating sediment load in Maharashtra’s Shivaji Sagar Reservoir in
the Koyna River, India. It was concluded that the ANN model demonstrated satisfactory
outcomes for the estimation of SSY and delivered better performance as compared with
traditional regression models. Yadav et al. [18] used gradient descending adapting learning
rate and Levenberg Marquardt-based ANN models and compared them to traditional
regression-based models using T, R data and WD, as input parameters for the prediction of
SSY at Tikarapara gauge station in Mahanadi River. According to a results analysis, it was
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found that the Levenberg–Marquardt-based ANN approach has better prediction capability
as compared with a gradient descending adapting learning rate-based ANN model. This
was also demonstrated by Kisi [47] for the prediction of sediment load in Quabrada Blanca
and Rio Valenciano stations, USA. It has also been demonstrated that the ANN model
outperforms the traditional regression-based approaches. Toriman et al. [46] employed
an ANN model to accurately estimate suspended sediment discharge in the Jenderan
catchment region in Selangor, Malaysia, taking water depth, rainfall, and discharge data as
inputs. Based on performance, the ANN model was effective for modelling the complex
nonlinear behavior of SSY.

The performance of ANN is mostly dependent on the network’s topology (structure,
size, connections etc.). The improper selection of these ANN network parameters leads to
the over-fitting and under-fitting problems which are the most serious disadvantages of
the ANN model [19,48–52]. Under-fitting with training dataset results in poor performance
of the network whereas over-fitting results in poor model generalization [53]. Usually, the
process of trial and error have been adopted for selecting those parameters. However, these
techniques may not provide the optimal solution for selection and may be computationally
expensive. To eliminate the drawbacks of the ANN technique, one evolutionary algorithm
called the genetic algorithm (GA) has been widely used by various researchers over the
last decade [19,54–56]. The GA can select the optimum parameters and produce a range
of possible solutions during the evolution of adaptive and dynamic system structure [57].
Topchy et al. [58] used a GA technique to choose an optimum set of weights for an ANN
network which showed that convergence time for a GA-based model can be reduced
drastically and that an optimum solution can be obtained satisfactorily. The GA can be
applied in several ways to design the ANN. Recently, studies on hybrid GA-ANN based
models’ have been conducted in hydrology for rainfall, water quality and water flow
prediction [59–61]. However, very few GA-based ANN models have been applied for the
prediction of suspended sediment in River basin [51,56,62].

One of the greatest river basins in India’s peninsular rivers is the Godavari River basin
which holds the second longest river in the country next to the Ganges in terms of catchment
area, water, food and mineral resources. Various traditional, ANN and fuzzy-based models
have been successfully applied to estimate the suspended sediment concentrations (SSC) on
a daily basis [63]. Mallik et al. [63] proposed a model that incorporated an SRC, multi-layer
perceptron neural network, MLR, co-active neuro fuzzy inference system, SRC techniques
and multiple non-linear regressions to predict SSC on the basis of daily data from the Tekra
gauging location at the Pranhita River. The outcomes indicate the performances of the
co-active neuro fuzzy inference system model as compared with the MLR, SRC, multiple
non-linear regressions and multi-layer perceptron neural network models in predicting
daily SSC on the study site. The multi-layer perceptron neural network model also provided
better performance as compared with the SRC and MLR methods. However, they used only
three and a half years’ worth of data for analysis which may not be enough for generalized
and more accurate prediction.

The proposed work was performed using the recorded data from the Polavaram
gauging site, which is the last downstream data collection point in the Godavari River
basin, India before the sediment is deposited in the Bay of Bengal. Polvaram was chosen
as the study site for this research because of its convenient area and the existence of
daily hydrological data (WD, WL and SSY) at this gauging station. In this research, a
generalized hybrid GA-based ANN i.e., GA-ANN model was developed to estimate the
SSY at Polavaram, where everything that is associated with the ANN model (inputs,
combinational coefficient (µ), activation functions, initial bias and connection weight and
hidden nodes) were optimized concurrently. In this study, WD and WL data were used as
input data for all models for the prediction of SSY at Polavaram station of the Godavari
River Basin. This study is the first to attempt a prediction of SSY at the Godavari River
Basin. Furthermore, to determine the capability of the prediction models, the GA-ANN
model’s results were compared to traditional SRC, ANN and MLR models. It is noticed
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that the proposed GA-ANN model exhibited satisfactory performance and better results as
compared with other studied models. If the measurement of sediment yield is not available,
then this modelling approach can be recommended for SSY estimation due to improved
performance and simplicity of implementation.

2. Proposed Methodology
2.1. GA-ANN

GA is the most efficient global optimization method which has been applied in many
fields [64–67]. It is a robust and probabilistic search algorithm that initiates a genetic
evolution and choice by a biological process based on Darwin’s theory. This algorithm
was first introduced by Holland in the 1960s, and was extensively used to handle var-
ious complex, highly nonlinear, constrained and unconstrained optimization problems
over different network models [68,69]. GA is capable of solving many hydrological re-
source issues such as calibration of runoff and rainfall [70] watershed peak flow fore-
casting [71], ground water monitoring [72], optimal design of irrigation channels [73],
rainfall forecasting [59–63,68–74], estimating sediment discharge [75] etc. Recently, several
studies have used the hybrid GA-ANN-based models to predict the suspended yield in
Marun and Karun Rivers in Iran [62], the Kurau River in Malaysia [76], and the Mahanadi
River in India [19]. It is noticed that the hybrid GA-ANN technique outperforms other
conventional techniques.

In this study, a GA combined with a multilayered feed forward ANN (simply known
as GA-ANN) with one hidden layer was utilized to identify the optimum ANN parameters
to predict SSY. The GA was used to optimize the ANN parameters in enhancing the ANN
model’s performance. A single hidden layer was employed in this multi-layer perceptron-
based ANN. The Levenberg–Marquardt method was applied to train the ANN, while
the GA algorithm was used to pick the ANN model’s optimum parameters. To get a
more efficient global optimum solution and avoid the local optimal point solution, the
ANN training and parameter selections were done simultaneously. In terms of genetic
terminology, each parameter in the GA-ANN model was stated as a gene, whereas the
entire set of ANN’s factors was set to act as a chromosome. It is a population-based global
optimization algorithm that uses different operators in genetics such as mutation, selection
and crossover to create a variety in the group of chromosomes for a problem.

In this research, GA was mainly used to choose five main factors for the ANN model,
specifically inputs, number of hidden layers neurons, transfer function, combination coeffi-
cient (µ), and bias and connections weights. These five factors were changed into a binary.
The chromosome is a binary sequence of characters. Such a large number of chromosomes
were set at random and iteratively upgraded with the use of genetic operators to provide
a better solution. Each chromosome involves five factors, and each factor signifies one
parameter of the ANN. The first factor is the input parameter represented with a 2-bit
binary number. For instance, binary code 11 indicates that inputs 1 and 2 are considered
by the neural network model. The second factor is a 3-bit binary value that specifies the
activation function between the output layers and hidden layers. Nine distinct combina-
tions of activation functions were utilized for the output and hidden layers. Three transfer
functions such as linear, log-sigmoid and tan-sigmoid were evaluated in this study. The
biggest disadvantage of using a linear transfer function is that it converts the network
model into a complete linear model. Linear regression is already used for comparing results,
therefore, we left the linear model out of the GA-ANN hybrid modelling.

The third attribute is the counting of hidden layer neurons, expressed by a 5-bit
binary number. The 5-bit binary code was translated into decimals to create the number of
hidden neurons. Taking into account the computation time and complexity of the ANN,
the range of hidden nodes was limited to 32 and the lower limit was also set at 1. The
5-bit chromosome denotes the entire decimal numbers in the range of 1 and 32. The 4th
factor represents the combinational coefficient ‘µ’ with an 8-bit binary code. This 8-bit
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binary coded number was changed within the ‘µ’ range (0.001 to 9 × 109) with the help of
normalization. The normalization process can be carried out using the following equation:

Cnorm = a + [
Ci − Cmin

Cmax − Cmin
]× (b− a) (1)

where, Cnorm represents the normalized value of Ci, which is the ith chromosomal 8-bit
binary coded number; the constants ‘b’ and ‘a’ represents the highest and lowest values,
respectively within that range ‘µ’ is normalized and therefore the values of ‘b’ and ‘a’ are
9 × 109 and 0.001, respectively; Cmin and Cmax represents the lowest and highest values in
decimal of an eight-bit binary form of ‘µ’.

Furthermore, 5th factor signifies the bias and weights conditions of the ANN model.
Owing to the change in the input’s variable and hidden nodes, this factor has a variable
length. For example, if the total number of variables in the input is x and the hidden
neurons is h, then in a single output ANN model, the number of bias weight (N) and
connected weights can be calculated as:

N = [h× (x + 1) + (h× 1) + 1] (2)

Suppose when x = 2 and h = 30, the number of linked weights and bias parameters
will be 121. Each weight was expressed with an 8-binary number; thus, the number of
linked weights and bias is 968.

For the purpose of the selection procedure, a parent chromosome pair is preferred
from the original population, to create an offspring based on better fitted individuals in suc-
cessive generations. In this work, the size of the population is selected as 50 to decrease the
processing time, network complexity and to preserve diversity [19,77]. The fitness function
evaluates each chromosome and estimates the likelihood of accepting a chromosome for
successive generations in the specified population. According to roulette-wheel selection
criteria [78], only few of the chromosomes were chosen by elitism depending on fitness
criteria. Then mutation and crossover operations are carried out on the chosen chromo-
somes. The crossover process is carried out by interchanging the chromosomal genetic
material and produce newer individuals which enable them to benefit from the parent’s
fitness. In each generation, the same process is performed to produce a better solution from
the alternatives available. The mutation works by randomly flipping chromosome bits
from 1 to 0 or 0 to 1 depending on the mutation rate set by the user.

The GA’s performance is determined by the greater probability rate of crossover and
the lower probability rate of mutation function [79]. A uniform crossover function with
a likelihood of 0.6 was utilized in this study [54]. The mutation operations enable the
GA to get away from the local minimum solution points. A smaller constant mutation of
0.05 probability was taken in order to avoid the random search of an algorithm. Validation
data was used for calculating the RMSE i.e., fitness function value of all the chromosomes.
To preserve the maximum size of population as 50, the poor chromosomes with lower
fitness function value were eliminated. After one generation, the acquired population
of chromosomes serves as the starting point for the next. This genetic procedure was
carried out till the maximal generation has been reached. In this study, the greatest value of
generations is 50. The lowest value of RMSE of the fitness function for various successive
generations was calculated. After final generation, the best option was obtained based on
minimum fitness value of RMSE. The resultant chromosome equivalent to the best option
gives the optimal ANN selected parameters (inputs, combinational coefficient, neurons,
activation functions, and bias and connection weights).

2.2. ANN

Among the most extensively used artificial intelligence models is the ANN tech-
nique with a versatile mathematical framework, which can solve non-linear and com-
plex linear relationships among different inputs and outputs during appropriate learning
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schemes [80,81]. An ANN was conceptualized which works on the principle of the bio-
logical brain’s nervous system. Similar to the number of neurons in the brain, the ANN
consists of many artificial neurons which are attached together with a particular network
architecture of bias weight and connection weight. Each neuron in ANN receives a few
inputs and transforms them into meaningful outputs. In order to develop a learning model
accurately, an appropriate algorithm was applied to train the ANN by adjusting its weights.
In recent years, ANN models have gained popularity for hydrological data simulation [40]
such as rainfall-runoff [82], suspended sediments [83], stream flow forecasting [84], water
quality [85], estimating lower-flow [86] etc.

The topology of the ANN is categorized into feedback and feed forward. In feed
forward ANN, the flow of information is unidirectional and does not have any feedback
loops whereas feedback loops are allowed in a feedback ANN. Feed forward back propaga-
tion, which is trained by a Levenberg–Marquardt algorithm, is utilized to build a robust
multi-layer perceptron-based ANN for the prediction of SSY. It is the most popular ar-
chitecture, modeled for capturing the non-linear perceptions in a network [47,87]. The
multi-layer perceptron consists of an output layer, hidden layers and input layers. De-
pending on the type of the dataset, topology and statistical errors in the ANN, the count of
the hidden layers may be one or more [88]. Each layer in the network involves a precise
number of neurons associated with connection weights and activation functions. The
purpose of activation function is to map the weighted inputs into a meaningful output.
The intermediate layer (hidden layer) neurons are discovered by the error measures of the
network. Also, the number of nodes present in the intermediate layer have an important
contribution in the ANN model’s performance [21]. Several studies have been conducted
that show that a single intermediate layer is suitable for approximating non-linearity as
well as for reducing network structural complexity [89,90]. The fundamental structure of
multi-layer perceptron-based ANN is shown in Figure 1. The various network inputs with
their associated weights were processed in the hidden layers and produced a generalized
output. In the proposed work, WD and WL were the input features which were considered
for SSY prediction.
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For the purpose of training the multi-layer perceptron neural network, Levenberg–
Marquardt, a fast convergence supervised back propagation learning algorithm, was used.
Quicker response, robustness, flexibility, ease of programming and simplicity are the main
benefits of this algorithm [91]. This algorithm updates the network’s connections and
bias weights. It was considered the best choice to supervise the network [92]. The ANN
approach which, is trained using the Levenberg–Marquardt algorithm, took the weight
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update rule, derived from the Newton’s method with steepest descent [93], can be expressed
as below:

Wk+1 = Wk − (JTJ + µI)
−1

JTe (3)

where “e” represents the error vector, “W” represents the weight vector, “J” represents the
Jacobian matrix, identity matrix is represented by “I”, “k” represents iteration number, and
“µ” represents the combinational of the Levenberg–Marquardt coefficient. When “µ” is
low and approximated to zero value, the Levenberg–Marquardt algorithm behaves like a
Newton technique, but when “µ” is high, it behaves like a gradient descent solution with a
small size of step [94]. As a result, parameter selection becomes a difficult problem in the
Levenberg–Marquardt technique, which was performed iteratively employing optimization
inside the algorithm. The error vector values ‘e’ were derived by subtracting the predicted
output from the real output. The error was returned to each neuron, which adjusts the bias
weights and connection weights across the ANN. By considering the e partial derivatives
against all variables that are unknown, such as bias weights and connection weights, the
Jacobian matrix was created.

Although ANN has several advantages, such as adaptive training, parallel computing,
fault tolerance capability etc. It has a limitation in the processing of vague data. The poor
ANN model’s parameters selection causes overfitting and underfitting problems. These
limitations of ANN inspired the research to use various approaches of ANN in combination
with optimization techniques to address these shortcomings. Nowadays, optimization
approaches have become an integral part of modeling in which GA is the one capable
global solution approaches. The GA can work as a problem-solving technique in terms of
searching, adapting and learning in a variety of applications, particularly for those issues
where nonlinear data and complexity of models produce results. In this study, the GA was
used for selecting all optimum parameters of the ANN model at a time automatically using
hybrid GA-ANN techniques.

2.3. MLR Model

The conventional MLR is a statistical strategy attempt to keep the linear relation among
the various inputs (independent) variables by adjusting the linear equation to data and
predicting the output i.e., SSY. Mathematically, MLR can be represented by an equation:

S(t) = a + b(WD)t + c(WL)t (4)

where, a represents the regression intercept, b represents the coefficient of input variable
water discharge (WD) and c represents the coefficient of water level (WL). The values ‘a’, ‘b’
and ‘c’ were determined by using least square regression method among the input variables
and obtained output variables [18,95]. In order to develop the higher order MLR models,
there was no need to consider interaction effects of different input variables.

2.4. SRC Model

The SRC, also known as the power relation model, is commonly employed to main-
tain the nonlinear relationship among the output and input variable. It quantifies the
amount of SSY corresponding to the WD measured [43]. The SRC method used in this
study established a connection of power between the WD and SSY based on the record of
streamflow [96,97]. The power equation of SRC is given below [17,21]:

S = aQb (5)

where, S and Q specify the amount of SSY and WD, respectively. The values of b and a are
the rating coefficients attained by using least square regression between log Q and log S.
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3. Data Analysis of Study Region
3.1. Study Region

The Godavari River Basin stands as the second longest river in India after Ganga and
accounts for 9.5% of the country’s total geographic area. It originates from Central India’s
Western Ghat near the hills of Triambakeswar at 1067 m elevation in the Nasik region of
Maharashtra, nearly eighty kilometers from the Arabian Sea (Godavari Basin Govt. of
India [98]). This basin’s overall drainage area extends up to 312,812 Square kilometer with
its greatest length (995 km) and width (583 km). It is one of India’s biggest river basins. It
flows east for 1465 km draining Maharashtra, Andhra Pradesh, Telangana, Chhattisgarh
Odisha, Madhya Pradesh, Karnataka and Puducherry with 48.6 percent, 23.7 percent,
8.8 percent, 12.4 percent, 5.7 percent, 10 percent, 1.4 percent, 0.01 percent, respectively.
The Godavari River Basin lies within a geographical coordinate of 73◦24′ to 83◦4′ east
longitudes and 16◦19′ to 22◦34′ north latitudes.

Godavari River Basin consists of 16 tributaries which are classified into left bank and
right bank that forms an inter-state river system. The major tributaries of the left bank
include Pranhita, Sabari, Purna and Indravati which occupies 59.7 percent of the overall
drainage area of the Godavari River Basin, and the right bank includes Majira, Pravara and
Manair together covering 16.1 percent of the Godavari River Basin. The majority part of
the basin is enclosed by agricultural land which occupied 59.57% of the total basin area,
followed by forest at 26.16%, water bodies at 2.06% in the form of tanks, reservoirs, ponds,
lakes etc. and wasteland at 3.83% as per the evaluation of land Cover and Land use during
the period 2005–2006. It falls in the Deccan Plateau with a tropical climate. The climate
of the basin in northeastern and western area is colder than the rest from mid-October to
mid-February. During south–west monsoons the basin has a maximum rainfall.

Generally, the basin’s predominant types of soils include alkaline, black soil, red soil,
mixed, saline, lateritic, and alluvium soils etc. It also contains various wealth minerals
such as iron, bauxite, manganese and coal. Other minerals such as lead, zinc, kaolin
are available in low quantities in different regions of the basin. In order to enhance the
irrigation potential, industrial water supply, hydropower generation and to reduce the
regional imbalance, the National Water Development Agency has proposed four inter-basin
transfer links that transfer the water from surplus regions to deficit areas. In this study,
the data were collected at Polavaram, the last measuring point of the Godavari River
Basin, before the sediment loads were discharged into the Bay of Bengal. A map of the
location of the Polavaram site is given in Figure 2. Owing to its strategic location and the
presence of hydrological factors such as gauge, WD and SSY, it was chosen as a study site
for this research.
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3.2. Statistical Data Analysis

The daily mean of WD, WL and SSY data at the Polavaram location of Godavari were
taken in this research work. The observation period taken for the daily mean WD, WL and
SSY were 45 years during January 1969 to November 1988. Table 1 shows the statistical con-
straints of the hydrological and climatical data such as minimum (Xmin), standard deviation
(SD), mean (Xmean), overall maximum (Xmax) values, skewness, variation coefficient (Cv)
and the ratio of maximum to mean. It can be observed that SSY, WL and WD are positively
skewed which means relatively asymmetric. Negative skewness explains a distribution
which achieves more negative (lesser than average) values, whereas positively skewed
explains a distribution which attains more positive (greater than average) values. During
this study, the skew value ranges from 1.476 to 4.538, this is supposed to be high because
it is greater than 1. SSY has the highest skewness values. A higher skewed value has
a more negative impact on the ANN’s performance [99]. It is detected that SSY has the
highest coefficient of variation (Cv), standard deviation (SD) and max/mean values among
all parameters which show that SSY has a more scattered nature and erratic behavior
as compared with WD and WL. These statistical analyses reveal that SSY has maximum
variability and complex nonlinear behaviors. From Figure 3, it is noticed that the SSY varies
nonlinearity in proportion to WD and WL.

Table 1. Statistics constraints of hydrological and climatical data at Polavaram, Godavari River Basin.

Statistics WD
(m3/s)

WL
(m)

SSY
(tons/day)

Mean (Xmean) 4.502 2850.6 3131
Standard Deviation (SD) 2.8 5830.1 7115.9

Maximum (Xmax) 17.12 57,310.57 86,400
Minimum (Xmin) 1.18 46.927 0

Skewness 1.4764 3.6159 4.5379
Coefficient of variation (Cv) 0.622 2.045 2.272

Xmax/Xmean 3.802 20.104 27.60

Figure 3. Variations in daily mean of hydro climatic data: SSY (tons/day), WL (m) and WD (cummec)
at the Polavaram in Godavari River Basin.
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Pearson correlation coefficient (PCC or denoted by ‘r’) and spearman rank-order corre-
lation (SRC or denoted by Greek letter ‘rho’) are other important statistical measures which
were used to understand the relationship between two variables. The PCC determines the
linear correlation among two variables, whereas the SRC determines the statistical depen-
dency among the rankings of two variables. The value of PCC varies in the range of minus
one and plus one and, where minus one indicates a perfect inverse linear relationship, the
0 value shows that there is no linear relationship. Further, the value plus one denotes a
linear correlation that is positive. Tables 2 and 3 represent the correlation of Pearson (r), and
spearman ranks relation between WD and sediment data. It was observed that the values
of PCC and SRC are found to be high between two variables, which mean that suspended
deposit is highly significantly connected to the WD and WL.

Table 2. Pearson Correlation coefficient of data at Polavaram, Godavari River Basin.

WD WL SSY

WD 1
WL 0.8974 1
SSY 0.8586 0.7942 1

Table 3. Spearman’s rank correlation coefficient of data at Polavaram, Godavari River Basin.

WD WL SSY

WD 1
WL 0.9389 1
SSY 0.7633 0.7967 1

The analysis of variance testing is used to check that the SSY, WL and WD data set are
significantly different or not. This can be done by comparing the means of different data
samples from the datasets. The analysis of variance null hypothesis is rejected, indicating
that there is no similarity relationship among these SSY, WD and WL variables. The box
graph of SSY, WL and WD datasets is displayed in Figure 4, indicating that they are all
distinct due to variances in the box center lines. It was therefore decided that WD and WL
are important inputs features to predict SSY.
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3.3. Data Preparation and Data Processing

Before training the ANNs, data normalization was a very important step. The main
aim of data normalization is to eliminate data redundancies, difference in dimensionality
and maintain equity between variables [100–102]. During training, it improves the speed
of processing and convergence which in turn helps in reducing the errors in prediction.
Therefore, normalization was done prior to training with the model after collecting the
hydro climatic data. The normalization of data between 0 and 1 can be carried out using
Equation (6). Instead of original data, normalized data can be used in all the models such
as MLR, SRC, GA-ANN and ANN.

Dnorm =
Di− Dmin

Dmax− Dmin
(6)

where, Dnorm represents the normalized value, Di indicates ith original value, Dmax and
Dmin represents the max and min values of the data.

After normalization, the dataset was divided into different sets such as validation,
testing and training for the development of robust and accurate models. Training requires
70% of data used for training purpose in the neural network-based models, while the
remaining 30% data were shared equally through the processes of validation and testing to
eliminate the over- and under fitting issues in the network [56,103]. Nineteen and a half
years of daily hydro-metrological data (1969–1988) of WD, WL and SSY were utilized for
proposed modeling. In this study, data used for training were taken between 1 June 1969
and 24 January 1983, for validation between 25 January 1983 and 27 December 1985 and for
testing between 28 December 1985 and 30 November 1988. Data were not continuously
selected for validation and training to prevent the model from overfitting problems [103].

4. Results and Discussion
4.1. GA-ANN

Matlab software with customized code was applied to develop the hybrid GA-ANN
model. The features in the ANN model were selected on the basis of the normalized data.
In this study, the number of generations (n) was taken as the criterion for stopping and
contains the highest value 50. The proposed hybrid GA-ANN model was provided final
optimum solutions set at stopping criterion. Figure 5 depicts the fluctuations in the mean
fitness value and RMSE values of each generation in the GA-ANN model throughout the
training stage. The minimum value of RMSE was equal to 0.0322602 which is the best
fitness amongst all generations and its corresponding mean fitness value was equal to
0.0322602. It is also seen that the value of the mean fitness function of each generation of
the GA remained unaltered after generation count 8 (Figure 5). The hidden layer neurons
that worked best was 31. It should be noted that the highest fitness value of each generation
remains unchanged after 10 generations. The continuous and monotonically increasing
activation function, namely tan-sigmoidal, was optimally chosen for the output layer and
hidden layer. The GA-ANN chose the optimum µ as 43 in the Levenberg–Marquardt
algorithm. After maximum generation, the chromosome corresponding to best fitness is
taken as an optimum parameter in the GA-ANN model.

To assess the effectiveness of the models, statistical metrics such as correlation coeffi-
cient (r), mean square error (MSE), coefficient of determination (R2), mean absolute error
(MAE), error variance (VAR) and root mean square error (RMSE) were utilized.

RMSE =

√√√√(∑N
i=1(Ai − Pi)

N

)2

(7)

MSE =

(
∑N

i=1(Ai − Pi)

N

)2

(8)
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MAE =
∑N

i=1|Ai − Pi|
N

(9)

r =
∑N

i=1
(

Ai − Ai
)(

Pi − Pi
)

∑N
i=1
(

Ai − Ai
)

∑N
i=1
(

Pi − Pi
) (10)

VAR =
∑N

i=1
(
E− E

)2

N
(11)

where, Ai, Ai, Pi and Pi are measured, measured mean, predicted, and predicted mean
values respectively. The N value represents the number of samples. The E and E represent
the error and mean error values.
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Table 4 summarizes the statistics of error of the generated GA-ANN model’s testing,
validation and training datasets. According to this table, the MAE and RMSE values of the
data sets are quite low, but the R2 value is very high. According to the statistical findings,
it is demonstrated that the constructed GA-ANN model achieved a higher accuracy in
predicting the SSY. Because of the low error parameters and strong R2 values, the model was
protected from over and underfitting. The best hybrid GA-ANN model was constructed to
predict SSY utilizing with just WD and WL as input parameters. The error statistics data
also reveal that MAE and RMSE had comparable types of patterns. The results reveal a
direct proportional association between RMSE, variance, and MAE statistics data. These
results also reveal that MAE, variance and RMSE had comparable types of patterns.

Table 4. Error statistics of GA-ANN model at Polavaram, Godavari River Basin.

SL Statistics Training Testing Validation

1. MAE 0.01678 0.020492 0.018921
2. R 0.873212 0.926835 0.79354
3. MSE 0.001492 0.002836 0.001786
4. R2 0.7624 0.8589 0.6288
5. RMSE 0.038627 0.053252 0.042259
6. Error variance 0.001491 0.002779 0.00166
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In addition to quantitative assessment making use of statistical indicators, the effec-
tiveness of the GA-ANN method in estimating the SSY was evaluated by diagrammatic
illustrations. The hydrograph and scatter diagrams of estimated and observed SSY are
shown in the Figure 6. It was also noticed from the scatter and hydrograph plots that
high, low and medium magnitudes of SSY prediction values by the GA-ANN model are
close to actual values of SSY. It was also noticed that the positive SSY values are calculated
by the proposed GA-ANN model corresponding to approximated to zero or low values
of actual SSY (Figure 6a,b). This result shows that ANN in conjunction with GA has the
maximum accurate method for finding the SSY in Godavari River Basin system. It can be
seen in past research that in many river basin systems, some artificial intelligence-based
techniques have predicted negative SSY values [3,19,87,104]. It is revealed that SSY has
complex non-linear and erratic behavior at the low-level values of sediment yield. It is
very difficult to handle these complex sedimentation phenomena. However, this is entirely
impracticable. SSY always shows positive values in nature. In contrast, the proposed
GA-ANN models predicted all positive SSY values corresponding to high, medium as well
as low observed sediment values. Thus, it demonstrates the fact that the GA-based ANN
technique has more generalization capability and provided satisfactory performance.
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The calculated SSY values using the GA-ANN approaches are very near to the ac-
tual sediment yield values shown in Figure 6a. It is seen from the scatter diagram and
hydrograph that the degree of high, moderate, and low SSY prediction values by the ANN
approach are nearer to the actual SSY values. The scatter plot of Figure 6b illustrates that a
greater number of points lie very nearer to the bisector line which inferred that the original
and model predicted values are significantly almost same.

4.2. ANN

The ANN model was made using output, inputs, and a single layer of hidden neurons.
For the selection of hidden neurons and learning parameters in the ANN model, methods
of trial and error were utilized. During the ANN model training, the value of learning
parameter (µ) varied from 0.001 to a maximum 10 × 109; and the value of µ decreased and
increased by a factor of 0.10 and 10, respectively. The proposed GA-ANN model started
with an initialized µ value and changed the value for each epoch to enhance the ANN’s
accuracy. The optimum value of neurons and µ value in the single hidden layer of the
ANN technique is equal to 30 and 0.001, respectively.

Table 5 represents the performance evaluations of the ANN technique through the
statistical measures such as MAE, RMSE, R2, VAR and MSE in the validation, testing and
training states. Table 5 demonstrates that the RMSE (0.0376–0.0538) and MAE (0.0207–0.237)
of the ANN technique is very low and r (0.799–0.924) is very high during testing, validation,
and training period. These results confirm that SSY prediction by ANN model has much
more accurate performance. The lower values of RMSE, MAE, MSE, error variance and
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higher values of r in testing, validation and training are all nearly close to each other which
shows that under-fitted or over-fitted problems were not encountered in the ANN model.
After result analysis, it was also found that MAE and RMSE have similar trends. It was
also observed that the RMSE varied proportionally to MAE in the ANN model.

Table 5. Error statistics of ANN model at Polavaram, Godavari River Basin.

SL Error Statistics Testing Validation Training

1. RMSE 0.0538 0.04514 0.0376
2. MAE 0.237 0.0230 0.0207
3. r 0.924 0.799 0.8797
4. Error variance 0.00269 0.00195 0.00141
5. MSE 0.00289 0.002038 0.001414
6. R2 0.853 0.638 0.7738

It was observed from the graphical representation of the ANN that predicted SSY
and observed SSY are similar (Figure 7a). The estimated SSY of the ANN and observed
SSY values are very close to the bisector line (forty-five-degree line) in a scatter plot of the
ANN model (Figure 7b). The value of the slope in regression line of the ANN model is
less than one which reveals that underestimation, this is also supported by the hydrograph
(Figure 7a). It is also noticed that negative SSY values were calculated by the ANN model
at low or approximated to zero SSY. This demonstrates that the ANN method is not able to
record the complex SSY behavior at low observed values. SSY cannot be negative in reality.
This reveals that the small valued SSY data have a highly erratic and non-linear nature.
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4.3. MLR

The MLR model predicts SSY using the WD and WL data as input variables. Table 6
shows the statistical errors determined by the MLR method. The MLR model is trained
and developed on the basis of training data. The validation data set is not used in the
MLR model because it has no overfitting issues. The MLR model uses the same testing
data as the GA-ANN, SRC, and ANN models. The values of the MLR model’s a, b, and c
coefficients are 0.0076, 0.00745 and 0.6181, respectively. Table 6 shows the statistical error
analysis of the MLR model, which is generated using the MLR predicted SSY and observed
SSY for the training and testing datasets. It was observed that there are low values of RMSE
(0.038723–0.054473) and MAE (0.017119–0.020384) and high values of r (0.791669–0.92169).
The lower value of MAE and RMSE and higher value of r in testing phase demonstrates
that the MLR method judiciously fit the data set. The training data set also shows these
types of behaviors. It is obvious that the linear MLR model has no overfitting problem
during the training phase. The values of MAE and RMSE in the MLR model during the
testing are 0.020384 and 0.054473, respectively. The RMSE and MAE are varied directly
proportional to each other during validation and training period which is also obvious of
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the linear model. The significant error variance of the data set during the testing phase
demonstrates that the MLR model is unable to capture data variability, which might be
related to the existence of complex non-linearity.

Table 6. Error statistics of MLR model at Polavaram, Godavari River Basin.

SL. Error Statistics Training Testing Validation

1. MAE 0.017119 0.020384 0.018783
2. r 0.872037 0.92169 0.791669
3. MSE 0.001499 0.002967 0.0018
4. R2 0.7604 0.8495 0.6267
5. RMSE 0.038723 0.054473 0.042425
6. Error variance 0.0015 0.002857 0.001687

It could be noted that this model gives a negative value at lower sediment rates which
is not real estimation (Figure 8). The comparison plot of predicted SSY and observed SSY is
depicted in Figure 8a. Figure 8b illustrates that some data points lie along the line of the
bisector where observed and estimated values are identical. On the other hand, the SSY is
estimated negative values by MLR model at lower SSY values which means that for smaller
sample values, data exhibit a strong non-linear behavior. Therefore, the non-linearity of
SSY data are not captured by this linear MLR model which therefore predicts a negative
SSY value.
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4.4. SRC

The SRC curve coefficient was calculated by using a least square regression method
in log scale which is then converted in original scale by back transfer approaches. The
calculated value coefficients b and a in SRC method are given as 1.0799 and 0.4379, re-
spectively. Table 7 lists the error statistics of the SRC method. It can be seen from Table 7
that the SRC method has the lowest r value (0.9004) and greatest RMSE (0.061759) during
training period whereas it has highest RMSE (0.082824) and higher r (0.917363) during
testing period. The SRC model has lowest RMSE (0.031131) and highest r (0.99081) during
validation period. This indicates that here is no similar type of pattern between the RMSE
and r during training, validation and testing phase.

The hydrograph and scatter graph of the SRC model among the observed and expected
sediment production are displayed in Figure 9. According to the scatter plot and hydro-
graph between predicted and actual suspended sediment production, this SRC approach
yields an underestimated value for extremely high sediment yield (Figure 9a,b). The SRC
method’s negative mean error (−0.0310) value likewise reveals the underestimating of
sediment output. The value of slope of the linear regression is smaller than the slope of
the 45-degree line which is shown in the scatter diagram Figure 9b. The scatter plot also
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shows that scatter points mainly fall around the 45-degree line, except for high sediment
yield values, which are greatly overestimated and fall considerably below. A similar under-
estimating of the expected suspended production has been seen in various rivers of the
United States [18,19,105–108]. This discrepancy is mostly due to the particular use of WD
as an input variable, rather than other characteristics that play an indirect or direct impact
in sediment yield creation in river basins.

Table 7. Error statistics of SRC model at Polavaram, Godavari River Basin.

SL. Statistics Training Testing Validation

1. MAE 0.028542 0.031133 0.014297
2. R2 0.7463 0.8489 0.5739
3. Error variance 0.003 0.005905 0.000881
4. r 0.900352 0.917363 0.99081
5. MSE 0.003814 0.00686 0.000969
6. RMSE 0.061759 0.082824 0.031131
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4.5. Comparative Assessment of Various Models on the Basis of Testing Data Set

The performance of the developed GA-ANN model was verified using the test dataset,
which consists of unseen data that were not utilized in the model development during the
training period. The RMSE, MAE, and R2 statistical metrics were employed during testing
for all ANN, GA-ANN, SRC and MLR models with optimized parameters of the models
demonstrated in Table 8. Performances of the GA-ANN model were compared with SRC,
MLR and ANN models. During the testing phase, all of the models utilized the identical
SSY dataset. The comparison was based on estimated SSY and observed SSY of testing data.
It can be observed that the proposed hybrid novel GA-ANN technique provided better
results on the basis of R2 and RMSE as compared with the conventional models.

Table 8. Performance comparison of various models with optimum parameters. Bold values show
the best results.

Model RMSE Input MAE Optimum Parameters Correlation Coefficient (r)

GA-ANN 0.0533 Q, WL 0.0205 TF: tan-sigmoid and pure linear, NN: 11; CP: 0.9;
CC: 43; HL: 1; G: 50; PS: 50; MP: 0.05 0.9268

ANN 0.0538 Q, WL 0.0237 CC: 0.001; NN: 30; HL: 1; TF: tan-sigmoid and
pure linear 0.9240

MLR 0.0545 Q, WL 0.0204 a: 0.0076; b: 0.0075; c:0.681 0.9217
SRC 0.0828 Q 0.0311 a: 0.4379; b: 1.0799 0.9174

F: transfer function; NN: nodes number; CP: probability of cross-over; CC: combination coefficient; HL: hidden
layers; G: maximum generations; MP: probability of mutation; PS: size of population.
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The SSY in the hydrographs of ANN and GA-ANN models are approximately closer
to actual data as compared with conventional SRC and MLR models. The conventional
SRC model provided very poor performance, which produced high underestimation at
the peaks. Therefore, this model was incapable of recording high SSY. The scatter plot and
hydrograph demonstrate that the MLR and ANN models predicted the negative sediments
at lower sediment values similar to the previous study [3,18,19,87,104] but it is absolutely
impractical because the SSY may not contain the negative values. The proposed GA-ANN
technique gave the positive values of SSY for moderate, high and low SSY. By considering
all these findings, it is found that the GA-ANN hybrid model has achieved best performance
and higher generalization ability as compared to other models. Moreover, it is noted from
the hydrographs that predicted SSY by the GA-ANN model is more closely related to the
observed data as compared with ANN, SRC and MLR methods, specifically at large values
of SSY (Figures 6a, 7a, 8a and 9a). The SRC method presented poor performances which
caused significant underestimation at the peaks. This result demonstrates that this method
is capable of recording usually high SSY. In the scattered graph, it can be seen that the
MLR and ANN models predicted negative values of SSY at low value (Figures 7b and 8b).
This is an entirely impractical prediction of SSY which, in nature, exit as positive values.
The GA-ANN predicted a positive SSY even when the observed SSY is lower. It provides
a positive SSY for moderate, high and low SSY. Thus, GA-ANN looks to have the most
potential and generalized robust model in comparison to another models. The results
demonstrate that the GA-ANN technique has shown a reasonable satisfactory performance
and has a greater capacity to generalize. This advantage of the proposed GA-ANN works
because all parameters of the ANN model are optimized at the same time using the GA. It
is also reported that both artificial intelligence-based models such as GA-ANN and ANN
outperform the classic SRC and MLR regression methods.

5. Conclusions

This study described the prediction of SSY using SRC, MLR, ANN and GA-ANN
models in the Godavari River Basin at Polavaram, Andhra Pradesh, India, by taking
WD and WL data as inputs. It is observed that WL and WD are the most important
parameters for estimating SSY. An effective ANN structure is created in conjunction with
GA to calculate SSY in order to improve the ANN structure. In comparison with ANN,
SRC and MLR, the GA-ANN model predicts extremely high, medium, and low suspended
sediments values with more accuracy and generalization. As a result, it is hypothesized
that the proposed GA-ANN model may be a desirable substitute for classical methods such
as SRC, ANN and MLR. Using WD and WL as input parameters. The GA-ANN model
provided a relatively accurate SSY estimate. Summarizing, the magnitudes of small, high
and medium SSY given by the GA-ANN technique were very close to observed values
as compared with other classical methods. This superiority was achieved when all ANN
parameters were optimized simultaneously using GA. This research demonstrates that
parameter choice not only increases model efficiency but also decrease the computational
period considerably by avoiding trial-and-error methods and grid search approaches.

The main aim of this study was the concurrent optimization of various ANN pa-
rameters to predict SSY accurately. These findings have realistic importance such that
few inputs (WD and WL) can be used to assess the daily SSY of Godavari River Basin by
training the ANN with GA. This strategy will be helpful in improving the management of
water resources for the downstream region as well as in designing pipes, canals, bridges,
dams and watershed management issues in the Godavari River Basin, India. This research
used the information from Polavaram station only and further research may be needed to
strengthen these findings by using more information taken from different gauge stations.
In future, various kinds of ANN models in conjunction with GA will be tested by using
more controlling factors of sediment like R, T, runoff and spatial data.
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