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Abstract: Based on the observational dataset CN05.1 and the Coupled Model Intercomparison Project
(CMIP), this study assesses the performance of CMIP5 and CMIP6 projects in projecting mean
precipitation at annual and seasonal timescales in the Yangtze River Basin of China over the period
2015–2020 under medium emission scenarios (RCP4.5/SSP2-4.5). Results indicate that the multi-
model ensemble (MME) of CMIP6 overall has lower relative bias and root-mean square error of both
annual and seasonal mean than that of CMIP5, except for winter, but both of the two ensembles show
the best projected accuracy in winter. Generally, CMIP6 outperformed CMIP5 in capturing spatial
and temporal pattern over the YRB, especially in the midstream and downstream areas, which have
high precipitation. Further analyses suggest that the CMIP6 GCMs have lower median normalized
root-mean square error than CMIP5 GCMs. Based on the Taylor skill (TS) score, both CMIP6 and
CMIP5 GCMs are ranked to evaluate relative model performance. CMIP6 GCMs have higher ranks
than CMIP5 GCMs, with an average TS score of 0.68 (0.55) for CMIP6 (CMIP5), and three out of the
five highest scored GCMs are CMIP6 GCMs. However, the CMIP6 precipitation projections are still
quite uncertain, thus requiring further assessment and correction.

Keywords: global climate model; precipitation; Yangtze River Basin; error analysis

1. Introduction

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC) indicates that human activities have been affecting the climate with increasing
intensity, resulting in large changes in regional climate and more frequent extreme weather
events [1]. Global Climate Models (GCMs) are the leading and most effective tool with
which to study the historical and future climate. The World Climate Research Program
(WCRP) has developed a standard experimental framework, the Coupled Model Inter-
comparison Project (CMIP), which is used to evaluate the results of GCMs developed
by 30 international institutions, on the basis of idealized experiments, to study historical
and future climate [2]. CMIP Phase 6 (CMIP6) is the latest CMIP version and has been
available since 2016. Compared with the previous version (CMIP5), CMIP6 adopts a
matrix framework based on shared socio-economic pathways (SSPs) and representative
concentration pathways (RCPs). In addition to future socio-economic changes, the new
scenarios include measures to slow, adapt to, and respond to climate change, and the
models typically have higher resolutions [3,4]. These improvements in models raise some
important issues, including whether the updated models have a stronger capability and
whether the uncertainty can be narrowed.
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In recent years, scientists from various countries have used GCMs to conduct con-
siderable research on climate simulations and climate change projections. Most recent
studies have focused on the CMIP5 GCMs to evaluate elements of the hydrological cycle,
such as atmospheric precipitation [5–9] and surface hydrological processes [10,11] and
only a few scholars have studied CMIP6 GCMs precipitation simulations; hence, studies
comparing CMIP6 and CMIP5 precipitation simulations and climate change projections
are rare. For example, Kim et al. [12] evaluated the performance of the CMIP6 GCMs
in simulating extreme climate indices over Michigan and found that its abilities in mod-
elling precipitation intensity and frequency indices were comparable to those of the CMIP5
models, whereas precipitation intensity simulations were improved in CMIP6 because
of reduced dryland biases. Chen et al. [13] evaluated the CMIP6 model’s ability to simu-
late extreme climates in key global regions and found that CMIP6 can better reproduce
the significant differences in extreme precipitation between China and North America in
the southeastern and northwestern regions. Yasin et al. [14] compared the precipitation
modelling performances of CMIP5 and CMIP6 with observational data over northeastern
Iran and found that the CMIP6 CGMs’ensemble outperformed CMIP5 in most seasons
and stations. Bağçaci et al. [15] compared the performances of models available in CMIP5
and CMIP6 for monthly precipitation and temperature over Turkey and found significant
improvement in the CMIP6 models in interpreting the climate signal and indicated less
intermodel variability than that in CMIP5. However, due to factors such as the complexity
of the climate system and the limitations of model building conditions, there are many
uncertainties in the simulation and projection of climate change by climate models [16–19].
Many scholars have studied the projection of future climate change, but there are relatively
few studies have evaluated the uncertainty of CMIP5 and CMIP6 models for the projection
of future climate change. Accordingly, more accurate projections of future climate are
necessary for reference.

The Yangtze River Basin (YRB) crosses three major economic areas in the eastern,
central, and western parts of China, thus playing a crucial role in influencing the national
economy. The basin has a complex and variable landform and is highly sensitive to climate
change especially in the Source Area and Mid-lower reaches of the YRB [20,21]. The
frequent occurrences of drought and flood hazards in this area have impacted China’s
long-term development strategy. Thus, it is essential to predict climate change in the YRB
with high accuracy in the context of global warming. Previous studies of the YRB have
focused mainly on assessing the models’ capability of simulating historical climate [22–24]
and on the direct projection of future climate based on the scenario output data of the
models [25–29]. However, these studies were conducted based on the previous version
of CMIP (CMIP5), and there are no studies so far in detail investigated the performance
difference between CMIP5 and CMIP6 models in the YRB, using CMIP5 and CMIP6 to
see whether or not any improvement and/or change exist. At this point, it is essential
to comparatively and comprehensively analyze the climate projections in the YRB. On
the other hand, these studies have rarely considered the associated uncertainties in the
projections. Some studies have considered only the deviation in climate projections between
models, and very few studies have focused on the model projection error. Specifically, the
uncertainty of model projections will greatly affect the accuracy of future climate change,
especially precipitation change projections, and may even be misleading to potential users.
Therefore, while projecting future climate change, its uncertainty must be assessed. The
future projected data of the CMIP5 models starts in 2006, and that of the CMIP6 models
starts in 2015, it has been 7 years since both of them covered. Uncertainties can be assessed
and compared with meteorological observation records.

We examine the YRB as the research subject in this study and utilized the precipitation
grid dataset provided by the Chinese National Climate Center and the future scenario
predictive model datasets of CMIP5 and CMIP6, and we compare and assess the errors in
precipitation projection for the basin. The goal of this study is to provide more accurate
information about climate change in the YRB and provide a reference for studying the
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ecological geography, such as surface processes, in this basin for scholars and decision-
makers. The study is organized as follows: Section 2 introduces the study area, models,
data, and methods; Section 3 performances of CMIP5-MME, CMIP6-MME, individual and
homologous GCMs precipitation were compared based on spatial distribution, temporal
distribution, and seasonal variations; Section 4 discusses the results; and the final section
provides the concluding remarks.

2. Materials and Methods
2.1. Study Area

The YRB is the third largest river basin in the world and is one of the most important
water resources in China. The YRB has a total area of approximately 1,800,000 km2 and is
located at 90◦33′ E-122◦25′ E, 24◦30′ N–35◦45′ N [22]. The basin has a complex landform
and appears as a three-level ladder, which, from upstream to downstream, reaches the
Tibetan Plateau, Hengduan Mountains, Yunnan-Guizhou Plateau, Sichuan Basin, Jiangnan
hills, and the plain of the middle and lower reaches of the Yangtze River. Thus, the
basin has complex climate types, and most of the areas within the basin belong to a
subtropical monsoon climate except for the Tibetan Plateau, which has an alpine climate [29].
Affected by the water vapor transport path and landform, the annual precipitation is
heterogeneously distributed across the YRB with a decreasing trend from southeast to
northwest. The annual precipitation in the source area of the Yangtze River is less than
400 mm, characterizing the area as an arid zone; most areas in the basin have an annual
precipitation of 800–1600 mm, representing a humid zone. The special humid zone with
annual precipitation greater than 1600 mm is located mainly in the western and eastern
margins of the Sichuan Basin, Jiangxi, and parts of Hunan and Hubei. The semi-humid
zone with an annual precipitation of 400–800 mm is located mainly in the western Sichuan
Plateau, Qinghai, parts of Gansu, and the northern part of the middle reaches of the
Han River. The rainy areas, with an annual precipitation of more than 2000 mm, are all
distributed in small, mountainous areas [30]. Although the annual mean precipitation
is approximately 1100 mm within the basin, due to the highly non-uniform distribution,
60–80% of the precipitation occurs from May–October [31]. The research area is shown
in Figure 1.
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Figure 1. Topology and selected grids (0.5◦ × 0.5◦) of the YRB.

2.2. Data Source

Twenty GCMs were selected for this study. Among these, 10 belong to CMIP5, whereas
10 homologous GCMs belong to CMIP6. Monthly precipitation data from future projections
of both model groups under the future scenarios RCP4.5 and SSP2-4.5 were used in this
study. Because the CMIP6 data start in the year 2015, the period 2015–2020 is chosen for
evaluation of precipitation. The general information of the GCMs is summarized in Table 1,
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in which the model numbers 1–10 correspond to CMIP5 and numbers 11–20 correspond
to CMIP6.

Table 1. Basic information about the 20 GCMs. Model IDs 1–10 are from CMIP5, and IDs 11–20 are
from CMIP6.

Model ID Country or Union Atmospheric Resolution

1 BCC-CSM1-1-m China 1.125◦ × ~1.1◦

2 CanESM2 Canada ~2.8◦ × 2.8◦

3 CESM1-WACCM USA 1.25◦ × ~0.9◦

4 CNRM-CM5 France ~1.4◦ × 1.4◦

5 EC-EARTH Europe 1.125◦×~1.1◦

6 FGOALS-g2 China ~2.8◦ × 3–6◦

7 GISS-E2-R USA 2.5◦ × 2◦

8 IPSL-CM5A-LR France 3.75◦ × ~1.9◦

9 MIROC5 Japan ~1.4◦ × 1.4◦

10 MPI-ESM-LR Germany 1.875◦ × ~1.9◦

11 BCC-CSM2-MR China 1.125◦ × ~1.1◦

12 CanESM5 Canada 2.8125◦ × ~2.8◦

13 CESM2-WACCM USA 1.25◦ × ~0.9◦

14 CNRM-CM6-1 France ~1.4◦ × 1.4◦

15 EC-Earth3 Europe ~0.7◦ × 0.7◦

16 FGOALS-g3 China 2◦ × ~2–5◦

17 GISS-E2-1-G France 2.5◦ × 2◦

18 IPSL-CM6A-LR France 2.5◦ × ~1.3◦

19 MIROC6 Japan ~1.4◦ × 1.4◦

20 MPI-ESM1-2-LR Germany 1.875◦ × ~2◦

Precipitation data applied for assessment are obtained from the CN05.1 monthly
dataset established by the Chinese National Climate Center through in situ data at
2416 stations over China, with a horizontal resolution of 0.25◦ × 0.25◦ [32–34]. Given
that the horizontal resolution varies with GCMs, and to facilitate comparison of GCMs data
with observed data, we remap all GCMs and CN05.1 data to the horizontal resolution of
0.5◦ × 0.5◦ with a bilinear interpolation algorithm. The arithmetic mean of GCMs is used
to calculate the multi-model ensemble (MME). The spatial patterns of mean precipitation
of winter (DJF), spring (MAM), summer (JJA), and autumn (SON), as well as annual mean
precipitation, were analyzed for the YRB.

2.3. Data Analysis Methods

To access the performance of each GCM and their ensemble in projecting annual and
seasonal precipitation in the study area was analyzed by 4 statistical indices: (1) relative
bias (BIAS, −∞ < BIAS < +∞), (2) spatial correlation coefficient (CC, −1 ≤ CC ≤ 1),
(3) root-mean square error (RMSE, 0 ≤ RMSE < +∞), and (4) standard deviation (STD,
0 ≤ STD < +∞). BIAS is used to describe the systematic deviation between projected
and observed values. If there is no deviation, it is 0. A positive value indicates that the
project is too large, and a negative value indicates that the project is too small. CC is used
to evaluate the degree of linear correlation between projected and observed values. A
positive value represents a positive correlation, and a negative value represents a negative
correlation. A complete positive correlation is 1. RMSE was used to evaluate the overall
level of error and the accuracy of CMIP6 and CMIP5 GCMs. The RMSE close to zero is
indicative of high accuracy between observed and projected values. STD is the average
amount of variability in your dataset and is calculated as the square root of the variance. A
high standard deviation means that values are generally far from the mean, while a low
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standard deviation indicates that values are clustered close to the mean. These statistical
indices are described as follows:

BIAS =
∑N

i=1 (Pi −Oi)

∑N
i=1 Oi

× 100% (1)

CC =
∑N

i=1 (Oi −O)(Pi − P)√
∑N

i=1 (Pi − P)2
∑N

i=1 (Oi −O)
2

(2)

RMSE =

[
1
N ∑N

i=1 (Pi −Oi)
2
] 1

2
(3)

STD =

√√√√ 1
N − 1

N

∑
i=1

(ϕi − ϕ)2 (4)

where P is the GCM pojections, O is the observations (here CN05.1 data), N is the number
of spatial grid points contained over the YRB. ϕi and ϕ represent the value of an arbitrary
dataset and its mean, respectively.

When comparing GCMs and homologous GCMs, the Taylor [35] diagram, which
illustrates the spatial correlation coefficient (SCC), the standard deviation (STD), and the
centered root-mean square error (CRMSE) of annual and seasonal precipitation over YRB
between each GCMs and observation for the period 2015–2020. In addition, recent approach
of model ranking, also known as Taylor skill (TS) score is used to assess model skill. TS was
introduced to quantify the SCC and STD between GCMs and observed data to evaluate the
projected accuracy [36]. The mathematical expression can be expressed as Equation (5).

TS =
4× (1 + γ)2

(
σp
σo

+ σo
σp
)

2 × (1 + γ0)
2

(5)

where γ is the correlation coefficient between observed and GCM projected data, σp and
σo represent the standard deviation (STD) of GCM-projected and observed data, and γ0
represents the maximum value of γ in the selected GCM.

3. Results
3.1. Comparison between CIMP5-MME and CMIP6-MME Project Precipitation

As illustrated in Figure 2, the maps compare the precipitation pattern over the YRB
from 2015 to 2020. The precipitation spatial patterns of CMIP6-MME and CMIP5-MME were
consistent with those of the observed data across seasons. The average annual precipitation
in most areas of the YRB is greater than 1000 mm (Figure 2c). The high-value areas of
regional average precipitation are mainly distributed in the midstream and downstream
areas such as Hubei, Hunan and Jiangxi, and the low-value areas are mainly distributed
in Qinghai, Tibet, and other upstream areas. As a whole, the spatial distribution of the
average annual precipitation in the midstream and downstream areas is higher than that
in the upstream areas, and the distribution trend of the southern region is higher than
that of the northern region. However, as depicted in Figure 2a,b, the high-value areas of
average annual precipitation both CMIP5-MME and CMIP6-MME occurred on the West
Sichuan Plateau. The low-value areas of CMIP5-MME and CMIP6-MME are consistent
with the observed data. In winter (Figure 2d–f), the precipitation decreases from southeast
to northwest, and the low-value areas of CMIP5-MME and CMIP6-MME are mainly in
Qinghai, and their spatial distribution is smaller than that of the observed data. The
distribution of high-value areas, CMIP6-MME is closer to the observed data than CMIP5-
MME. In spring (Figure 2g–i), the precipitation in the southeast area was the greatest. In
summer (Figure 2j–l) and autumn (Figure 2m–o), CMIP5-MME and CMIP6-MME showed
poor reproducibility of spatial patterns, and the areas with high precipitation values are
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distributed in the West Sichuan Plateau, but not in the central and upstream areas as shown
by the observed data.
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Figure 2. Precipitation (mm) of the CMIP5-MME data, the CMIP6-MME data, and the observed data
in annual (a–c), DJF (d–f), MAM (g–i), JJA (j–l), and SON (m–o) from 2015 to 2020.

The average annual precipitation for each year from 2015 to 2020 was calculated and
compared, as illustrated in Figure 3, through box plot of the CMIP5-MME, CMIP6-MME
and observed data. The annual precipitation distributions of the CMIP5-MME and CMIP6-
MME data are typically consistent with the observed data. The annual precipitation of the
CMIP5-MME was slightly greater than that of the observed data except for 2020, whereas
that of the CMIP6-MME was greater than that of the observed data except for 2017 and 2020.
The mean annual precipitation ranges of the CMIP5-MME, CMIP6-MME and observed data
from 2015 to 2020 were 597.90–2116.48, 476.77–2034.64, and 169.31–2710.05 mm, respectively.
The average annual precipitation of CMIP6-MME is closer to the observed data in 2016,
2017, and 2018 than that of CMIP5-MME. In addition, the error between CMIP6-MME and
observed data in 2020 is larger than that of CMIP5-MME, but in 2015 and 2019, it is close to
the projected value of CMIP5.
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for each year from 2015 to 2020.

As depicted in Figure 4, the relative bias (BIAS) and root-mean square error (RMSE)
are calculated between the CMIP5-MME, CMIP6-MME and the observational precipitation.
The spatial distribution of the annual and seasonal precipitation relative bias and root-mean
square error of CMIP5-MME and CMIP6-MME are typically consistent with each other
except for winter (Figure 4). In winter (Figure 4e,f), both CMIP5-MME and CMIP6-MME
greatly overestimated precipitation in the upstream area, while CMIP6-MME overestimated
and CMIP5-MME underestimated precipitation in the midstream and downstream areas.
Figure 4g,h show the projection accuracy of CMIP6-MME was higher than CMIP5-MME in
the midstream and downstream areas, especially in Hunan, but CMIP5-MME performs
better than CMIP6-MME in the upstream areas. Furthermore, at high altitudes, mainly
in Qinghai, the precipitation BIAS and RMSE of CMIP6-MME are smaller than those of
CMIP5-MME in spring (Figure 4i–l), summer (Figure 4m–p), and autumn (Figure 4q–t), as
well as mean annual (Figure 4e,f) precipitation.

Figure 5 displays the average annual and seasonal precipitation relative biases and
root-mean square errors through box plots between the MMEs’ data and the observed data.
At an annual scale, the mean relative biases of the CMIP5-MME and CMIP6-MME were
23% and 18%, respectively. In winter, the mean relative biases of the CMIP5-MME and
CMIP6-MME were 248% and 367%, respectively. In spring, the mean relative biases of the
CMIP5-MME and CMIP6-MME were 86% and 70%, respectively. In summer, the mean
relative biases of the CMIP5-MME and CMIP6-MME were 4% and 5%, respectively. In
autumn, the mean relative biases of the CMIP5-MME and CMIP6-MME were 19% and 15%,
respectively. The mean relative biases ranges of the CMIP5-MME, CMIP6-MME of annual
and seasonal precipitation were −43–134%/−41–121% (annual), −51–759%/−26–994%
(winter), −46–249%/−50–217% (spring), −59–94%/−56–93% (summer), and −59–171%/
−56–155% (autumn).

Figure 5 also shows the root-mean square errors of projected precipitation. CMIP5-
MME had a higher root-mean square error than CMIP6-MME for spring and autumn
precipitation, whereas they showed almost equal root-mean square error for summer and
annual precipitation. CMIP5-MME outperformed CMIP6-MME only for winter. Based on
these results, the annual and seasonal precipitation projection capabilities of the CMIP6-
MME were stronger compared to those of the CMIP5-MME in spring, autumn, and annual,
and were weaker in winter, and in summer both MMEs had a similar relative bias and
root-mean square error.
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3.2. Comparison between CIMP5 and CMIP6 GCMs and Homologous GCMs

The projection capacity of CMIP6-MME and CMIP5-MME for annual and seasonal
precipitation was analyzed in detail above, but there are also differences in the capacity of
different GCMs to project precipitation. How “good” are different GCMs? What are the
improvements of the same GCM in CMIP6 compared to CMIP5? Regional average can only
represent partial features. Is there any improvement in spatial correlation projection? The
Taylor diagram and TS scores of CMIP5 and CMIP6 GCMs were calculated to answer the
above questions.

Figure 6 shows the performance of each GCM, and their ensemble means for both
CMIP5 and CMIP6 sets in producing observational precipitation by the Taylor diagram for
DJF (Figure 6b), MAM (Figure 6c), JJA (Figure 6d), SON (Figure 6e), and annual (Figure 6a).
The high value of SCC indicates that the GCM has a reliable ability in projecting the
spatial pattern of precipitation, and the standard deviation of the GCM is larger than the
observed value, indicating that it overestimates the spatial variability of precipitation [37].
Based on 680 grid points across YRB, SCCs, normalized standard deviations (NSTDs),
and normalized CRMSEs are 0.09–0.70, 0.46–0.97, and 0.15–0.31, respectively, for annual
precipitation in the ten CMIP6 GCMs. Comparative analysis for seasons shows an excellent
projection of all indices during winter relative to other seasons. Changes in the standard
deviation will create extreme precipitation events in the future [38,39], and since the CMIP5-
MME has a smaller standard deviation than that of CMIP6-MME except for SON, the
likelihood of extreme precipitation events is higher in CMIP6 GCMs. It is noteworthy that
the model FGOALS-g2 greatly underestimates the annual and seasonal spatial variabilities
except for autumn with a very low normalized standard deviation of 0.18–0.53. In general,
CMIP6 GCMs show the best performance in winter, owing to the best reproducibility of
spatial variability, followed by spring and autumn, and the worst in summer due to the
poorest reproducibility of both spatial pattern and variability. As a whole, concerning
spring, summer, and autumn, the CMIP6 GCMs performed better, and concerning winter
and annual, the CMIP5 GCMs exhibited better performance.

The capability of CMIP6 and CMIP5 GCMs and their ensembles in projecting annual
and seasonal precipitation in the studied area was also measured by normalized root-mean
square error (NRMSE). Figure 7 depicts NRMSE and the median of the errors. Normalizing
was performed by using the range of observational data. The median NRMSEs calculated
for CMIP6 models for spring mean were higher than those calculated for CMIP5 GCMs,
but in winter, summer, and autumn, CMIP5 GCMs had a higher median NRMSE than
CMIP6 GCMs, and for annual both GCMs had an equal NRMSE. However, CMIP6-MME
had lower mean errors for spring and autumn, and annual. The two MMEs had an equal
mean error in annual and summer, and just in winter, CMIP5 GCMs had a lower mean
error than CMIP6 GCMs. According to Gleckler et al. [40], almost for all GCMs, the median
and mean matched observational data to a greater extent.

Figure 8 displays the annual and seasonal TS scores of each GCM and their ensemble
means. CMIP6-MME have higher ranks than CMIP5-MME, with an average TS score
of 0.68 (0.55) for CMIP6 (CMIP5), and three out of the five highest-scored GCMs are
CMIP6 GCMs. TS score of CMIP6 EC-Earth3 ranks first (0.87), followed by CMIP5 EC-
EARTH (0.83), CMIP6 CanESM5 (0.77), CMIP6 CNRM-CM6-1 (0.76), and CMIP5 CanESM2
(0.75), and the lowest is CMIP5 BCC-CSM1-1-m. Therefore, in terms of MME or single
GCM performance, the capability of CMIP6 to project the spatial distribution of multi-year
average precipitation in the YRB has been improved compared with CMIP5. Taken together,
the performance of GCMs for precipitation over YRB has slightly enhanced from CMIP5 to
CMIP6, based on a fair comparison of GCMs developed from the same modeling group,
which is suggested to intrinsically relate to the improvement of the main physics schemes
with a single model analysis.
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Figure 6. Taylor diagrams displaying normalized pattern statistics of multi-year average (a) annual;
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the period 2015–2020. The normalized CRMSE between a GCM and observation (marked as REF) is
their distance apart. The numbers indicate CMIP5 and CMIP6 GCMs listed in Table 1, respectively.
Blue and red asterisks represent the median of the 10 CMIP5 and 10 CMIP6 GCMs, respectively.
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Figure 8. Portrait diagrams for TS score of the (annual, seasonal) mean precipitation in 2015–2020 by
the CMIP5 (a) and CMIP6 (b) GCMs. From left to right are ANN, DJF, MAN, JJA, SON, and average
means. The GCMs’ names listed on the left follow their ranks; The number before the name is the
rank of the model among all GCMs.

4. Discussion

The results of this study show that the precipitation projection errors of CMIP6-MME
were lower than those of CMIP5-MME at annual and seasonal scales, indicating that the
CMIP6-MME reduced the precipitation projection bias. These findings are consistent with
those of some previous studies based on historical simulations. Gusain et al. [41] compared
the performance of models available in CMIP5 and CMIP6 consortium and their MME and
find a significant improvement in CMIP6 models in capturing the spatiotemporal pattern of
monsoon over Indian landmass, especially in the Western Ghats and northeast foothills of
Himalayas. Srivastava et al. [42] assessed the CMIP6 historical precipitation extremes over
seven contiguous US regions and found similar but smaller biases are in CMIP6-MME than
CMIP5 models tested. Wang et al. [43] evaluated the ability of the downscaled CMIP5-MME
and CMIP6-MME precipitation simulation historical runs to capture the complex spatial
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pattern, temporal pattern and seasonal variations observed over the Hanjiang River Basin,
China, with the results demonstrating that the CMIP6-MME better simulated precipitation
for most stations compared to the CMIP5-MME.

According to the error spatial distribution comparisons, the CMIP5-MME and CMIP6-
MME projections overestimated precipitation in the western parts of the YRB, especially
over the West Sichuan Plateau and Qinghai, and underestimated precipitation in the
eastern part of the basin, especially in summer and autumn. These results may be related
to elevation, geographical location and urbanization. The western parts belong to the
source and upstream of the basin, which contain plateau and mountainous areas (Figure 1).
According to the previous studies [44,45] precipitation typically increases with elevation but
after reaching a certain height, precipitation begins to decrease. Because air rises because
of the uplift of the terrain, it cools and condenses to form precipitation. However, as the
elevation increases, the moisture content in the air decreases, and the precipitation decreases
rather than increases. This shows that the current GCMs has systematically overestimated
the precipitation in western YRB, which is closely related to the limited response of the
GCMs to complex terrain [22,36,46,47]. Although the CMIP6 model compared with the
CMIP5 model has been developed and become more complex [10], but these improvements
still cannot significantly reduce the model’s overestimation of precipitation in the plateau
region. The eastern part of the basin is midstream and downstream, which belongs to
the plain area, and most cities are in this region. Because of urbanization, many cities
experience the rain island effect, with increased precipitation in cities. Zhang et al. [48]
assessed the impacts of urbanization process on rainfall in Beijing and concluded that
the expansion of the urban area made the rainfall last longer and it also led to a bigger
affected area by rainfall. Sahoo et al. [49] discussed the impact of urbanization on processes
and mechanisms of rainfall using the Weather Research and Forecasting model, and the
simulation results illustrated that the current urbanization scenario has shown a significant
increase in rainfall by over 100–200%. Therefore, the urbanization rain island effect may
have led to the underestimation of the GCM-projected precipitation in the eastern part of
the YRB. In addition, our study region is in the east of Asia and belongs to a subtropical
monsoon zone. The subtropical monsoon climate is mild and humid, and precipitation is
abundant. Previous assessments [5,37,50] have shown that because the models cannot well
simulate the variation characteristics of the East Asian Monsoon, and reflect some physical
processes of land-sea differences are also limited, most GCMs systematically underestimate
the precipitation in southeastern China. From the projections of the ten CMIP6 GCMs
evaluated in our study, the new generation of GCMs has not significantly improved this
bias in the Mid-Lower YRB, especially in summer.

The precipitation projection error characteristics of the different types of CMIP6 and
CMIP5 GCMs and their differences mainly reflect problems in the GCMs themselves,
e.g., problems in parameterizing physical processes, insufficient model resolution, or
incomplete landform descriptions, and point to the effects of the emission scenario and
seasonal context on the accuracy of the model precipitation predictions. Analysis of
these error characteristics can provide clues to improve the models and their simulation
accuracy; for example, the model overestimated predictions are mainly seen in high-
altitude areas with large topographical changes in the YRB. In addition to the resolution
and topographic conditions of the model itself, this result may also be related to the
density of the observation data and whether the observation data consider elevation [22].
The models greatly underestimate precipitation mainly in summer in the midstream and
downstream areas of the Yangtze River, indicating that the monsoon precipitation simulated
by the model is weak, which may be related to the model’s cumulus convection scheme
or air–sea interaction. The imperfect description of the process may also be caused by
the inability to simulate the precipitation of typhoons or tropical cyclones [5,17,51]. The
generally excessive precipitation in winter models may be due to large defects in the
physical processes of modelling solid precipitation or snowfall. The existence of these
model prediction errors illustrates that there are many uncertainties indirectly applying
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the CMIP6 or CMIP5 MME to project future precipitation variations. Prior to predicting
future precipitation, it is necessary to assess the model uncertainties and consideration
can be given to correcting topographic effects or improving the model resolution through
downscaling, as well as improving the modelling process and parameters, which can
lead to improved projection accuracy. Regardless, the reduction in CMIP6 precipitation
projection error relative to CMIP5 demonstrates that CMIP6 GCMs better account for
topography-induced precipitation (at least in comparison with CMIP5), improve model
parameterization associated with cloud precipitation systems, and other factors acting on
precipitation formation processes. Therefore, the projection capability of CMIP6 in areas
with large topographic changes can be improved, and it can provide reference for the
impact, adaptation and mitigation of climate change in the YRB.

Because of the limitations of the CMIP6 projected data, the period of time for this
study is short which may have some impact on the evaluation results. Although with
6-year evaluation period covered in this study were able to display the spatiotemporal
performance of projected precipitation of CMIP5 and CMIP6 GCMs over the YRB for the
period 2015–2020. In the near future, we aim to analyze the trends and the respective
significance (e.g., Sen’s slope and Mann–Kendall) of the monthly precipitation anomalies
during the study period. Furthermore, with the passage of time, we could use a longer
period to evaluate the accuracy of GCMs for future projected precipitation. In addition,
the new model generation is still marred with uncertainty, thereby depicting substandard
performance over the YRB. This calls for further investigation of attribution studies into the
sources of persistent systematic biases and a prerequisite for identifying individual models
with robust features that can accurately project observed patterns for future usage.

5. Conclusions

The present study aimed to assess the capability of GCMs in two ensembles in project-
ing seasonal and annual precipitation over the YRB of China for the period of 2015–2020.
Monthly precipitation projections were analyzed for ten GCMs from the CMIP5 ensemble
and an equal number of GCMs from the CMIP6 ensemble. The primary conclusions are
as follows.

A spatial distribution map, relative bias, root-mean square error between the GCMs’
precipitation and the observed data, and box plots were used to evaluate the performances
of the CMIP5-MME and CMIP6-MME precipitation projections compared with the observed
data in the YRB from 2015 to 2020. The results illustrate that (1) the CMIP5-MME and
CMIP6-MME can capture the spatial pattern, temporal pattern, and seasonal variations in
the YRB but overestimate precipitation in the western YRB and underestimate precipitation
in the eastern YRB; (2) except for winter, the precipitation projection relative bias and
root-mean square error of CMIP6-MME are smaller than those of CMIP5-MME in spring,
summer, and autumn, as well as mean annual precipitation, demonstrating improvement
for CMIP6-MME in reducing precipitation bias and improving precipitation accuracy; (3)
the capabilities of both the CMIP5-MME and CMIP6-MME in projecting precipitation on
rainy days and in high-altitude areas are poor; (4) high relative biases at precipitation
occurs in winter which can be ascribed to the small value of the observational precipitation
data. Nevertheless, in winter, the root-mean square error of CMIP5-MME and CMIP6-MME
was lower than that of other three seasons and annual, implying their higher accuracy
for winter.

Taylor diagram and TS scores of CMIP5 and CMIP6 GCMs were calculated to check
the performance of the individual and homologous GCMs. Except for winter, the NRMSE of
CGMs’ ensemble was better for CMIP6 than for CMIP5 GCMs. Two CMIP5 GCMs including
EC-EARTH and BCC-CSM1-1-m and three CMIP6 GCMs including EC-Earth3, CanESM5,
and CNRM-CM6-1 had the highest TS scores for precipitation in both seasons and annual
mean. Based on the results of TS scores for CMIP5 and CMIP6 GCMs, the EC-EARTH (0.83)
and EC-Earth3 (0.87) GCMs had the best agreement with the observational data.
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