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Abstract: Domestic sewage treatment plants often have insufficient carbon sources in the influent
water. To solve this problem, the commonly used technical means include an additional carbon
source, primary sludge fermentation, and excess sludge fermentation, but these methods are uneco-
nomical, unsustainable, and not applicable to small-scale wastewater treatment plants. Intermittent
microaeration technology has the advantages of low energy-consumption, ease of application, and
low cost, and can effectively promote anaerobic digestion of municipal sludge; however little re-
search has been reported on its use to enhance the carbon sources release of particulate organic
matter (POM) from domestic wastewater. Therefore, the effect of intermittent microaeration on the
carbon source release of POM was evaluated in this study, with POM as the control test. The results
showed that the release concentration of soluble chemical oxygen demand (SCOD) was the highest
on day 4 under microaerobic conditions, and the concentrations of SCOD, NH4

+-N, and PO4
3−-P in

the liquid phase were 1153, 137.1, and 13 mg/L, respectively. Compared with the control group, the
SCOD concentration increased by 34.2%, and the NH4

+-N and PO4
3−-P concentrations decreased by

18.65% and 17.09%, respectively. Intermittent microaeration can effectively promote the growth of
Paludibacter, Actinomyces, and Trichococcus hydrolytic fermentation functional bacteria. Their relative
abundances increased by 282.83%, 21.77%, and 23.47%, respectively, compared with the control
group. It can simultaneously inhibit the growth of acetate-type methanogenic archaea, Methanosaeta
and Methanosarcina, with a decrease in relative abundances of 16.81% and 6.63%, respectively. The
aforementioned data show that intermittent microaeration can not only promote the hydrolysis of
POM, but can also reduce the loss of acetic acid carbon source, which is a cost-effective technical way
to enhance the release of a carbon source of particulate organic matter in domestic sewage.

Keywords: microaeration; domestic sewage; particulate organic matter; carbon source release; hydrolysis

1. Introduction

Currently, the influent of domestic sewage treatment plants often suffers from insuffi-
cient carbon sources in China, resulting in poor denitrification and phosphorus removal [1].
To solve the problem of insufficient carbon sources in the sewage treatment plant, external
carbon sources, primary sludge fermentation, and excess sludge fermentation are currently
commonly used [2,3]. However, these methods are uneconomical, unsustainable, and
unsuitable for small-scale wastewater treatment plants. Therefore, finding technology
suitable for the development of carbon sources in small-scale sewage treatment plants
is necessary.

Microaeration is a promising method for anaerobic digestion improvement and is con-
structed by dosing small quantities of air or O2 into the anaerobic bioreactor [4]. Xu et al. [5]
found that an appropriate microaeration rate can improve the hydrolysis efficiency of carbo-
hydrates and proteins, and the optimal aeration rate can promote the solubilisation of solid
organic waste without adverse carbon loss and 258 L air/kg aeration of TS/day, which is
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beneficial for kitchen waste. Montalvo et al. [6] conducted an anaerobic digestion study
using mixed sludge from urban sewage plants as substrates (including 60% and 40% of
primary and secondary sludge, respectively), and compared it with traditional anaerobic
systems. The cumulative concentration of protein, total sugar, and soluble chemical oxygen
demand (SCOD) in the system is higher under aeration conditions. The optimal process
conditions for enhancing the hydrolysis rate under the 3 ◦C condition are aeration intensity
(0.3 vvm) and aeration gas time (48 h). Lim et al. [7] conducted the effect of microaeration
on the cofermentation of grey water and food waste. Compared with pure anaerobic condi-
tions, the microaeration conditions were more diverse in the bacterial community structure
in the system. The proportion of bacterial clones belonging to Firmicutes is higher, and the
system has higher hydrolysis efficiency. Yu et al. [8] found that the hydrolysis efficiency of
black water was highest when the microaeration intensity was 5 mg O2/L-reactor/cycle.
Microaeration technology had been applied to various substrates (e.g., corn stover, sludge,
vegetable wastes, black water, brown water, and food waste), and could effectively improve
the hydrolysis efficiency of organic matter [9–12]. However, no relevant report exists on
the use of microaeration to enhance the carbon source release of particulate organic matter
(POM) in the influent of small-scale sewage treatment facilities.

Previous studies of microaeration have mostly been concerned with improving the
efficiency of methane production and few have analysed the release characteristics of
carbon sources when used to enhance the hydrolysis of particulate organic matter. This
study aims to find out the mechanism of intermittent microaeration in the process of
enhancing the POM carbon source release. By combining the reactor performance and
microbial community analyses, new insights on intermittent microaeration-enhanced POM
carbon source release and suggestions for future promotion and application are provided.

2. Materials and Methods
2.1. Characteristics of Collected POM

The particulate organic matter is collected from the inlet of a small-scale domestic
sewage treatment station in Yixing City, Jiangsu Province, China, after filtering through a
60-mesh screen. The inoculated sludge with high degradation capacity of organic matters
was sampled from the anaerobic fermentation tank in Yixing City, Jiangsu Province, China,
which is treated at a constant temperature of 80 ◦C for 1 h before use. The basic physical
and chemical indicators of particulate organic matter are shown in Table 1.

Table 1. Physicochemical indexes of particulate organic matter (POM).

Soluble COD
mg/L

Soluble
TN mg/L

NH4
+-N

mg/L
Soluble
TP mg/L

PO43−-P
mg/L SS g/L pH

450 ± 5 128 ± 2 67.3 ±
0.5 9.32 ±0.02 8.65 ± 0.01 38.9 ± 0.6 7.18 ± 0.03

2.2. Bioreactor Setup and Operation

The experiment was repeated three times using a sequential batch experimental design,
and the mean data were obtained to ensure that the experimental data were authentic and
reliable. The substrate and seed mud were mixed at a volume ratio of 9:1, placed in a 250 mL
fermentation flask, and intermittent microaeration (10 min/6 h) was conducted following the
intensity of 0.3 vvm using constant temperature magnetic stirring. A stirrer (30 ◦C, 150 rpm)
was used for continuous culture for 8 days. A control group was set up in the experiment, and
10 mL of sludge samples were taken every day. After centrifugation, they were filtered with a
0.45 µm filter membrane to determine the concentrations of soluble chemical oxygen demand
(SCOD), NH4

+-N, and PO4
3−-P in the filtrate. Sludge samples were taken every 2 days, and

they were filtered through a 0.22 µm filter membrane after centrifugation, and the fluorescent
substances in the filtrate were determined. Then, 10 mg (dry solid) of sludge samples were
taken on day 4 for microbial community structure analysis.
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2.3. Chemical Analyses

Soluble COD(SCOD), NH4
+-N, and PO4

3−-P were regularly measured following the
standard method [13]. pH was monitored using a portable multiparameter meter (HQ40d,
Loveland, CO, USA). The total polysaccharides and total protein concentrations in the
liquid phase were quantified by Dubois and Lowry methods, respectively [14].

2.4. EEM Fluorescence Spectroscopy Analysis

The extracted filtrate of the sample was measured by EEM fluorescence spectroscopy
using a Hitachi F-7000 spectrofluorometer (Tokyo, Japan). Each plot was generated by
scanning excitation wavelengths from 200 to 400 nm and emitting fluorescence between
280 and 500 nm with 10 nm steps. The slits for excitation and emission were set to 10 nm
and the scan speed was 12,000 nm/min [15].

2.5. Microbial Analyses

The samples on day 4 in each group were collected to extract DNA by an E.Z.N.A.®

soil DNA kit (Omega Bio-tek, Norcross, GA, USA). The hypervariable region V3-V4 of
the bacterial 16S rRNA gene was then amplified with the bacterial (i.e., 341F and 805R)-
and archaea (i.e., 524F10extF and Arch958RmodR)-fused primers by an ABI GeneAmp®

9700 PCR thermocycler (ABI, Vernon, CA, USA). The genomic DNA and PCR products
were analysed through electrophoresis in 1% agarose gel. Finally, qualified samples were
sequenced on an Illumina MiSeq platform at Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China).

3. Results and Discussions

3.1. Variation Characteristics of SCOD, NH4
+-N, and PO4

3−-P Concentrations

The variation characteristics of SCOD concentration under microaerobic conditions
are shown in Figure 1. With the increase in reaction time, the SCOD concentration first
increased and then decreased, reaching a maximum value of 1153 mg/L on the fourth day,
which was 2.56 times the initial SCOD concentration. Compared with the control group, the
microaerobic condition promoted the release of more SCOD from particulate organic matter,
and its concentration increased by 34.2%. This may be because microaerobic conditions
stimulate the growth of anaerobic microorganisms, accelerate the metabolic rate, and release
more enzymes to improve the hydrolysis efficiency of particulate organic matter.
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the reaction, resulting in a decrease in PO43−-P concentration in the first 3 days. However, 
with the increase in reaction time, the hydrolysing bacteria convert more organophospho-
rus to PO43−-P, which leads to an increase in its concentration. The concentration of PO43−-
P decreased continuously from 5 to 8 days, which may be caused by the following three 
reasons: (1) phosphorus-accumulating bacteria continue to increase in value, converting 
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The variation characteristics of NH4
+-N concentration under microaeration conditions

are shown in Figure 2. The NH4
+-N concentration, as observed in Figure 2, rapidly

increased in the first 3 days under the microaeration condition, which may be because this
condition can stimulate the microorganisms to release more enzymes, thereby depositing
more POM to be hydrolysed. It fluctuates from 3 to 8 days, and the NH4

+-N concentration
decreases as a whole with the increase in reaction time, which may be caused by the
following reasons: (1) the substrate hydrolysis rate of different components in POM is
different, resulting in fluctuating changes of NH4

+-N in the liquid phase; and (2) the pH
value of the solution increases, which leads to an increase in the conversion of NH4

+-N to
NH3 with the increase in reaction time, and, simultaneously, intermittent microaeration
may take away a certain amount of NH3 in the liquid phase.
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+-N concentration under the microaerobic condition.

The variation characteristics of PO4
3−-P concentration under microaerobic conditions

are shown in Figure 3. The concentration of PO4
3−-P, as seen in the figure, fluctuated under

microaerobic conditions, which may be because the microaerobic conditions promoted the
growth of phosphatidyl bacteria and absorbed more phosphorus at the beginning of the
reaction, resulting in a decrease in PO4

3−-P concentration in the first 3 days. However, with
the increase in reaction time, the hydrolysing bacteria convert more organophosphorus to
PO4

3−-P, which leads to an increase in its concentration. The concentration of PO4
3−-P

decreased continuously from 5 to 8 days, which may be caused by the following three
reasons: (1) phosphorus-accumulating bacteria continue to increase in value, converting
more PO4

3−-P into ATP, PHB, and so on; (2) PO4
3−-P is adsorbed by extracellular poly-

mers produced by microbial metabolism; (3) PO4
3−-P is converted into other forms of

phosphorus (e.g., HPO4
2−, H2PO4

−, and HPO3
2−) under biochemical action.

3.2. C/N and pH Variations

The change in C/N and pH characteristics in the solution under microaerobic condi-
tions are shown in Figure 4. The pH increases with time under microaerobic conditions and
is higher than that of the control group. This may be because the microaerobic conditions
promote the release of more enzymes by microorganisms to hydrolyse proteins into NH4

+-
N, thereby causing the rise of pH. On day 4 under microaerobic conditions, the C/N value
was increased by 48.59% compared with the control group, indicating that microaerobic
conditions were more favorable for POM to release more effective carbon sources.
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3.3. Variation of Protein, Polysaccharide, and Fluorescent Substance Components

The variation characteristics of protein and polysaccharide concentrations under
microaerobic conditions are shown in Figure 5. The concentration of polysaccharides
increases with the increase in time, indicating that microaerobic conditions can effectively
promote the hydrolysis of POM to release more polysaccharides. With the increase in
reaction time, the concentration of protein increases rapidly in the first 3 days and fluctuates
in a small range later. It may be because the microaerobic conditions not only promote
the hydrolysis of particulate organic matter to release more water-soluble proteins, but
also promote the growth of protein-fermenting bacteria to further convert more soluble
proteins into volatile fatty acids (VFAs), NH4

+-N, and so on, resulting in fluctuations in
the concentration of soluble proteins. Compared with the control group, microaerobic
conditions were more conducive to promoting the action of POM in hydrolysing bacteria to
release more polysaccharides and proteins, indicating that microaerobic conditions could
more effectively improve the biological activity of protein and polysaccharide hydrolysis
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and fermentation bacteria and release more hydrolase, resulting in the release of more
proteins and polysaccharides from the particulate organic matter into the liquid phase.
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Figure 6. 3D-EEM at different time under microaerobic condition. 

Figure 5. Effect of reaction time on protein and polysaccharide concentration.

Figure 6 shows the change characteristics of the components of fluorescent substances
at different times. With the increase in time under microaerobic conditions, the peaks in
region IV moved to the positive direction of the abscissa, and their fluorescence intensity
was higher than that of the control phase, indicating that the metabolic activity of microor-
ganisms was higher under microaerobic conditions. The fluorescence intensity of amino
acid protein and tyrosine protein showed an increasing trend and decreasing trend, and a
relatively low fluorescence intensity appeared on day 3, indicating that the protein may be
converted into NH4

+-N under the action of microorganisms, which is consistent with the
phenomenon in Figure 2.
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The variation characteristics of the corresponding percentages of fluorescent sub-
stances are shown in Figure 7. The corresponding percentages of tryptophan proteins
gradually decreased with the increase in time, while the corresponding percentages of
tyrosine proteins gradually increased, indicating that tryptophan proteins are more easily
degraded by microorganisms under microaerobic conditions.
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3.4. Microbial Community Characteristics
3.4.1. Bacterial Community Structure

For the characterisation of microbial community structure during intermittent mi-
croaeration by a high-throughput sequencing method, the bacterial abundance at the phy-
lum level is shown in Figure 8a, and the main dominant bacterial phyla are Actinobacteriota,
Firmicutes, Proteobacteria, Bacteroidota, Synergistota, Patescibacteria, Desulfobacterota,
and Chloroflexi. Compared with the control group, the relative abundances of Proteobacte-
ria, Bacteroidota, and Desulfobacterota increased by 4.66%, 158.11%, and 18.22%, respec-
tively, under microaerobic conditions. Among them, Bacteroidota can convert proteins and
carbohydrates to propionate and acetate in anaerobic sludge fermentation [16].

Bacterial abundance at the class level is shown in Figure 8b. The figure shows that the
main dominant bacterial classes are Actinobacteria, Clostridia, Bacteroidia, Gammapro-
teobacteria, Alphaproteobacteria, Synergistia, Bacilli, Saccharimonadia, and Desulfobulbia.
Compared with the control group, the relative abundances of Bacterodia, Gammapro-
teobacteria, Bacilli, and Desulfobulbia increased by 157.37%, 31.66%, 42.01%, and 21.18%,
respectively, under microaerobic conditions.

The bacterial abundance at the genus level is shown in Figure 8c. The main genera under
microaerobic conditions include norank_f__Actinomycetaceae, norank_f__Eubacteriaceae,
Paludibacter, Romboutsia, Brooklawnia, Propioniciclava, Clostridium sensu stricto 1, Christensenel-
laceae R-7 group, CI75cm.2.12, Corynebacterium, Actinomyces, Trichococcus, Tessaracoccus, Ente-
rococcus, Gallicola, Desulfobulbus, Micropruina, and Lactivibrio. Studies show that Paludibacter
could consume soluble starch, glucose, and xylose to produce VFAs [17]. Brooklawnia belongs
to fermentative bacteria [18]. Propioniciclava accounted for the most in the A/O process
and was beneficial for carbohydrate consumption [19]. Actinomyces can effectively degrade
cellulose [20]. Trichococcus could metabolically break down carbohydrates into lactate, formate,
acetate, ethanol, and CO2 [21]. Tessaracoccus were identified as abundant putative phosphate-
accumulating organism (PAO) [22]. Gallicola is a non-saccharolytic anaerobic bacterium
appearing on VFAs, H2, and CO2 formation [23]. Desulfobulbus can utilise pyruvates, propi-
onates, and ethanol as a carbon source and oxidise organic matter to acetate incompletely [24].
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Compared with the control group, the relative abundances of the main hydrolytic fermentative
bacteria genera Paludibacter, Brooklawnia, Actinomyces, Trichococcus, Gallicola, and Desulfobulbus
increased by 282.82%, 18.01%, 21.77%, 23.47%, 16.76%, and 19.37%, respectively, under mi-
croaerobic conditions. The relative abundance of Tessaracoccus increased by 19.41%, which
was beneficial to absorb more PO4

3−-P.
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3.4.2. Archaeal Community Structure

The main phyla of Archaea under microaeration conditions included Halobacterota
and Euryarchaeota (Figure 9a), accounting for 93.3% of the total abundance. The main
classes of Archaea include Methanosarcinia and Methanobacteria (Figure 9b), accounting for
92.8% of the total abundance. Figure 9c shows that the dominant genera of Archaea include
Methanosaeta, Methanobacterium, Methanosarcina, unclassified_k__norank_d__Archae and
Methanobrevibacter, with relative abundances of 55.37%, 25.12%, 8.97%, 6.07%, and 1.79%,
respectively. Methanosaeta is composed of acetoclastic species, capable of forming long and
thin filaments [25]. Methanosarcina can use acetic and hydrogen to produce methane [26], and
Methanobacterium is typical of hydrogen-utilising methanogens [27]. The relative abundance
of Methanosaeta, Methanosarcina, and unclassified_k__norank_d__Archae decreased by
16.81%, 6.63%, and 12.98%, respectively, and the relative abundance of Methanobacterium
increased by 90.45% under microaerobic conditions. Therefore, intermittent microaeration can
inhibit the growth of Methanosaeta and Methanosarcina and reduce the depletion of acetic
acid in the carbon source released by POM.

3.5. Discussion

The test results show that intermittent microaeration can promote the release of
more carbon sources from POM under the action of hydrolytic fermentation bacteria,
inhibit acetate-type methanogens, and reduce the loss of VFAs to achieve a better carbon
source recovery effect. Combining reactor performance results and microbial community
characterisation data as well as bioenergetics evaluations, a putative pathway of carbon
source release from POM via intermittent microaeration was proposed, as illustrated in
Figure 10. However, further metagenomic analyses are required to confirm the main
functional microbes and their interactions in this complex microbial community to confirm
the proposed pathway. The microaeration technology avoids the addition of carbon sources
and alkaline agent, and only need some simple modifications before practical application.
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Thus, it is a very promising technology to alleviate the problem of insufficient carbon
sources in small-scale domestic sewage treatment facilities.

Water 2022, 14, x FOR PEER REVIEW 10 of 13 
 

 

 
(a) 

 
(b) 

Figure 9. Cont.



Water 2022, 14, 1876 11 of 13Water 2022, 14, x FOR PEER REVIEW 11 of 13 
 

 

 
(c) 

Figure 9. (a) Phylum-level relative abundance of archaeal communities; (b) class-level relative 
abundance of archaeal communities; (c) genus-level relative abundance of archaeal communities. 

3.5. Discussion 
The test results show that intermittent microaeration can promote the release of more 

carbon sources from POM under the action of hydrolytic fermentation bacteria, inhibit 
acetate-type methanogens, and reduce the loss of VFAs to achieve a better carbon source 
recovery effect. Combining reactor performance results and microbial community char-
acterisation data as well as bioenergetics evaluations, a putative pathway of carbon source 
release from POM via intermittent microaeration was proposed, as illustrated in Figure 
10. However, further metagenomic analyses are required to confirm the main functional 
microbes and their interactions in this complex microbial community to confirm the pro-
posed pathway. The microaeration technology avoids the addition of carbon sources and 
alkaline agent, and only need some simple modifications before practical application. 
Thus, it is a very promising technology to alleviate the problem of insufficient carbon 
sources in small-scale domestic sewage treatment facilities. 

 
Figure 10. Proposed pathway of carbon source release from POM via intermittent microaeration. 

4. Conclusions 
Intermittent microaeration can effectively promote the hydrolysis efficiency of par-

ticulate organic matter (POM), with increased protein, polysaccharide, SCOD, and greater 
removal of NH4+-N and PO43−-P compared with the control group. The SCOD concentra-
tion released by the hydrolysis of POM was the largest on day 4, and its C/N ratio was 
48.59% higher than the control group. In addition, through high-throughput sequencing, 
microaeration was found to effectively promote the growth of Paludibacter, Actinomyces, 

Figure 9. (a) Phylum-level relative abundance of archaeal communities; (b) class-level relative
abundance of archaeal communities; (c) genus-level relative abundance of archaeal communities.

Water 2022, 14, x FOR PEER REVIEW 11 of 13 
 

 

 
(c) 

Figure 9. (a) Phylum-level relative abundance of archaeal communities; (b) class-level relative 
abundance of archaeal communities; (c) genus-level relative abundance of archaeal communities. 

3.5. Discussion 
The test results show that intermittent microaeration can promote the release of more 

carbon sources from POM under the action of hydrolytic fermentation bacteria, inhibit 
acetate-type methanogens, and reduce the loss of VFAs to achieve a better carbon source 
recovery effect. Combining reactor performance results and microbial community char-
acterisation data as well as bioenergetics evaluations, a putative pathway of carbon source 
release from POM via intermittent microaeration was proposed, as illustrated in Figure 
10. However, further metagenomic analyses are required to confirm the main functional 
microbes and their interactions in this complex microbial community to confirm the pro-
posed pathway. The microaeration technology avoids the addition of carbon sources and 
alkaline agent, and only need some simple modifications before practical application. 
Thus, it is a very promising technology to alleviate the problem of insufficient carbon 
sources in small-scale domestic sewage treatment facilities. 

 
Figure 10. Proposed pathway of carbon source release from POM via intermittent microaeration. 

4. Conclusions 
Intermittent microaeration can effectively promote the hydrolysis efficiency of par-

ticulate organic matter (POM), with increased protein, polysaccharide, SCOD, and greater 
removal of NH4+-N and PO43−-P compared with the control group. The SCOD concentra-
tion released by the hydrolysis of POM was the largest on day 4, and its C/N ratio was 
48.59% higher than the control group. In addition, through high-throughput sequencing, 
microaeration was found to effectively promote the growth of Paludibacter, Actinomyces, 

Figure 10. Proposed pathway of carbon source release from POM via intermittent microaeration.

4. Conclusions

Intermittent microaeration can effectively promote the hydrolysis efficiency of partic-
ulate organic matter (POM), with increased protein, polysaccharide, SCOD, and greater
removal of NH4

+-N and PO4
3−-P compared with the control group. The SCOD concentra-

tion released by the hydrolysis of POM was the largest on day 4, and its C/N ratio was
48.59% higher than the control group. In addition, through high-throughput sequencing,
microaeration was found to effectively promote the growth of Paludibacter, Actinomyces,
Trichococcus, Gallicola, and Desulfobulbus, which may promote the hydrolytic fermentation of
particulate organic matter, and the relative abundance increased by 282.82%, 21.77%, 23.47%,
16.76%, and 19.37% compared with the control group, respectively. Simultaneously, mi-
croaeration can inhibit the growth of acetate-consuming methanogens (e.g., Methanosaeta
and Methanosarcina), thereby reducing the loss of acetic acid. Therefore, microaeration
obtains more carbon sources by improving the hydrolysis efficiency of particulate organic
matter and inhibiting the consumption of acetic acid by archaea.
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