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Abstract: The concentration of chlorophyll-a (Chl-a) is an integrative bio-indicator of aquatic ecosys-
tems and a direct indicator that evaluates the ecological status of water bodies. In this study, we
focused on predicting the Chl-a concentration in seawater using machine learning (after replacing
missing values). To replace the missing values among marine environment observation data, a
comparison experiment was performed using multiple built-in imputation methods (i.e., pmm, cart,
rf, norm, norm.nob, norm.boot, and norm.predict) of the mice package in R. The cart method was
selected as the most suitable. We generated each regression model using six machine learning algo-
rithms (regression tree, support vector regression (SVR), bagging, random forest, gradient boosting
machine (GBM), and extreme gradient boosting (XGBoost)) to predict the Chl-a concentration based
on the complete imputed dataset. The prediction performance of the models was evaluated by four
evaluation criteria using 10-fold cross-validation tests. XGBoost, an ensemble learning approach,
outperformed other models in predicting the Chl-a concentration; SVR, a single model, also showed
a good performance. The most important environmental factor in predicting the Chl-a concentration
was an organic carbon particulate; however, dissolved oxygen also showed potential. This study
was conducted with field observations in the spring and summer in the coastal zone of Korea. There
exists a limit in machine learning applications, which excludes temporal and spatial factors. However,
extensions to time series forecasting for deep learning or machine learning can lead to meaningful
regional and seasonal analysis. It can also improve prediction performance as a result of the long-
term data accumulation of field observations of more varied features (such as meteorological and
hydrodynamic) besides water quality.

Keywords: missing values; multiple imputation; multivariate imputation by chained equation
(MICE); machine learning; chlorophyll-a; model accuracy metrics

1. Introduction

Machine learning is fundamental to the meaningful processing of data that cannot
be comprehended by the human brain. A machine-learning-based model learns from
examples, provided in the form of inputs called features and outputs called labels, rather
than being programmed with rules [1]. The adoption of data-intensive machine learning
methods can be seen in all fields of science, technology, and commerce, such as in healthcare,
manufacturing, education, financial modeling, policing, and marketing, resulting in more
evidence-based decision making [2]. The value of data, also known as the oil of the 21st
century, is rising in all industries, and the quantity and quality of data are essential issues
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for machine learning. A lack of data quality can take the form of missing, incomplete,
inconsistent, inaccurate, redundant, and outdated data [3]. Most of the data observed
in reality include missing information, mostly as a result of unexpected circumstances
(e.g., equipment failure, power outages, bad weather, and communication failure); in some
instances, more than half of the information may be missing [4]. Most statistical analyses
can only be conducted on complete datasets. In other words, cases with missing values in
at least one of the specified variables will be excluded from an analysis [5,6]. This leads
to a reduced sample size, compromises statistical power, and can affect the accuracy of
parameter estimates [5,7]. Missing values must be addressed before analyzing data, as
ignoring or omitting them can lead to a biased and ineffective analysis [8]. Missing data can
lead to a substantial amount of bias, make data processing and analysis more difficult, and
reduce efficiency [9]. Training a machine learning model with such data affects the model
quality and leads to incorrect interpretations and results. However, it is time-consuming
and costly to discard existing data and repeat the observations.

The concentration of chlorophyll-a (Chl-a) is an integrative bio-indicator of aquatic
ecosystems, representing marine phytoplankton biomass and primary productivity, and is
a direct indicator for evaluating the ecological status of water bodies [10,11]. This includes
features such as algal blooms, which degrade the water quality of marine and freshwater
environments. Algal blooms commonly occur in receiving water bodies, causing potential
water quality deterioration and often resulting in the depletion of oxygen, reduced water
transparency, and decreased biodiversity in marine and freshwater environments [11,12].
Machine learning has been used instead of multiple regression to predict Chl-a concentra-
tion and algal blooms because of the complexity and non-linearity of environmental factors.
However, most studies have focused on freshwater environments and not on marine envi-
ronments. Some previous studies have attempted to implement various machine learning
techniques to predict Chl-a concentrations, with the majority focused on freshwater systems
and only a few on marine regions [10,11,13–17].

When a significant amount of data is missing, it is difficult to ensure the validity,
accuracy, and representation of analysis results with a normal listwise deletion [9,18].
Therefore, instead of a listwise deletion (a common approach for missing data), we apply
an imputation method that minimizes information loss by identifying the pattern of missing
information based on raw data and replacing the missing values in the marine environment.
Various missing imputation methods exist, such as simple univariate imputation, k nearest
neighbors (KNN) imputation, and multiple imputation (MI). Among these, MI is superior to
single imputation, which replaces missing values with a mean, median, mode, etc. [19–23].
MI is a multivariate imputation approach, which uses other features to predict the missing
value of the current feature, is free from normal distribution assumptions, and can be
applied to non-continuous variables [24–26]. This approach may be generally referred to
as fully conditional specification (FCS) or multivariate imputation by chained equations
(MICE) [27–29].

Some studies have predicted target variables through machine learning after imputa-
tion. In the medical field, there was a case in which the IgA nephritis binary classification
problem was predicted after applying the method with the best performance among the
various missing imputation methods [30]. In a freshwater environment, there have been
cases of algal bloom predictions after imputation using the KNN method [31] and Chl-a
concentration predictions after a comparison of six missing data imputation methods [32].
However, many imputation and machine learning technologies are not fully utilized in the
fishery and marine fields.

Therefore, our study utilized techniques such as multiple imputation and machine
learning on marine coastal ecosystem observation data. We attempted to predict the Chl-a
concentration and derived the importance of input features for the target variable (Chl-a
concentration) in the marine field.

A Google Scholar search containing all three keywords (imputation, chlorophyll-a,
and machine learning) showed approximately 150 cases over the last two years (as of
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the beginning May 2022). There were approximately 359,000 machine learning cases,
19,000 chlorophyll-a cases, and 25,000 imputation cases in the single-keyword search. The
small number of convergence studies containing the three keywords demonstrates the need
for this study.

2. Materials and Methods
2.1. Study Area and Data

Survey stations and survey items can be found in reference to the history and status of
the national marine ecosystem monitoring program in Korea [33]. The data were provided
by the Korea Marine Environment Corporation (https://www.koem.or.kr, accessed on
7 March 2022). These data were observed biannually for five years (2015–2019) at the loca-
tions presented in Figure 1 during spring and summer, according to the standard manual for
basic survey of coastal marine ecosystems [34,35]. In the odd-numbered years (2015, 2017,
and 2019), the West Korea coastal zone and southwest coastal zone of Korea were observed
(i.e., stations marked with blue diamonds in Figure 1), whereas in the even-numbered years
(2016 and 2018), the East Korea coastal zone, southeast coastal zone of Korea, and Jeju
coastal zone were observed (i.e., stations marked with red diamonds in Figure 1). However,
in 2017, as an exception, the entire coastal area of Korea was observed. Among the observed
marine coastal ecosystem data, the physical (i.e., water temperature, salinity, and trans-
parency), chemical (i.e., pH, dissolved oxygen (DO), suspended particulate matter (SPM),
particulate organic carbon (POC), particulate organic nitrogen (PON), dissolved silicate
(DSi), dissolved inorganic phosphorus (DIP), dissolved inorganic nitrogen (DIN), NO2,
NO3, and NH4), and biological (i.e., Chl-a concentration) data were extracted and used in
this study. The three categories (i.e., physical, chemical, and biological) included observed
data from the surface and bottom layers of each station from 2015 to 2019. However, we
only used the surface layer data (water depth of 1 m), with 729 datapoints in total.
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The provided raw data consisted of several excel files categorized within a folder for
each year. Data preprocessing was performed by reading an excel file into R (version 4.1.2,
https://www.r-project.org, accessed on 7 March 2022). We used the R software for all
data preprocessing and the data analysis. Because the data in each category were mainly
classified by year, they were merged horizontally and then sorted and filtered. Next, we
vertically connected the integrated data (i.e., five-year data combined by category) based
on the year, season, station, and depth. Consequently, there were 1583 datapoints in total.
When the missing pattern was confirmed, the missing rate of the Chl-a concentration data,
which was to be used as the target variable, exceeded 30%. This high missing rate caused
a problem by lowering the replacement accuracy. To reduce the missing rate of the Chl-a
data, we filtered the data based on a depth of 1 m. Consequently, the number of datapoints
was 729, and the missing rate of Chl-a data was 0.14%.

2.2. Evaluation of Multiple Imputation (MI) Methods

To replace the missing values of the marine coastal ecosystem observations, we con-
ducted a comparative experiment (Figure 2) to select an appropriate method from several
MI methods, which are built in the mice package in R [36]. As shown in Figure 2, the pmm,
cart, rf, norm, norm.nob, norm.boot, and norm.predict hyperparameters were varied for the
imputation methods. In the imputation phase of Figure 2, m is the number of MI datasets.
We generated 20 complete imputed datasets for each of the methods in Figure 2 using the
mice package. We used the root mean square error (RMSE) to compare and evaluate the
different methods. An RMSE value of zero indicates that the imputed dataset has a perfect
fit. The lower the RMSE value, the better the method. We conducted the experiment to
determine which method showed the smallest difference between the true and imputed
values. Then, we replaced the missing values using the selected method.
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Figure 2. Multiple imputation comparison of seven different methods. Abbreviations: RMSE, root
mean square error; pmm, predictive mean matching; norm, Bayesian linear regression; norm.nob,
linear regression ignoring model error; norm.boot, linear regression using bootstrap; norm.predict,
linear regression, predicted values; cart, classification and regression trees; rf, random forest imputa-
tions [36].

In the RMSE of the evaluation phase in Figure 2, n is the number of observations, Ytrue
represents the value of the dataset with no missing data, and Yimp represents the value of
the imputed complete dataset generated by the MI method in the incomplete dataset with
missing values. We used the data presented in Section 3.2 for this experiment. Therefore,
we obtained 20 RMSE values for each variable (i.e., input and target variables) in Figure 2.

https://www.r-project.org
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2.3. Machine Learning Algorithms

Six machine learning algorithms were used to predict the Chl-a concentration from
the marine coastal ecosystem observations. Single learning (regression tree, SVR) using
only one model and ensemble learning (boosting, random forest, GBM, and XGBoost)
combining multiple models were used (Figure 3). In this study, ensemble learning refers
to tree-based learning and the final result was derived by combining several regression
trees. An individually trained model is called a weak learner in ensemble learning, which
is divided into bagging and boosting techniques depending on whether the weak learners
have mutual influence during learning. Bagging is a parallel method in which each model
learns independently. It aggregates the final result using an average after combining the
results of all the weak learners. Boosting follows a sequential method in which each
model learns sequentially to improve the prediction power. Boosting is a technique for
synthesizing results by giving weight to a good weak learner when deriving results [37–39].
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A regression tree is the regression of a decision tree for the prediction of a continuous
target variable; the relationship between variables is analyzed using a tree structure, and the
analysis encompasses efficient recursive segmentation. A characteristic that significantly
increases the homogeneity of the result is set as the partitioning condition during recursive
division. The regression tree measures homogeneity with statistics such as variance,
standard deviation, and absolute deviation from the mean [40].

SVR is a regression algorithm of support vector machines (SVMs), where an SVM
represents an algorithm that finds the optimal linear decision boundary that linearly
separates data. In addition to linear classification, an SVM efficiently performs non-linear
classification using a technique that maps input data into multidimensional space, called a
kernel trick. RBF kernel SVM is the best performing SVM algorithm and is widely used [41].

Bagging is an acronym for bootstrap aggregation and involves combining the outputs
of multiple models (e.g., N regression trees) to obtain a generalized output. Bagging
uses a bootstrap sampling technique to generate numerous subsets (bags) of the original
training dataset with replacement [42]. The average strategy is used for the regression
problem, and the majority strategy is used for the classification problem to generalize the
ensemble results.

Random forest is an extension of bagging, and it randomly selects both samples and
features, while bagging randomly selects only samples. It uses a subset of training samples
and features to build multiple base learners (e.g., N regression trees) [38].

A boosting architecture is the generation of sequential hypotheses, where each hy-
pothesis tries to improve or correct the mistakes made in the previous one [38]. GBM is
a typical boosting algorithm using gradient descent and is implemented to sequentially
learn the residuals using multiple tree models by reducing errors. It is slow and prone to
overfitting because of a lack of regulatory functions [43,44].

XGBoost is a scalable tree boosting system based on GBM, which guarantees a faster
performance than GBM by running in parallel. It contains an internal overfitting regular-
ization function and cross-validation function to prevent overfitting [44,45].
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2.4. Regression Model Accuracy Metrics

Four evaluation metrics—coefficient of determination (R-squared or R2), RMSE, mean
absolute error (MAE), and Spearman correlation coefficient—were used to evaluate the
performance of the regression model, and the four formulas are shown in Table 1. In
artificial intelligence, including machine learning, non-linear models are being preferred
over linear models. Therefore, the Spearman’s correlation coefficient, which measures
the correlation using ranking, was added as a performance evaluation factor to identify
nonlinear relationships in addition to linear relationships. However, in the regression
model, indicators of how accurately “to predict” data are crucial. Chicco [46] suggested
that R-squared was a more beneficial indicator than symmetric mean absolute percentage
error (SMAPE), MAE, mean absolute percentage error (MAPE), mean squared error (MSE),
and RMSE. In the formula in Table 1, n is the number of observations, yi and ŷi are the
i-th observed value and predicted value of the model, respectively, and y is the mean
of the observed value. Ri and R̂i are the rank of the i-th observed value and predicted
value, respectively. The coefficient of determination can be interpreted as the proportion
of variation in the target variable, which is explained by the independent variables [46].
R2 has a value between −∞ and 1, and for which a higher value indicates higher accuracy.
MAE and RMSE always have non-negative values. The MAE and RMSE values closer to
zero imply a higher model accuracy [16,47].

Table 1. Performance evaluation measure of the regression model.

Model Accuracy Metric Formula Definition

Coefficient of determination (R-squared or R2)
R2 = 1− ∑n

i = 1(yi−ŷi)
2

∑n
i = 1(yi−y)2

(worst value = −∞; best value = +1)

Mean absolute error (MAE) MAE = ∑n
i = 1|yi−ŷi |

n
(best value = 0; worst value = +∞)

Root mean square error (RMSE)
RMSE =

√
1
n

n
∑

i = 1
(yi − ŷi)

2

(best value = 0; worst value = +∞)

Spearman’s correlation coefficient (rs)
rs = 1− 6

n(n2−1)

n
∑

i = 1

(
Ri − R̂i

)2

(−1 ≤ value ≤ 1)

3. Results
3.1. Missing Data Pattern

The analyzed data (n = 729) consist of a total of 729 observed datapoints, which are
the surface layer (water depth = 1 m) data of physical, chemical, and biological factors
along the coastal zone of Korea over five years (2015–2019). They include 15 features,
except for the four distinct features of year, season, station, and depth, as shown in Figure 4.
Figure 4a represents the number of missing values in each feature and Figure 4b represents
the number of missing values through a combination of features and the ratio of missing
values. In Figure 4a, the missing values of pH and transparency are high because there
were no observations in 2016. In Figure 4b, 594 represents the number of samples without
any missing information and 60 represents the number of samples in which pH and
transparency are simultaneously missing. Figure 4b presents the Chl-a missing rate (0.0014),
which, as the target variable, is significantly below 1%.
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Figure 4. Missing data pattern of surface data (n = 729). Number of missings (a); Combinations (b).
Abbreviations: Wtemp, water temperature; pH, hydrogen ion concentration in water; DO, dissolved
oxygen; SPM, suspended particulate matter; POC, particulate organic carbon; PON, particulate
organic nitrogen; DSI, dissolved silicate; DIP, dissolved inorganic phosphorus; DIN, dissolved
inorganic nitrogen; Chl-a, chlorophyll-a concentration.

3.2. Selection of Multiple Imputation Method

The data without missing information (n = 594) in Figure 4b were considered in the
true value dataset. Next, we randomly generated missing values with the proportion of
missing values for each variable and variable combinations, as shown in Figure 4b. Figure 5
shows that the experimental dataset (n = 594) was generated with a missing shape and
proportion similar to the analysis dataset of Figure 4 (n = 729). Additionally, a boxplot was
drawn and analyzed for features with the distribution skewed to over four; the absolute
value of skewness was considered so that the results are not distorted for extremely large
or small values. Four values (red circles) of Chl-a (skewness: 7.86), SPM (skewness: 9.56),
NH4 (skewness: 4.43), and PON (skewness: 7.22) were treated as missing (Supplementary
Materials Figure S1).
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Figure 5. Missing data pattern of experiment data (n = 594). Number of missings (a); Combinations (b).
Abbreviations: Wtemp, water temperature; pH, hydrogen ion concentration in water; DO, dissolved
oxygen; SPM, suspended particulate matter; POC, particulate organic carbon; PON, particulate
organic nitrogen; DSI, dissolved silicate; DIP, dissolved inorganic phosphorus; DIN, dissolved
inorganic nitrogen; Chl-a, chlorophyll-a concentration.

For the experiment in Figure 2, we generated 20 complete imputed datasets from the
incomplete dataset (n = 594); thus, 20 RMSE values were derived for each variable, and their
distribution is shown as a boxplot. Because seven imputation methods were used, seven
boxplots are presented in Figure 6 for each variable. We used the RMSE as an indicator
to show the difference between the true and imputed values for each variable. The closer



Water 2022, 14, 1862 8 of 17

the RMSE value is to 0, the better. Among them, Figure 6 shows the RMSE distribution
for transparency, water temperature, and salinity, and the closed pink circle represents the
mean. The cart method showed the lowest RMSE among the imputation methods. It was
confirmed that the cart method has a small RMSE value for most of the remaining marine
water environment features (see Supplementary Materials Figures S2–S5).
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Figure 6. RMSE distribution for transparency, water temperature, and salinity. (a) transparency;
(b) water temperature; (c) salinity. The central lines in the boxes represent the median, and the boxes
encompass data between the 25th and 75th percentile; whiskers span the 5th and 95th percentiles.
The black circles of each boxplot represent RMSE values. The dark pink circles in the boxes represent
the means. Abbreviations: pmm, predictive mean matching; norm, Bayesian linear regression;
norm.nob, linear regression ignoring model error; norm.boot, linear regression using bootstrap;
norm.predict, linear regression, predicted values; cart, classification and regression trees; rf, random
forest imputations [36].

3.3. Missing Imputation by Cart Multiple Imputation and Exploratory Data Analysis

For the analyzed data (n = 729) with a ratio of missing information as in Figure 4b,
six extreme values were additionally treated as missing. The boxplots were analyzed for
features with a large, skewed distribution and an absolute skewness value of 4 or more
(absolute skewness value ≥ 4): Chl-a (skewness: 7.76), salinity (skewness: −6.30), SPM
(skewness: 9.41), NO3 (skewness: 7.93), NH4 (skewness: 4.49), and PON (skewness: 7.89).
In addition, six values—as indicated with red circles—were treated as missing (see Supple-
mentary Materials Figure S6). Multiple imputation was performed using the cart method,
as noted in Section 3.2, and the final machine learning dataset (n = 729) was obtained by
calculating the average value of 20 complete imputed datasets.
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Table 2 shows the maximum, minimum, average, quartile, skewness, kurtosis, and
coefficient of variation (CV) for each feature. In particular, the coefficient of variation,
which represents the ratio of the standard deviation to the mean, can compare variations
between features with different units. Therefore, pH (CV = 0.02) had the smallest variation,
and PON (CV = 1.77) had the largest variation. Skewness gives information about the
distribution asymmetry and direction of outliers, and kurtosis indicates how much the data
is concentrated on the mean. Skewness decreased the asymmetry, compared with that from
before the missing imputation: Chl-a (skewness: 2.29), salinity (skewness: −2.94), SPM
(skewness: 1.72), NO3 (skewness: 3.36), NH4 (skewness: 3.53), and PON (skewness: 5.06).
The DIN (kurtosis: 52.36) and PON (kurtosis: 35.58) values were more concentrated around
the mean compared with other features, as highlighted by the larger kurtosis values.

Table 2. Imputed complete data summary (n = 729). Abbreviations: 1st Qu., 1st quartile; 3rd Qu.,
3rd quartile; CV, coefficient of variation; Wtemp, water temperature; pH, hydrogen ion concentration
in water; DO, dissolved oxygen; SPM, suspended particulate matter; POC, particulate organic carbon;
PON, particulate organic nitrogen; DSi, dissolved silicate; DIP, dissolved inorganic phosphorus; DIN,
dissolved inorganic nitrogen.

Feature Unit Min. Max 1st Qu. Median Mean 3rd Qu. Skewness Kurtosis CV

Transparency m 0.16 16 1.81 3 4.076 5.9 1.09 0.83 0.73
Wtemp ◦C 9.22 30.28 15.94 20.25 20.42 24.74 0.05 −1.22 0.24
Salinity psu 16.34 34.86 31.65 32.22 32.21 33.12 −2.94 22.92 0.05
pH pH 7.17 8.41 7.98 8.075 8.059 8.15 −1.23 4.54 0.02
DO mg/L 3.53 12.31 7.11 7.89 7.811 8.49 0.09 0.76 0.13
SPM mg/L 0.5 75.55 6.16 10.28 13.34 17.83 1.72 4.41 0.79
PON µM 0.64 88.82 2.67 4.28 9.049 7.68 5.06 35.58 1.77
POC µM 1.29 179.99 13.19 21.52 26.99 34.32 2.41 9.13 0.81
DSi µM 0.03 59.23 2.85 5.81 7.09 8.88 2.81 12.66 0.91
DIP µM 0 2.52 0.07 0.15 0.2139 0.3 3.37 21.08 1.1
DIN µM 0.1 76.28 1.53 2.96 4.482 6.04 5.42 52.36 1.2
NO2 µM 0 3.1 0.05 0.16 0.2706 0.33 3.3 14.91 1.33
NO3 µM 0 30.58 0.46 1.22 2.535 3.5 3.36 17.89 1.33
NH4 µM 0 17.56 0.39 1.25 1.59 2.08 3.53 19.16 1.18
Chl-a µg/L 0.03 14.58 0.79 1.46 2.084 2.82 2.29 7.55 0.95

For the normality test of each feature, the Shapiro test was performed, which con-
firmed that all p-values were significantly small and that not all features were normally
distributed. Therefore, the Spearman’s correlation analysis, a non-parametric correlation
analysis, was performed to understand the correlation between variables (features). The
darker the blue color, the greater the positive correlation, and the darker the red color, the
greater the negative correlation (Figure 6a). Chl-a, POC (ρ = 0.47), NH4 (ρ = 0.36), NO2
(ρ = 0.33), DIP (ρ = 0.32), DIN (ρ = 0.31), PON (ρ = 0.28), NO3 (ρ = 0.18), DSi (ρ = 0.11),
pH (ρ = 0.11), and SPM (ρ = 0.10) showed a significant (p < 0.05) positive correlation,
whereas transparency (ρ = −0.42) and salinity (ρ = −0.25) showed a significant (p < 0.05)
negative correlation. We performed a principal component analysis (PCA) for exploratory
data analysis. The loading plot of PCA shows how strongly each variable influences a
principal component and the correlation between variables (Figure 7b). The two principal
components accounted for 43.6% of the total variance of the data. Nutrients such as DIN,
DIP, NO3, and NO2 strongly influenced Dim1, while physical environmental information,
such as water temperature, DO, pH, and salinity, more strongly influenced Dim2. POC
and NH4 are positively correlated with Chl-a because the two variable vectors were similar,
forming a small angle between them. Moreover, transparency was negatively correlated
with Chl-a because they formed a large angle close to 180◦, as it was located on the opposite
side of Chl-a (Figure 7b).
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3.4. Distribution of Features before and after Imputation

Figure 8 shows the results before and after imputation for pH and transparency with
missing values from the spring and summer 2016 surveys. During the 2015–2019 survey
period, the East Korea coastal zone, southeast coastal zone of Korea, and Jeju coastal zone,
were observed in 2016 and 2018. The pH imputed in the spring of 2016 ranged from
7.81–8.33 (mean 8.15), which was similar to the 7.80–8.34 range (mean 8.15) for the pH
observed in the spring of 2018. The pH imputed in the summer of 2016 was 7.83–8.30
(mean 8.00), which was similar to the pH observed in the summer of 2018 (7.80–8.24, with a
mean of 7.98), but the mean was slightly higher. The imputed transparency from the spring
of 2016 was 0.97–9.41 (mean 6.24 m), which was narrower than the observed transparency
from the spring of 2018 (0.80–12.40, with a mean of 5.86 m); the average transparency was
somewhat higher. In contrast, the imputed transparency from the summer of 2016 was
1.20–13.38 (mean 5.79 m), narrower than the observed transparency from the summer of
2018 (1.00–16.00, with a mean of 7.20 m); however, the average transparency was low.

3.5. Performance Evaluation of Machine Learning Model

The R software (version 4.1.2) was used for all machine learning predictions. We used
six machine learning algorithms (regression tree, SVR, bagging, random forest, GBM, and
XGBoost) to predict the concentration of Chl-a. The dataset (n = 729) contains fifteen fea-
tures, as shown in Table 2. It has different scales, that is, the range of water temperature was
between 9.22 and 30.28 ◦C while the Chl-a concentration was between 0.03 and 14.58 µg/L.
To reduce the complexity of the data and ensure that the datasets were of the same scale,
the data was normalized to values between 0 and 1 using min–max scaling [48]. All algo-
rithms were run under 10-fold cross-validation (CV), which is a powerful tool to avoid the
overfitting of data [48]. During CV, the data were divided into ten sets, with nine sets used
for training and one set for testing; this process was repeated ten times using different data
for each testing phase We used four measures (i.e., MAE, RMSE, Spearman’s correlation
coefficient, and R2) for the predictive model performance evaluation. Ten models trained
through the CV process were created, and performance measures were calculated using the
predicted and actual values. The algorithms were optimized by adjusting the hyperparame-
ters as follows: regression tree algorithm (i.e., rpart in R), minsplit = 16, maxdepth = 9, and
cp = 0.01; SVR algorithm (i.e., SVM in R), cost = 4, gamma = 0.125, epsilon = 0.2; bagging al-
gorithm (i.e., bagging in R), nbagg = 54, coob = TRUE, minsplit = 16, maxdepth = 9, cp = 0.01;
random forest algorithm (i.e., randomForest in R), ntree = 400, mtry = 4; GBM algorithm
(i.e., gbm in R), distribution = “gaussian,” n.trees = 1500, interaction.depth = 8, shrink-
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age = 0.01, n.minobsinnode = 5, bag.fraction = 0.5; XGBoost algorithm (i.e., xgboost in R),
max.depth = 8, eta = 0.06, nrounds = 5000, early_stop_rounds = 1000, colsample_bytree = 0.7,
subsample = 0.95. Table 3 shows the mean of the performance measurements.
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Table 3. Prediction performance of the six machine learning models. Abbreviations: MAE, mean
absolute error; RMSE, root mean square error; R2, coefficient of determination; SVR, support vector
regression; GBM, gradient boosting machine; XGBoost, extreme gradient boosting.

Model MAE RMSE Spearman’s
Correlation R2

Single
regression tree 0.073 0.107 0.557 0.308

SVR 0.061 0.094 0.744 0.493

Ensemble

bagging 0.069 0.099 0.658 0.413

random forest 0.063 0.093 0.731 0.500

GBM 0.065 0.094 0.698 0.471

XGBoost 0.062 0.090 0.720 0.520

Based on the training and test datasets in CV, we calculated the optimal parameter
combination of each algorithm several times. The RMSE showed good performance in the
order of XGBoost (0.090), random forest (0.093), SVR (0.094), GBM (0.094), bagging (0.099),
and regression tree (0.107). R2 showed good performance in the order of XGBoost (0.520),
random forest (0.500), SVR (0.493), GBM (0.471), bagging (0.413), and regression tree (0.308).
MAE showed good performance in the order of SVR (0.061), XGBoost (0.062), random forest
(0.063), GBM (0.065), bagging (0.069), and regression tree (0.073). The Spearman correlation
coefficient appeared in the order of SVR (0.744), random forest (0.731), XGBoost (0.720),
GBM (0.698), bagging (0.658), and regression tree (0.557). Overall, tree-based ensemble
learning was superior to tree-based single learning; in particular, XGBoost outperformed
the other models. Moreover, single learning SVR showed good performance in MAE and
Spearman’s correlation coefficient.
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3.6. Feature Importance

Unlike linear regression models, most machine learning models do not provide suf-
ficient information about the relationships between variables (i.e., features), but instead
allow us to estimate which variables play an essential role in the predictive performance of
the target variable through feature importance. Figure 9 shows the feature importance in
the model in which the third R2 value of XGBoost’s 10-fold cross-validation showed a value
of 0.719. The important feature ranking is shown in order of POC and DO. However, DIN,
SPM, and some others have low feature rankings and show a weak influence in predicting
concentrations of Chl-a.
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4. Discussion

This study constructed a high-quality dataset for machine learning by appropriately
processing the missing values in field observation data. The existence of missing data
is shown in Figure 4. Six additional values were treated as missing, as mentioned in
Section 3.3, to avoid distorting the results because of extreme values. The missing data
were replaced using the cart method. Because the existing observation values are known,
changes in the imputed values can be identified (Table 4), especially for the six added
values. Referring to the quartile values in Table 2 and looking at the imputed values of
Chl-a, salinity, NO3, NH4, PON, and SPM, it can be observed that the imputed values
of Chl-a, NO3, NH4, and PON were larger than the 3rd quartile. The minimal salinity
values were imputed with values below the 1st quartile. However, the SPM of the sample
(i.e., summer 2017 and W50 station), in which two features (i.e., SPM and PON) were
simultaneously missing, was imputed with a value below the median. The extreme values
were clearly replaced with relaxed values. It is ill-advised to use an imputed value of a
multiple imputation method after treating such extreme values as missing; it may be more
appropriate to use the original values for regional and seasonal sparsity. In addition, it
is necessary to track which changes in the machine learning model result from changes
in this value; however, this is beyond the scope of our study. Although this study and
Noh [30] claim that the cart method is superior to many imputation methods, Chhabra [49]
stated that the norm (Bayesian regression) method was superior, Jadhav [50] stated that the
KNN method was excellent, and Kim [51] suggested that imputation methods should be
evaluated by both the imputation and model performances. Thus, we cannot argue if one
imputation method is superior overall because the data components, missing rates, and
evaluation criteria are not similar. However, it is necessary to select an imputation method
suitable for the situation according to the characteristics of the data to eliminate any biases
that may arise from conventional missing data removal.



Water 2022, 14, 1862 13 of 17

Table 4. Forced missing data. Abbreviations: PON, particulate organic nitrogen; SPM, suspended
particulate matter; Chl-a, chlorophyll-a concentration.

Feature Raw Value Imputed Value Year-Season Station

Chl-a 45.24 3.32 2015-spring W26
Salinity 5.4 27.64 2016-spring S45
NO3 72.97 20.72 2016-spring S45
NH4 24.08 9.67 2019-spring W59
PON 314.99 9.89 2017-summer W50
SPM 286.5 9.35 2017-summer W50

The features with the highest missing rates were pH and transparency, which had
no observations during the spring and summer of 2016 (Figures 4a and 8a,c). Multiple
imputation methods for machine learning replaced the missing values, but the validation
of the imputed values cannot be discussed when the true value is unknown. However,
we compared it with 2018 data observed in a similar area (Figure 8). The imputed pH in
the spring of 2016 showed a similar distribution and average value to the pH observed
in the spring of 2018, but the interquartile range tended to be wider. In contrast, the
imputed pH in the summer of 2016, instead of spring, had a narrower interquartile range.
However, transparency showed the opposite trend to pH. This difference may arise from the
small sample size and the estimation, which excluded temporal and spatial characteristics.
Therefore, after the continuous accumulation of more observational data, the comparative
and verification studies on the imputed data, in consideration of regional characteristics,
can be positioned as an excellent alternative to replace the missing field data, which will
inevitably occur structurally in the future.

The initial research direction for predicting the Chl-a concentration included correla-
tion analysis, multiple regression analysis, and principal component regression analysis,
using water quality environment data to predict Chl-a concentration or to identify critical
influencing factors [52,53]. However, the advent of machine learning has led to improved
prediction performance by using various machine learning and deep learning methods
applicable to complex and non-linear relationships, moving away from the classic multiple
regression analysis for Chl-a concentration prediction. When predicting the concentration
of Chl-a in a freshwater environment, forecast performance was improved using weather
variables (e.g., average temperature, sunshine, rainfall, inflow, and outflow) in addition to
water quality variables (e.g., water temperature, pH, electric conductivity, DO, and total
organic carbon) [16]. In other studies on Chl-a concentration and algal bloom prediction
using machine learning methods, explanatory variables belonging to four different cate-
gories (chemical, biological, meteorological, and hydrodynamic) have been used (Table 5).
In particular, harmful algal blooms (HAB) occur when wind and water currents are fa-
vorable or in sluggish water circulation or in a marine environment suitable for red algae
overgrowth because of sunlight, water temperature, salinity, and nutrients [54,55]. Table 5
includes studies to predict Chl-a concentrations and algal blooms using machine learning
in freshwater [11,13,14,32,56] and seawater [16,17]. The physical category includes water
temperature and salinity, which are the most basic properties of water, along with trans-
parency, such as Secchi depth. The chemical category includes DO, BOD, COD, SS, and
TOC (particulate organic carbon + dissolved organic carbon), which are indicators of water
pollution, along with nutrients such as nitrogen, phosphorus, and silicon: TDN, TDP, NO2,
NO3, NH4, NH3, TN, and TP (Table 5). The biological category includes phytoplankton
and zooplankton abundance, which are factors of predation relationship; the meteoro-
logical category includes temperature, precipitation, wind, solar radiation, etc.; and the
hydrodynamic category includes water flow, water level, flux, discharge rate, etc.
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Table 5. Variables used for the predictions of the Chl-a concentration and algal blooms using machine
learning methods. Abbreviations: BOD, biochemical oxygen demand; COD, chemical oxygen
demand; SS, suspended solids; TOC, total organic carbon; TN, total nitrogen; TP, total phosphorus;
TDN, total dissolved nitrogen; TDP, total dissolved phosphorus.

Category Features References

Physical quality water temperature, salinity, transparency, Secchi depth

[11,13,14,16,17,32,56]
Chemical quality pH, conductivity, DO, BOD, COD, SS, TOC, silicate, phosphate, nitrogen,

carbonate, TN, TP, TDN, TDP, NO3, NO2, NH3, NH4
Biological chlorophyll-a, phytoplankton abundance, zooplankton abundance
Meteorological temperature, precipitation, wind speed, wind direction, sunlight radiation
Hydrodynamic inflow, outflow, water level, flux, water volume, discharge rate

Except for decision trees, most of the machine learning models are not easily inter-
pretable. However, it is only possible to know the importance score of features (i.e., the
higher score, the more large effect) to the predictive power of a given model between the
input features and the target variable, as shown in Figure 9. Unlike the linear regression
model, we may not know whether or how the predictor variable affects the target variable
in the positive or negative direction.

Four evaluation criteria (MAE, RMSE, Spearman’s correlation coefficient, and R2)
were used for model performance evaluation. In particular, R2 provided more information
than MAE and RMSE in regression model evaluation [46]. XGBoost outperformed other
models in R2 and RMSE. To predict the Chl-a concentration, only the physical and chemical
features in Table 5 were used; thus, the prediction performance was not as high. Improving
the machine learning model accuracy requires large and diverse datasets [1]. Therefore, by
considering the biological (e.g., phytoplankton abundance and zooplankton abundance),
meteorological (e.g., temperature and precipitation), and hydrodynamic categories (e.g.,
tide), and by accumulating more data than previously used, it seems that the predictive
performance can be improved.

During the survey period from 2015 to 2019, observations were conducted twice a year
(spring and summer). In particular, the western region was observed during odd-numbered
years and the eastern region was observed during even-numbered years. There existed
a limit in the reflecting time series characteristics of the data, and it did not reflect the
temporal characteristics. However, for future Chl-a concentration research, it is necessary
to accumulate and use coastal environment data for longer periods to reflect the temporal
characteristics. In addition, if the various features mentioned in Table 5 are collected and
merged, the prediction accuracy can be improved with a multivariate time series study,
and then meaningful regional and seasonal interpretations can be derived. We expect that
this process and its results will be used as a generalized methodology to apply machine
learning to marine environment data.

5. Conclusions

The dataset used in this study was based on surface layer data (n = 729) observed
during the spring and summer from 2015 to 2019 in the coastal zone of Korea. We attempted
to predict the concentration of Chl-a, which is one of the critical indicators of change in
the marine environment, using machine learning, and after replacing the missing values
with multiple imputation. First, to find the most suitable multiple imputation method, we
conducted a comparison experiment using seven multiple imputation methods (pmm, cart,
rf, norm, norm.nob, norm.boot, and norm.predict). The most appropriate method for this
study was found to be the cart method. Second, we generated machine learning models for
Chl-a concentration prediction using six machine learning algorithms (regression tree, SVR,
bagging, random forest, GBM, and XGBoost) rather than linear regression because of the
complexity and non-linearity of the ecosystem. A 10-fold cross-validation was performed
to estimate the performance of the models. XGBoost outperformed the other models. SVR
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also showed a good predictive performance. In addition, POC had the greatest influence
on the prediction of Chl-a concentration and DO also showed potential. The results of our
study suggest that our overall process and techniques can be generalized to make biological
feature (e.g., phytoplankton abundance, zooplankton abundance, and Chl-a concentration)
predictions and derive important influencing features.

The Chl-a concentration prediction accuracy is low in our study because the meteoro-
logical and hydrodynamic categories were not considered in aquatic ecosystem situations;
only physical and chemical features were used. For a more accurate prediction of biological
features using machine learning or deep learning, it is necessary to collect long-term field
observation data considering various features presented in Table 5.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14121862/s1, Figure S1: Distribution of features with absolute
skewness ≥ 4 of the dataset (n = 594) without missing values; Figure S2. RMSE distribution for pH,
DO, and SPM; Figure S3. RMSE distribution for PON, POC, and DSI; Figure S4. RMSE distribution
for DIP, DIN, and NO2; Figure S5. RMSE distribution for NO3, NH4, and Chlorophyll-a; Figure S6.
Distribution of features with absolute skewness ≥ 4 of the dataset (n = 729) with missing values
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