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Abstract: In recent years, the accelerated development of the remote sensing domain and the im-
provement of the resolution and frequency of satellite images allowed the increase in the accuracy
of the evaluation of morphometric characteristics and the spatiotemporal distribution of pit lakes,
including the small ones. Our study quantitatively analyzes small-scale pit lakes in the piedmont
and subsidence plains from contact with the Getic and Curvature Subcarpathians from Romania
using the normalized difference water index (NDWI) and data series, with different resolutions, from
Landsat 8, Google Earth, and Sentinel 2A. The problems encountered in extracting the contours of
the gravel pit lakes were determined by the different resolution of the images, the uneven quality of
the images exported from Google Earth, and an additional challenge was given by the diversity of
the analyzed land surfaces, the land use, and the optical properties of the lakes. A comparison of the
obtained NDWI values using data series from Sentinel 2A and Landsat 8 highlighted the importance
of resolution and also showed a larger spectral difference between the identified water bodies and
the surrounding land in favor of Sentinel 2A. Regarding the vegetation-derived indices, superior
leaf area index (1.8–3) was recorded in low-lying plains and mixed areas (tall shrubs, wetlands, etc.)
because the river banks have increased moisture that supports taller species with denser foliage
and the sparsely vegetated areas are located in agricultural crops and in/near villages. Changes in
vegetation richness and abundance can be spatiotemporally monitored using indices derived from
the spectral bands of satellite imagery.
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1. Introduction

In recent decades, the growing demand for mineral resources has led to the opening
of new quarries or increased existing ones, worldwide, with a direct impact on land use,
natural habitat degradation [1]; numerous air pollutant emissions; and negative impacts
on inland waters, soil, etc. Monitoring the spatiotemporal impact of these exploitations
is absolutely necessary [2,3] and involves field monitoring [4,5], time, and numerous
human and financial resources [6]. When the groundwater is intercepted or the gravel and
sand exploitation is ceased/abandoned, many of the negative forms of relief/excavation
resulting from the exploitation of mineral resources are filled with water and will gradually
turn into lakes and wetlands.

Whether we are talking about lakes resulting from the exploitation of coal [7], salt [8,9],
various metals [10], or ballast [11], their formation involves both negative aspects (con-
tamination of groundwater with metals, pesticides, and fertilizers by draining meteoric
waters; increasing soil erosion due to torrentiality; increasing the loss of freshwater by evap-
oration) [12–14] and positive aspects (emergence of new habitats, increasing biodiversity,
reducing the concentration of nitrates in groundwater, development of recreational areas:
fishing, boating/water sports) [15–18]. At the same time, the increase in air humidity due
to evaporation losses supports the development of these new habitats, reduces aridity, and
diminishes the effects of heat waves. Overall, numerous studies showed that an integrated
approach to the benefits of these ecosystems can be quantified in money, and the values
obtained are positive and significant [19,20].

In Romania, most studies evaluate lakes located in former salt mines [21,22], and a
small number of works are dedicated to lakes located in former coal mines, kaolin [23],
gold [24], or ballast extraction sites [25]. Thus, this is the first study that evaluates the
spatial distribution and morphometric characteristics of the gravel pit lakes located in the
piedmont and subsidence plains in Romania (the contact area between the Romanian Plain
and the Curvature and Getic Subcarpathians).

Knowing the morphometric characteristics of lakes (surface, depth, shoreline develop-
ment, wind exposure) [26] allows understanding the mechanisms that influence thermal
stratification, mixing type [27], biochemical cycles, biological productivity [28–30], and
aspects regarding greenhouse gas emissions [31–33].

Globally, the spatial distribution of lakes and wetlands is uneven, and the inventory
of small bodies of water is difficult. In the case of large lakes and intermediate-sized lakes,
there are numerous studies and databases created [34–38], while in the case of small-size
lakes (<1 ha), which are the most numerous, their inventory and the acquisition of existing
knowledge regarding their morphometric characteristics are difficult and done more often
based on the extrapolation of statistical estimates [38–41].

In these conditions, remote sensing is a very useful solution that allows the monitoring
of the environment and land-cover changes on a large scale [6,41]. The use of remote
sensing in the evaluation of the spatiotemporal distribution of the morphometric, phys-
ical, chemical, and biological characteristics of the lakes in mining areas, characterized
by accentuated dynamics, represents an extremely versatile tool due to the increasing
number of options (Landsat, Sentinel, MODIS, Aster) and much-improved resolution in
recent years [42–44]. Thus, it is possible to improve the quantification of the number and
morphometric characteristics of small lakes and reduce the uncertainties generated by
statistical models.

For water mapping, McFeeters (1996) [45] developed one of the first specific indices.
Still, over time, many indices have been developed that use two or more different spectral
bands in the automatic extraction of water bodies (single band ratio (SBR) [46], modified
normalized difference water index (MNDWI) [47], automated water extraction index
(AWEIInsh) [48], enhanced water index (EWI) [49], simple water index (SWI) [50], multi-
spectral water index (MuWI) [51]). However, the main problem with small lakes is the
omission in identifying these areas, which can range from 15 to 88% [52] depending on
imagery resolution (medium-resolution 30 m on Landsat 8 or fine-resolution imagery 0.5 m).
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In addition, it is possible to use manual digitization on high-resolution images from Google
Earth, but this method is time-consuming when used for large areas and depends on the
experience of the person in charge of digitization.

Riparian vegetation plays an important role in keeping an optimal ecological status of
rivers and is useful in nutrient uptake, lowering temperatures through shadowing, and
maintaining high humidity at ground level. While most of the gravel pit lakes are in the
closer limit to riverbeds, the riparian vegetation is affected by the extraction operations.

The normalized difference vegetation index (NDVI) is a key indicator of vegetation
status and dynamics in many ecological studies. In some cases, more robust indicators are
required to characterize the characteristics of a specific biome, and one of these indicators
is the leaf area index (LAI). When the absolute values of LAI are not needed, NDVI values
can directly approximate the LAI. The direct reliable estimation of LAI may require the
development of a field-based NDVI-LAI regression model [53].

Changes in vegetation richness and abundance can be monitored using the leaf area
index (LAI). LAI is defined as the “one-sided leaf area projected horizontally on the
ground” [54] because it tells how much foliage there is. It is used as an indicator of ecological
processes such as evapotranspiration and photosynthesis as a proxy of the incident light
intercepted by a canopy. Ultimately, LAI values are able to indicate the amount of water lost
through transpiration and the amount of photosynthetically active radiation received by the
plant, both being reliable parameters in the growth and development of plants [55]. Based
on a global synthesis of LAI conducted by Asner et al. (2003) [56], the mean global LAI
is 4.5 (std. = 2.5). The highest values have been identified in plantations (mean LAI = 8.7,
std. = 4.3), temperate evergreen forests (mean LAI = 6.7, std. = 6.0), and wetlands (mean
LAI = 6.3, std. = 2.3). A very important factor influencing LAI values is the climate, which,
therefore, determines the emergence of eco-zones with specific vegetation features. It is
clear that having rapid and accurate methods of LAI assessment is a key component of
process-based ecological research for elucidating gas–vegetation exchange at various spatial
scales starting from the individual canopy to the landscape.

In this context, our study aims to (i) obtain the automatic and manual extraction of
small bodies of water formed in sand/gravel mining quarries using satellite images from
Landsat 8, Sentinel 2A (automatically extracted), and Google Earth (manually extracted);
(ii) perform a comparative statistical evaluation of the morphometric characteristics of the
gravel pit lakes (surface, perimeter, shoreline) using shoreline development index (SDI),
lake circularity (C), lemniscate ratio (K), spreading, form factor (F), compacity (C), area/lake
length ratio (R), lake elongation (E), length/maximum breadth ratio (Rlb); and (iii) identify
areas occupied by riparian vegetation and the extent to which vegetation is affected by
gravel pit lake operation. In Romania, an inventory of gravel pits is not available, and our
approach provides a solution for creating a comprehensive dataset that contains useful
information regarding the conformity with the Mining Law 85/2003 and specifications
stipulated in GD 445/2009 that regulate their activity; the spatial extent; how long it takes
for the vegetation installed to recover spontaneously after the finishing of exploitation; and
the assessment of the direct or indirect impact on human settlements, flora, fauna, soil,
water, air, and material goods.

2. Methods
2.1. Morphometric Analyses

The determination of the number, shape, and all irregularities of the lake shoreline,
depends on the scale of the map or the resolution of the satellite image [57–59]. Thus, know-
ing the main morphometric parameters of lakes (area, perimeter, length, width, direction of
major axes, irregularity of shoreline) helps us to calculate different morphometric indices
and understand the structure and functions of lakes [60]. In the present study, the following



Water 2022, 14, 1858 4 of 24

morphometric indices were calculated using the contours of the lakes extracted from the
satellite images [61–68]:

Shoreline development index SDI =
P

2
√

πA
(1)

Lake circularity Lci =
4πA

P2 =
1

SDI2 (2)

Lemniscate ratio K =
L2π

4A
(3)

The spreading ratio or Morton index spreading MIS =
4A
πL2 (4)

Lake elongation Le =
2
√

A
L
√

π
(5)

Form factor Ff =
A
L2 (6)

Lake compacity Lco =
L2

A
(7)

Area/lake length ratio RA/L =

√
A

L
(8)

Length/maximum breadth ratio RL/Bmax =
L

Bmax
(9)

where A is lake area, P is shoreline length, L is lake length, and Bmax is maximum width
calculated as the maximum extension of the lake perpendicular to the length; all these
indices are dimensionless. SDI and Lci use combinations of area and shoreline ratios; K,
MSI, Ff, Lco, RA/L, and Le use combinations of area and lake length ratios; and RL/Bmax is the
ratio between lake length and maximum width. Since the gravel pit lakes are the result
of anthropogenic activities, the geometric shapes from which the evaluation was started
are related to the basic geometric figures (circle, square, rectangle), so SDI, Lci, K, MSI, and
Le are related to a circle and Ff, Lco, RA/L, Le, and RL/Bmax are related to a square/rectangle.

2.2. Remote Sensing

Landsat, Google Earth, and Sentinel 2A datasets are important resources that can be
used in various monitoring applications of water bodies [69,70] ranging from the determi-
nation of their morphometric characteristics to qualitative analyses of physical, chemical,
biological, or ecological characteristics. The Landsat data series has the advantage of a
collection of images over a longer period of time (starting with 1972) and a resolution of
30 m, while Sentinel 2A images have a collection with a shorter period of time (starting with
2015), a resolution of 10–60 m, and a repeatability of 5 days at the Equator and 2–3 days at
mid-latitudes (Table 1).

Table 1. Spectral and spatial characteristics of the Landsat 8 and Sentinel 2A.

Landsat 8 Sentinel 2A

Type of Bands Band No. Wavelength
(nm)

Spatial
Resolution

(m)

Type of
Bands Band No. Wavelength

(nm)

Spatial
Resolution

(m)

Coastal/Aerosol 1 433–453 30 Coastal
Aerosol 1 433–453 60

Blue 2 450–515 30 Blue 2 458–523 10

Green 3 525–600 30 Green 3 543–578 10
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Table 1. Cont.

Landsat 8 Sentinel 2A

Type of Bands Band No. Wavelength
(nm)

Spatial
Resolution

(m)

Type of
Bands Band No. Wavelength

(nm)

Spatial
Resolution

(m)

Red 4 630–680 30 Red 4 650–680 10

Near Infrared 5 845–885 30 Red Edge 1 5 698–713 20

Short Wavelength
Infrared (SWIR 1) 6 1560–1660 30 Red Edge 2 6 733–748 20

Short Wavelength
Infrared (SWIR 2) 7 2100–2300 30 Red Edge 3 7 773–793 20

Panchromatic 8 500–680 15
NIR 8 785–900 10

NIR Narrow 8a 855–875 20

Cirrus (SWIR) 9 1360–1390 30 Water Vapor 9 935–955 60

Long Wavelength
Infrared 10 1030–1130 100 SWIR/Cirrus 10 1360–1390 60

Long Wavelength
Infrared 11 1150–1250 100 SWIR 1 11 1566–1655 20

SWIR 2 12 2100–2280 20

The images provided by Google Earth are made available to the public by Google,
being provided by Maxar and Airbus companies, and a number of other agencies that
deal with the processing and distribution of satellite images. They generally have a
very good spatial resolution (<10 m), allow the extraction of attributes, and do not need
to be downloaded or processed. The disadvantage is that they do not have spectral
bands, the spatial resolution is still uneven, and the time series differ from one region to
another [71]. For the selection of the satellite image processing date for the evaluation
of the morphometric characteristics, the use of Web-enabled free sources was considered,
and a relatively similar period was identified for the 3 options (Landsat 8—4/4/2019;
Sentinel 2A—26/04/2019; Google Earth—Spring 2019), plant rest, and reduced cloud cover
in order to have the best possible image clarity for the entire study area. The lake contour
extraction based on Landsat 8 and Sentinel 2A images was done automatically using
spectral band combinations to calculate the normalized difference water index (NDWI)
(Equation (10)) [45] while lake contours were extracted from Google Earth images through
manual vectorization.

NDWI =
Green− NIR
Green + NIR

(10)

The combination of the two spectral bands is used due to the different properties: the
green band has high reflectance and the NIR band has low or no reflectance on the water
surface. From Google Earth, gravel pit lake contours were extracted from images through
manual vectorization, exported in .kml format, and transformed into shapefiles in ArcGIS
10.8.

Sentinel 2A images were used to calculate the normalized difference vegetation index
(NDVI) and LAI because of the improved resolution (10 m) [72].

NDVI =
NIR narrow− Red
NIR narrow + Red

(11)

On the ground, LAI can be assessed directly by cutting a statistically significant sample
of foliage from the plant canopy, assessing the leaf area per plot usually using a leaf area
meter or scanning device, and dividing it by the plot land surface area (m2 m−2). On the
other hand, there are non-destructive methods (e.g., ceptometers) that approximate light
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extinction within the canopy or canopy geometry that allow the indirect calculation of LAI
based on specific algorithms (https://edepot.wur.nl/171923 accessed on 27 May 2022). Sev-
eral remote sensing products were specially developed providing spatiotemporal datasets
of LAI dynamics including Moderate Resolution Imaging Spectroradiometer (MODIS) and
PROBA-V.

In this paper, the leaf area index was assessed using the NDVI calculated from the
Sentinel 2A datasets based on the following equation [73]:

LAI = a × exp (b × NDVI) (12)

where a and b are weighted regression coefficients that vary with plant association type
(grassland, shrubs, and trees, respectively)—in this paper, we used the average values of
a = 0.5 and b = 2.3. Similar regressions were applied by Fan et al. (2009), Jinling et al. (2009),
etc. [74,75].

The assessment of LAI at the area level was also considered using two well-established
missions, i.e., PROBA-V and MODIS.

PROBA-V time series of LAI were retrieved from the Time Series Viewer application
using two products, PROBAV_TOC_NDVI and LAI_V1 (https://proba-v-mep.esa.int/
applications/time-series-viewer/app/app.html accessed on 27 May 2022), for the vege-
tation season in 2019. More technical information regarding the PROBA-V LAI product
compared to other missions including MODIS can be found at https://land.copernicus.eu/
global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_FCOVER1km-V1_I2.40.pdf (ac-
cessed on 27 May 2022).

An 8-day composite dataset with 500 m pixel resolution is provided within the
MCD15A2H Version 6 (MODIS) Level 4 product, combining fraction of photosyntheti-
cally active radiation (FPAR) and LAI. The best pixel available from all the acquisitions of
both MODIS sensors located on NASA’s Terra and Aqua satellites within the 8-day period
is chosen by a special algorithm (https://lpdaac.usgs.gov/products/mcd15a2hv006/ ac-
cessed on 27 May 2022). In this paper, we have selected two .hdf datasets that correspond to
the time of Sentinel 2A acquisition (MCD15A2H.A2019153.h19v04.006.2019162042131 and
MCD15A2H.A2019209.h19v04.006.2019218045734). The subdataset 1 (variable: LAI_500 m)
was imported in ArcGIS, and then the following syntax (SetNull (“raster” ≥ 71, “raster”) ∗ 0.1)
was used in Raster Calculator to transform DNs to LAI values (Figure 1).

The creation of the database with gravel pit lakes and the image processing was
completed in ESRI ArcGIS 10.8. The study area included lakes with different concentrations
of organic matter, phytoplankton, and suspended sediments resulting in different colors
and different absorption of sunlight. In addition, the brightness of the lakes and the
ratio between the amount of light absorbed and reflected also depends on the angle of
incidence of the sun. The bodies of water resulting from the NDWI were visually inspected
and filtered to avoid the inclusion of river segments in the category of gravel pit lakes.
The removal of the natural lakes from the study area was done manually, the advantage
being given by the fact that the gravel pit lakes are concentrated near the rivers in well-
defined areas where vegetation is often missing; NDVI and LAI also contributed to their
identification.

The differences between the resulted LAI rasters were calculated using the Diff and
Minus functions from the ArcGIS toolbox. They determine which values from the first input
are logically different from the values of the second input on a cell-by-cell basis. If the values
of the two inputs are different, the value of the first input is output (https://www.esri.
com/en-us/arcgis/products/arcgis-spatial-analyst/overview accessed on 27 May 2022).

Correlation analysis between the obtained LAI datasets from various satellite missions
was performed using the following steps: (1) the Geostatistical Analyst Tool—Simulation—
Extract values were applied to a table, for each subbasin; (2) the obtained LAI indicators
for each subbasin were averaged to obtain a single indicator for the study area; and
(3) logarithmic trendlines were plotted for each time series and correlation between the
time series was determined.

https://edepot.wur.nl/171923
https://proba-v-mep.esa.int/applications/time-series-viewer/app/app.html
https://proba-v-mep.esa.int/applications/time-series-viewer/app/app.html
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_FCOVER1km-V1_I2.40.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_FCOVER1km-V1_I2.40.pdf
https://lpdaac.usgs.gov/products/mcd15a2hv006/
https://www.esri.com/en-us/arcgis/products/arcgis-spatial-analyst/overview
https://www.esri.com/en-us/arcgis/products/arcgis-spatial-analyst/overview
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3. Results and Discussions

The study area is located in the central-southern part of Romania, in the northern half
of the Romanian Plain, occupying an area of 6762 km2. The altitudes gradually decrease
from the northwest (350 m, in the Pites, ti Plain) to the south and southeast (50 m, in the
Sărata Plain) (Figure 2a).

Overall, there are two relief steps: a higher step, of Piedmont origin (Pites, ti–Târgovis, te–
Ploies, ti–Istrit,a), at the contact with the northern Sub-Carpathian region, which has well-
highlighted terraces and extensive river low-lying plains, and a lower step, of the subsi-
dence type (Titu–Gherghit,a–Sărata), to the southeast, in which the terraces are missing,
only the waterside is developed, and frequent divagation phenomena occur.

Given the evolution of the hydrographic network during the Quaternary, imposed
by the presence of the subsidence area of the lower Siret, northeast of the Romanian Plain,
there is a presence of many old, abandoned riverbeds, located further west of current
courses.

Regarding the current geomorphological processes, there are several aspects as follows:
river erosion processes, with grind-type forms or microdepressions with excessive moisture,
at the level of riverbeds, to which are added courses and abandoned meanders or cones
of manure from smaller tributaries, and settling processes and slight suffusion in loessoid
deposits on the surface of terrace bridges and interfluvial fields.
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Figure 2. Study area (contact of Romanian Plain with the Sub-Carpathian region) showing the gravel
pit lakes assessed using various spatial sources (Google Earth, Landsat 8, and Sentinel 2A). The study
area (a); the total number (b); surface (c); Google Earth, Landsat 8, and Sentinel 2A (d).

From a lithological point of view, alluvial deposits are made up of a whole range of
alluvial materials, being represented by sands and gravels (Strate de Frăt,es, ti), along with
loessoid deposits. Thus, a siliceous structure of the deposits predominates.

From a climatic point of view, the average annual temperature increases from west to
east, from 9–10 ◦C in the Pites, ti Plain to 11 ◦C in the Istrit,a, Sărata, and Gherghit,ei plains.
The average annual rainfall is between 450 and 600 mm, decreasing from northwest to
southeast.

The hydrographic network most influences the study area by the number of sediments
transported. Two river basins (Arges, and Ialomit,a) cover the entire study area: Arges,
(70 m3/s), with its tributaries Dâmbovit,a (10 m3/s) and Sabar (8 m3/s) on the left and
Neajlov (9 m3/s) on the right, and Ialomita (45 m3/s), with its tributaries Prahova (27 m3/s)
and Teleajen (10 m3/s) on the left. The type of sediments transported is a factor in the
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location of the gravel pits, so in addition to the sediments from the Subcarpathians, Arges,
and its tributary Dâmbovit,a come with sediments from mountain units formed in crys-
talline schists, while Ialomit,a, Prahova, and Teleajen rivers bring calcareous sediments or
conglomerates and hard sandstones.

The region includes a series of bodies of groundwater of the permeable porous type,
located at different depths (15–20 m in the northern half and 1–5 m in the southern subsi-
dence areas). The groundwater is drinkable, except for a small territory between Cricovul
Dulce and Ialomiţa, located south of the area of the Moreni–Gura Ocniţei diapir folds.

From the point of view of land use, there is a slight distinction between the west-
ern half (agricultural land, deciduous forests, and steppe secondary grasslands, on lu-
vosols, preluvosols, and planosols) and the eastern one (heavily modified agricultural
lands and grasslands, on chernozems). The population density (with higher values, of
60–80 inhabitants/km2 in the central area of Târgovis, te–Bolintin–Buftea–Ploies, ti) and the
anthropic activities exert constant pressure on the environmental factors, through the
following: industrial activities (petrochemistry, in the Ploies, ti areas and Pites, ti, and metal-
lurgy, in Târgovis, te) and agricultural activities (intensive vegetable growing, in the north
of Bucharest, and fishing facilities).

3.1. Morphometric Analyses

Knowing as accurately as possible the length of the shoreline in combination with
the surface of the lakes is extremely important because it provides information on the
irregularity of the line and can provide clues about the bathymetric characteristics, which
determine the main hydrological and sedimentation processes [76]. Over time, the main
morphometric characteristics of the lakes and the calculated indices have been used to un-
derstand the thermal stratification of the lakes, mixing type, nutrient loading in the lake [77],
productivity and biological diversity, fish community structure [78], the biogeochemical
cycle or emissions of greenhouse gases [60,79]. The main morphometric characteristics
determined for the gravel pit lakes in the study area are shown in Table 2.

NDWI is commonly used in lake contour extraction because it provides accurate results
in a short time. The problems encountered in extracting the contours of the gravel pit lakes
were determined by the different resolution of the images (10 m Sentinel 2A; 30 m Landsat)
and the uneven quality of the images exported from Google Earth. In addition, an additional
challenge was given by the diversity of the analyzed land surfaces, the land use, and the
optical properties of the lakes. However, in the case of small lakes, the correct identification
of shoreline contour depends on the resolution and quality of the images because along the
shores we find pixels containing mixed information water/vegetation/gravel which can be
attributed to water or non-water based on NDWI value. In addition, in the case of lakes
with high turbidity, the spectral reflectance of the water surface indicates values similar
to those of the surrounding surfaces, which leads to their non-inclusion in the “water”
category. The binary values of NDWI (water/non-water) were evaluated comparatively
using gravel pit lakes perimeters from manual vectorization data (Google Earth). Based
on these considerations, the evaluation of the number of lakes highlighted the importance
of image resolution in the conditions in which the gravel pit lakes are concentrated on
terraces or river low-lying plains, on restricted areas, with small distances between them
and various geometric contours (Figure 2b). Because of this, the 30 m resolution of Landsat
images causes many small, very close lakes to be “merged” into a single water body,
which has led to an overall decrease in the total number (406 lakes) and surface growth
(Figure 2c,d). Even though the resolution of Google Earth images in densely populated
areas is better, the number of manually extracted lakes is comparable to that of Landsat
because there was a balance between areas with very good resolutions and areas where the
resolution is lower (436 lakes).

The areas with high densities of the number of lakes are located in the Arges river
low-lying plain approximately at half the distance between Bucharest–Pitesti and can be
attributed to the easy access to the highway (Figure 3). Even if the gravel pit lakes are
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concentrated along the main rivers, other extremely important criteria in their positioning
are the proximity of the main communication axes or the road junctions and access to the
highway. In addition, the distance from the large urban settlements is another determining
factor because the gravel and sand mined from the gravel pits must be transported as
cost-effectively as possible to the beneficiaries.

Table 2. Statistical parameters of gravel pit lakes and morphometric indices.

Landsat 8
(4.4.2019)

Google
Earth

(Spring
2019)

Sentinel 2A
(26.4.2019)

Landsat 8
(4.4.2019)

Google
Earth

(Spring
2019)

Sentinel 2A
(26.4.2019)

Number of Lakes 406 436 736 Number of Lakes 406 436 736

Area (m2)

Maximum 333,978 246,955 240,122

Morton
index
spreading
(MIS)

Maximum 2.41 1.81 1.27

Minimum 124 35 64 Minimum 0.09 0.03 0.02

Average 22,081.37 16,227.06 10,505.3 Average 0.55 0.43 0.43

St.dev. 43,172.42 27,665.90 24,715.73 St.dev. 0.27 0.23 0.19

Total 8,965,036 7,075,001 7,731,899

Perimeter/
shore line
(m)

Maximum 3363 3430 3244

Form
factor (Ff)

Maximum 1.89 1.42 1

Minimum 54 25 37 Minimum 0.07 0.03 0.01

Average 547.01 527.23 334.51 Average 0.43 0.33 0.34

St.dev. 632.06 487.64 475.64 St.dev. 0.21 0.18 0.15

Total 222,088 227,288 246,206

Length
(m)

Maximum 967 1170 929

Lake com-
pacity
(Lco)

Maximum 12.75 32.15 63.13

Minimum 22 9 10 Minimum 0.52 0.70 1

Average 181.16 183.66 117.77 Average 2.90 4.45 3.67

St.dev. 185.65 157.30 151.29 St.dev. 1.55 4.20 3.04

Maximum
width (m)

Maximum 608 477 473
Area/lake
length
ratio
(RA/L)

Maximum 1.37 1.19 1

Minimum 11 5 9 Minimum 0.27 0.17 0.12

Average 101.32 83.09 57.42 Average 0.64 0.55 0.57

St.dev. 106.02 83.39 79.07 St.dev. 0.15 0.15 0.12

Shoreline
develop-
ment
index
(SDI)

Maximum 2.38 3.29 3.43
Lake elon-
gation
(Le)

Maximum 1.55 1.34 1.12

Minimum 1.07 1.03 1.07 Minimum 0.31 0.19 0.14

Average 1.36 1.50 1.39 Average 0.72 0.63 0.64

St.dev. 0.19 0.44 0.25 St.dev. 0.17 0.17 0.14

Lake
circularity
(Lci)

Maximum 0.86 0.92 0.86 Length/
maximum
breadth
ratio
(RL/Bmax)

Maximum 8.5 21.17 21.38

Minimum 0.17 0.09 0.08 Minimum 0.98 0.92 0.92

Average 0.56 0.52 0.54 Average 1.78 3.13 2.14

St.dev. 0.12 0.20 0.13 St.dev. 0.95 2.97 1.67

Lemniscate
ratio (K)

Maximum 10.01 25.24 49.55

Minimum 0.41 0.55 0.78

Average 2.27 3.49 2.88

St.dev. 1.22 3.30 2.38
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Figure 3. Density of gravel pit lakes in the study area (pit lakes/km2).

In the analysis of the surface of the lakes, we must take into account the fact that the
size of this parameter is variable over time, due to changes in interaction with groundwa-
ter [80–82], anthropogenic activities, and changes in land use [83–85] in the area of gravel
pits [86]. In addition, depending on the distance from the hydrographic network, the evo-
lution of the surface of the water surface is related to the amount of precipitation and water
levels in the river. The validation of the surface size was done crosswise using 209 lakes
chosen randomly whose contours were similar (Figure 4). The degree of similarity between
the surfaces extracted automatically from Sentinel 2A and those extracted manually using
Google Earth was 96%.
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Thus, the comparative analysis of the number of lakes relative to the surface shows
the importance of the image resolution (Figure 5). The number of lakes is close for the
categories of lakes whose surface is between 0.3–3 ha while significant differences are
recorded in extreme cases: very small lakes (detected mostly only on Sentinel 2A images)
or very large (detected on Landsat images by joining the lakes which are very close to each
other). In all three satellite image processing analyses, there is a good correlation between
area and shoreline length (Figure 6), with higher values of R2 (0.89) in the case of Landsat 8
due to the increase in lake surfaces due to the joining of the small lakes that are close to
each other.
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The morphometric indices used in the analysis of the lakes’ surfaces reflect the an-
thropic way of formation and the elongated characteristics of the lands on which they are
positioned. In the case of small lakes, the values of the indices related to the circle are close
to 1 (for example, SDI), which corresponds to a small difference between length and width
for RL/Bmax whose ratio is close to 1, but the values of the ratios change with increasing area
in the sense that lakes with large areas become elongated.

3.2. Evaluation of the Spatial Distribution of Gravel Pit Lakes Using Sentinel 2A Datasets

The spatial distribution of the lakes using Sentinel 2A datasets relative to the physical-
geographical units (Table 3) shows us that most of the lakes are found in the Titu–Sarata
subsidence plain (47%) with a total area of approximately 4.7 km2. The asymmetrical
development of the river banks, much more extensive on the left bank, with the extended
river low-lying plain that can reach 14 km in the above-mentioned sector, determines
a concentration of lakes on this bank both on the Arges River and on the other main
hydrographic channels. The asymmetry is due to the decrease in the base level of the Black
Sea during the Wurm glaciation and the accelerated deepening of the riverbeds followed
by clogging processes against the background of the increase in the base level during the
interglacial period. Consequently, the river low-lying plains of Arges and the main rivers
in the study area have greatly expanded in the thick layers of gravel and sand that reach
the first terrace, and the intercalation of sand/gravel and clay determines the formation of
extensive aquifers that feed the newly formed gravel pit lakes.
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Table 3. The main statistical parameters of the gravel pit lakes, by physical-geographical subunits,
obtained using Sentinel 2A image processing.

Name of
Physico-

Geographical
Unit

Name of
Subunit

Area
(km2) River

Gravel Pit Lakes from The Study Area

Number
of Lakes

Surface
Average

(m2)

Surface
Total (m2)

Average
Shoreline

Length
(m)

Total
Shoreline

Length
(m)

Length
Average

(m)

Maximum
Width

Average
(m)

Pitesti plain

Lunca
Argesului 218.78 Arges left

riverbank 114 6724.94 766,643 263.45 30,033 95.22 40.48

Pitesti 723.75
Arges
right
riverbank

10 3406.30 34,063 193.20 1932 74.90 37.30

Total 942.53 124
(16.84%) 6457.30 800,706 257.78 31,965 93.58 40.22

Gavanu
plain

Gavanu 1755.82

Neajlov 56 7662.00 429,072 283.53 15878 111.10 43.74

Arges
right
riverbank

40 11,896.65 475,866 405.53 16,221 145.68 70.53

Glavacioc 7 149.57 1047 55.28 387 21.00 14.14

Total 1755.82 103
(13.99%) 9795.97 905,985 315.39 32,486 118.40 52.13

Targoviste–
Ploiesti
plain

Targoviste 405.33

Dambovita
left
riverbank

17 4838.82 82,260 266.65 4533 87.47 52.65

Dambovita
right
riverbank

5 5476.00 27,380 366.00 1830 119.40 71.00

Ialomita
right
riverbank

5 2405.40 12,027 180.00 900 63.80 38.40

Cricovului 294.36

Ialomita
left
riverbank

9 587.11 5284 80.77 727 28.00 18.77

Cricov
right
riverbank

9 716.44 6448 116.88 1052 43.55 23.77

Ploiesti 672.80

Cricov
left
riverbank

16 4234.38 67,750 244.13 3906 93.31 38.56

Prahova
left
riverbank

53 11,697.32 619,958 306.17 16,227 115.64 62.53

Prahova
right
riverbank

1 5759.00 5759 431 431 144.00 60.00

Teleajen
left
riverbank

25 11,153.12 278,828 377.00 9425 141.07 63.76

Teleajen
right
riverbank

12 2684.66 32,216 179.58 2155 69.16 40,092

Total 1372.49 152
(20.65%) 7486.25 1,437,910 270.96 41,186 99.80 51.98
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Table 3. Cont.

Name of
Physico-

Geographical
Unit

Name of
Subunit

Area
(km2) River

Gravel Pit Lakes from The Study Area

Number
of Lakes

Surface
Average

(m2)

Surface
Total (m2)

Average
Shoreline

Length
(m)

Total
Shoreline

Length
(m)

Length
Average

(m)

Maximum
Width

Average
(m)

Titu–Sarata
plain

Titu 1072.28

Arges left
riverbank 302 11,867.32 3,583,931 357.52 107,917 122.82 59.12

Ialomita
left
riverbank

24 25718.21 617,237 646.13 15,507 200.46 121.08

Puchenilor
(Gherghitei) 432.13

Ialomita
left
riverbank

6 35,875.83 215,255 779.66 4678 273.66 150.50

Prahova
left
riverbank

12 24,816.25 297,795 532.42 6389 178.50 97.08

Sarata 729.99
Ialomita
left
riverbank

3 12,494.00 37,482 476.33 1429 156.00 102.66

Total 2234.4 347
(47.14%) 13,693.66 4,751,700 391.85 135,920 133.01 66.67

Istritei plain
Valea
Calugar-
easca

244.45
Teleajen
left
riverbank

10
(1.35%) 13559.80 135,598 459.50 4595 155.60 86.70

Total study area 736 10,505.3 7,731,899 334.51 246,152 117.77 57.42

Numerically, almost 70% of the lakes have small areas (<0.5 ha) and are located on the
left bank of the river (87.82%), so the abundance of lakes is inversely proportional to the
size of the area (Figure 7). Most gravel pit lakes have been identified on the left bank of the
Arges River, having small dimensions and elongated contours. Their formation is related
to the intersection of the groundwater in the process of aggregate exploitation.
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Figure 7. Distribution of the number of lakes according to the size of the surface (left) and distribution
of the number of lakes on the main rivers according to the distribution on the banks (center) and the
size of the surface (right).

The length of the lakes combined with the direction of development of the main
axes (NS, EW, NE–SW, NW–SE) allows the understanding of the formation of waves and
currents and their role in the processes of transport and resuspension of organic particles
and sediments [14,35].

The measured values of lengths, widths, and A/L ratio show that the lakes have small
areas and consequently small values of length or width (only 20 lakes have lengths greater
than 500 m; the highest value is 929 m). An analysis of the direction of the dominant
winds (Figure 2a) and the arrangement of the major axis of the lakes in accordance with the
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dominant direction shows that most lakes (286 lakes—38.8%) are in the NE–SW direction
while the rest of the lakes are arranged approximately equally: 162 in the NS direction
(22%), 148 in the NW–SE direction (20.1%), and 124 in the EW direction (16.8%), and a clear
development direction cannot be identified only in the case of 2.1%. Only for 23.4% of the
total number of lakes is the development direction/length identical to the dominant wind
direction in the respective area, amounting to an area of 190 ha. However, of the 172 lakes
in this situation, only 30% of them have an area of more than 1 ha. Most of the lakes in this
situation are those in the NE–SW direction.

From the analysis of the lakes extracted using Sentinel 2A images, good correlations
are observed between the area, perimeter, and length of the shores (Table 4), and also there
are positive correlation coefficients between indices that use the same geometric figure
(SDI/Lci; Ff /Le; Ff/RA/L) and indirect correlations between formulas related to the circle and
elongated forms (SDI and RA/L; Le or K and RA/L; Le).

Table 4. Matrix of correlation based on Sentinel 2A (4/26/2019).

Area Perimeter Legth Maximum
Width SDI Lci K MIS Ff Lco RA/L Le RL/Bmax

Area 1

Perimeter 0.91 1

Legth 0.86 0.96 1

Maximum
Width 0.89 0.88 0.82 1

SDI 0.26 0.51 0.48 0.22 1

Lci −0.21 −0.41 −0.39 −0.15 −0.92 1

K −0.02 0.10 0.19 −0.08 0.49 −0.49 1

MIS 0.03 −0.10 −0.20 0.08 −0.54 0.67 −0.56 1

Ff 0.03 −0.10 −0.20 0.08 −0.54 0.67 −0.56 1 1

Lco −0.02 0.10 0.19 −0.08 0.49 −0.49 1 −0.56 −0.56 1

RA/L 0.03 −0.12 −0.23 0.10 −0.61 0.72 −0.67 0.98 0.98 −0.67 1

Le 0.03 −0.12 −0.23 0.10 −0.61 0.72 −0.67 0.98 0.98 −0.67 1 1

R L/Bmax 0.06 0.24 0.37 −0.04 0.58 −0.53 0.69 −0.56 −0.56 0.69 −0.67 −0.67 1

Confidence level 95%.

3.3. Assessment of Vegetation Dynamics Based on Satellite-Derived LAI

Leaf area information is essential for evaluating modifications in ground cover and
canopy structure due to intrinsic biological factors, climate change, pollution impact,
and anthropogenetic influences such as gravel pit exploitation [87]. It is also useful for
predicting crop yields and land-use efficiency [88]. Leaf area index (LAI) is a key plant
biophysical parameter frequently used in ecological studies. LAI derived from remote
sensing to assess the spatiotemporal dimensions of vegetation’s seasonal variations has
increased in accuracy when considering Sentinel 2A imagery, avoiding the production of
maps from low spatial resolution satellite images [89].

Figure 8 provides an assessment of the vegetation dynamics between two moments
in 2019 (July and August) in an area of Arges River where the number of gravel pits is
significant. Satellite imagery showed normal modifications related to seasonal phenology
with a major drop in LAI of up to 2.7 units, especially in areas occupied by forests, but
also in some riparian sectors where gravel pits are not present. Agricultural lands (with
regulated forms) have average reductions in LAI due to crop maturation/harvesting. The
areas surrounding the gravel pits showed almost no modifications in LAI (low values)
suggesting that the vegetation in these areas is less present.



Water 2022, 14, 1858 16 of 24

Water 2022, 14, x FOR PEER REVIEW 16 of 25 
 

 

3.3. Assessment of Vegetation Dynamics Based on Satellite-Derived LAI 

Leaf area information is essential for evaluating modifications in ground cover and 

canopy structure due to intrinsic biological factors, climate change, pollution impact, and 

anthropogenetic influences such as gravel pit exploitation [87]. It is also useful for predict-

ing crop yields and land-use efficiency [88]. Leaf area index (LAI) is a key plant biophys-

ical parameter frequently used in ecological studies. LAI derived from remote sensing to 

assess the spatiotemporal dimensions of vegetation’s seasonal variations has increased in 

accuracy when considering Sentinel 2A imagery, avoiding the production of maps from 

low spatial resolution satellite images [89]. 

Figure 8 provides an assessment of the vegetation dynamics between two moments 

in 2019 (July and August) in an area of Arges River where the number of gravel pits is 

significant. Satellite imagery showed normal modifications related to seasonal phenology 

with a major drop in LAI of up to 2.7 units, especially in areas occupied by forests, but 

also in some riparian sectors where gravel pits are not present. Agricultural lands (with 

regulated forms) have average reductions in LAI due to crop maturation/harvesting. The 

areas surrounding the gravel pits showed almost no modifications in LAI (low values) 

suggesting that the vegetation in these areas is less present. 

This is more visible in the close-up capture with many gravel ponds grouped. The 

operations in these areas for mineral extraction eliminate most of the vegetation, which 

represents an important environmental and ecological impact. When the exploitation 

ceases, the vegetation around the gravel ponds starts to grow, and after some time, spe-

cific vegetation appears on the shoreline. 

  

Water 2022, 14, x FOR PEER REVIEW 17 of 25 
 

 

 

Figure 8. Leaf area index obtained from Sentinel 2A images in June and August 2019 and the result-

ing difference assessed with the Diff function in GIS environment (LAI values from 0.1 to 1.3 were 

excluded to keep only relevant vegetation). 

Compared to other satellite-derived LAI values such as that from PROBA-V, the re-

duction in LAI is also highlighted in the Arges River basin, showing a drop of 1.6 units on 

average from 6 June 2019 to 11 August 2019 (Figure 9). Based on the long time series rec-

orded by PROBA-V since 2013 in the region, the maximum LAI value was assessed be-

tween June and July 2019, which is the period selected for our study (Figure A1). 

 

Figure 9. Vegetation indices (LAI and NDVI) provided by the PROBA-V satellite in the 

area of the Arges River basin during the vegetation season in 2019 (data from PROBA-V 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

2019/3/1 2019/4/1 2019/5/1 2019/6/1 2019/7/1 2019/8/1

LAI_V1 PROBAV_TOC_NDVI

Figure 8. Leaf area index obtained from Sentinel 2A images in June and August 2019 and the
resulting difference assessed with the Diff function in GIS environment (LAI values from 0.1 to 1.3
were excluded to keep only relevant vegetation).

This is more visible in the close-up capture with many gravel ponds grouped. The
operations in these areas for mineral extraction eliminate most of the vegetation, which
represents an important environmental and ecological impact. When the exploitation
ceases, the vegetation around the gravel ponds starts to grow, and after some time, specific
vegetation appears on the shoreline.

Compared to other satellite-derived LAI values such as that from PROBA-V, the
reduction in LAI is also highlighted in the Arges River basin, showing a drop of 1.6 units
on average from 6 June 2019 to 11 August 2019 (Figure 9). Based on the long time series
recorded by PROBA-V since 2013 in the region, the maximum LAI value was assessed
between June and July 2019, which is the period selected for our study (Figure A1).
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Figure 9. Vegetation indices (LAI and NDVI) provided by the PROBA-V satellite in the area of the
Arges River basin during the vegetation season in 2019 (data from PROBA-V time series application
VITO NV (https://proba-v-mep.esa.int/applications/time-series-viewer/app/app.html accessed
on 27 May 2022).

In summary, the higher LAI values (3.1–5.9) are represented by dark blue along the
river banks (dense riparian patches on the Arges River) and old deciduous forests. The
lowest LAI values in green areas (1.4–1.7) are scattered in the study area and are common
in less productive grasslands and agricultural crops. The average LAI values (1.8–3) were
recorded in low-lying plains and mixed areas (tall shrubs, wetlands, etc.). The results are
reasonable, given that the river banks have increased moisture that supports taller species
with superior LAI and that the sparsely vegetated areas are located in agricultural crops and
in/near villages. Changes in vegetation richness and abundance can be spatiotemporally
monitored through the vegetation indices provided by the spectral bands of Sentinel 2A
imagery.

Overall, the relationship between NDVI and LAI is generally robust when the LAI
reaches values between 0 and 3, and this relationship starts to weaken as the LAI value
increases (especially between 3 and 4) [90,91].

Another well-established method for LAI assessment through remote sensing is the
use of the MODIS LAI product. In the study region, according to the processed datasets,
the maximum LAI in the region was 7 for both considered moments, occurring in the areas
with deciduous forests (Figure 10). The GIS analysis showed differences between the two
considered moments assessed with the Minus function in the ArcGIS environment. The ma-
jor reductions in LAI between June and August were visible, especially in agricultural lands
where crops have been harvested or there is a predominance of the senescence/maturation
processes. Lower reductions or even increases in LAI were located near rivers where the
riparian vegetation is present, including the abandoned pit lakes. On the other hand,
the LAIs of deciduous forests increased from June to August. Considering that previous
temporal comparisons indicated that all MODIS products assess the seasonality accurately
in different biomes [92], the results of the analysis well captured the LAI dynamics in the
study region. The calculations are useful to create a secondary database for each low-order
subbasin for better management of the vegetation, including areas around the pit lakes if
present in their land cover structure.

https://proba-v-mep.esa.int/applications/time-series-viewer/app/app.html
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Figure 11 shows a comparison between the indicators extracted for each month using
the Geostatistical Analyst Tool for each component subbasin in the entire study area. A
similar logarithmic trendline was observed for each time series (PROBA-V, MODIS, Sentinel
2A) with significant R2. More analytical assessments will be performed in future approaches
to improve the accuracy of indirect algorithms based on NDVI-LAI regressive models since
the Sentinel 2A time series tends to underestimate the averaged integrative LAI between
March and August 2019 (1.9; St. Dev. = 0.91) compared to MODIS (2.04; St. Dev. = 0.95) and
PROBA-V (2.2; St. Dev. = 1.01). PROBA-V time series contained the maximum integrative
values of LAI.
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Obviously, a calibration study is required using longer time series, but this was not the
main purpose of this work. One of the objectives was to observe how LAI can be estimated
by relevant and trustful sources of vegetation assessment from satellite missions. Based
on the correlations’ results it can be seen that the trends were similar with close insights
according to the field reality in the study area.

4. Conclusions

The creation of a database with small gravel pit lakes is a necessity given the rapidity
of their appearance and the increased modifications of landscape changes along the rivers.
The advantage of identifying areas with gravel pits using remote sensing is given by
free images, good frequency of data series, and high resolution and thus a very good
efficiency/cost ratio. However, a smaller surface area of the lakes and a higher density
result in a greater possibility of errors in detecting small bodies of water. The comparison
of NDWI values obtained using data series from Sentinel 2A and Landsat 8 highlighted
the importance of resolution and also showed a larger spectral difference between the
identified water bodies and the surrounding land in favor of Sentinel 2A. In addition, the
validation of the surface size for a number of 209 lakes, which were chosen at random but
were common in all three analyses, showed that the surfaces extracted manually using
Google Earth correlate very well with those extracted automatically using Sentinel 2A with
R2 = 0.96.

Government organizations, environmental specialists, conservation groups, and re-
searchers could take advantage of LAI maps derived from modern imagery to monitor
important biophysical properties of the vegetation near the gravel pits and thus assess the
negative impact to ensure sustainable wildlife and critical habitat management near river
banks and at the basin level.

One research direction will be the correlation of remote sensing datasets with ground
studies on LAI of plant species from the gravel pits using dedicated ceptometers (e.g., Delta-
T SunScan Canopy Analysis System) for herbaceous canopies and other systems (such as
hemispherical photography for the canopy of trees) to improve the accuracy of indirect
algorithms based on NDVI-LAI regressive models. On the other hand, future studies will
focus on existing biomes in conjunction with satellite products featuring land cover such as
MODIS Land Cover MCD12Q1 Version 6) for improved classification. The final step will
consider proper data fusion and downscaling methods to enhance low-resolution data.
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