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Abstract: The alluvial plain in the middle and lower reaches of the Yellow River is an important
agricultural production base that affects groundwater quality. Groundwater quality in the region
is related to the residential and production uses of water by local residents. Samples of shallow
groundwater and river water were collected from the right bank of the middle and lower reaches of
the Yellow River to determine the evolution and causes of hydrochemical characteristics, and the
relationship between the hydrochemical evolution of river water and groundwater was explored.
The results showed that the shallow groundwater in the area received lateral recharge from the
Yellow River water. The closer to the Yellow River the groundwater was, the higher the SO4

2−,
Cl−, and Na+ concentrations and the lower the HCO3

− and Mg2+ concentrations were. Agriculture
and aquaculture has influenced and complicated the hydrochemical types of shallow groundwater
in recent decades. The groundwater in the area was jointly affected by water–rock interactions
and evaporation concentrations; a strong cation exchange effect was detected. Arsenic exceeded
the limit in some shallow groundwater, which was mainly distributed in the Yellow River alluvial
plain and caused by the reductive sedimentary environment of the Yellow River alluvial plain.
The “three nitrogen”, NH4

+-N, NO2
−-N, and NO3

−-N, demonstrated sporadic local excesses in
shallow groundwater, which were related to human activities, such as aquaculture.

Keywords: water quality characteristics; cause; groundwater; middle and lower reaches of the
Yellow River

1. Introduction

Groundwater is a significant water resource and a major source of water for various
purposes [1]. In recent years, industrialization, urbanization, and economic growth have
had a significant impact on the groundwater environment in China. The hydrochemical
composition of groundwater is controlled by many factors, including hydrogeological
conditions, geological structure, climate, topography, elevation, and human activities.
Through the analysis of groundwater hydrochemical characteristics, it can indicate the
lithology of the groundwater, the meteorological hydrology and environmental charac-
teristics, the water–rock interactions, and reflects the groundwater circulation pathway,
groundwater system characteristics, and evolution laws [2]. Assessing groundwater quality
and identifying pollutant risks are essential for managing groundwater resources.

Since the 1960s, scholars have paid attention to the hydrochemical characteristics of
major rivers on various continents, focusing on their ion sources, migration and transfor-
mation processes, and transport fluxes; studying the change process and mechanism of
watershed hydrochemical characteristics has led to discussions regarding the protection

Water 2022, 14, 1846. https://doi.org/10.3390/w14121846 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14121846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w14121846
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14121846?type=check_update&version=1


Water 2022, 14, 1846 2 of 17

strategies and mechanisms of the watershed ecological environment [3–5]. The analysis of
the hydrochemical characteristics of groundwater can assist in identifying hydrogeochemi-
cal interactions within groundwater and surrounding environments and in revealing the
evolution of hydrochemical processes and is of great significance for the development and
utilization of groundwater resources and pipelines.

In recent years, scholars at home and abroad have begun to study the temporal and
spatial changes and evolution laws of groundwater chemistry [6]. Liu et al. analyzed the
hydrochemical evolution of the North China Plain from the recharge area to the discharge
area under the influence of human activities and its impact on the enrichment of fluorine
in groundwater. The results show that the land subsidence caused by the excessive ex-
ploitation of groundwater and the release of F− in pore water are the main reasons for the
excessive fluoride in groundwater [7]. Sainath et al. collected and analyzed 33 groundwater
samples in a cross-section of the Pravara River Basin, using the Water Quality Index (WQI)
and Wilcox plots to infer water quality [8]. For the spatial analysis of water quality, Xu [9]
established a river water quality monitoring platform in Jiaxing by GIS, which can visually
display the information of river monitoring points and pollution sources on the map to
provide support for further pollution control measures. Zhao et al. [10] used two spatial
interpolation methods such as Kriging and radial basis function to analyze the situation
of water pollution in Liangzi Lake and analyze the spatial distribution of water quality.
Spatial analysis combined with GIS can fully understand the distribution of water quality,
which plays an important role in exploring pollution sources and pollution control.

Water quality is an important issue related to people’s life and health. The hydro-
chemical analysis of sampled water is an essential stage in understanding water quality.
At present, statistical analysis [11], ion ratio [12], and isotope tracing [13] have been widely
used in the determination of groundwater hydrochemistry and water quality evolution.
Sun et al. used the Shukarev classification method, Piper’s three-line diagram, Pearson’s
correlation, Gibbs diagrams, and ion ratio diagrams to analyse the chemical character-
istics and formation mechanism of groundwater in the Dalian area. In this study area,
the chemical types found in groundwater were mainly HCO3

−·Cl-Ca2+, and they showed
obvious regional distribution characteristics [14]. Wang et al. used Piper diagrams and
isotope analyses to explore the characteristics and spatial changes in the main anions and
cations and stable isotopes of hydrogen and oxygen in water and exposed the formation of
river water chemical components by combining Gibbs diagrams, endmember diagrams,
and correlation analyses [15]. Using the Piper diagrams, Gibbs, principal component
analysis, a correlation matrix, and a forward derivation model, Liu et al. analysed the
distribution characteristics and control factors of hydrochemistry and hydrogen and oxygen
stable isotopes of shallow groundwater in the Fenhe River Basin and revealed the water
cycle and water quality evolution process of the basin [16]. Practice has proven that these
hydrochemical analysis methods can effectively reveal the chemical characteristics and
formation mechanism of groundwater in a region, determine the hydrochemical process of
the region, and have important value for the development, utilization, and protection of
groundwater resources.

For the analysis of hydrochemistry in the Yellow River Basin, Hu et.al first reported
chemical and hydrochemical data [17]. Zhang et al. collected 10 water samples from
10 locations to discuss the weathering process and chemical flux of the Yellow River [18].
Li et al. analyzed 14 water samples collected along the Yellow River and roughly estimated
the contribution of silicate, carbonate, evaporation, and atmosphere to the hydrochemistry
of the Yellow River [19]. Zhang et al. used the forward model to calculate the silicate
weathering of the Yellow River and its CO2 consumption rate [20]. Liu used multivariate
statistics and geochemical modeling to study the evolution of water chemistry in the upper
reaches of the Yellow River irrigation area [21]. The lower reaches of the Yellow River (the
Henan section) are an important industrial and grain base in Henan Province. Over the past
20 years, due to economic development and increasing human demands, human activities
in the middle and lower reaches of the Yellow River (the Henan section) have intensified,
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resulting in an interaction between natural factors and intense human activities that is caus-
ing an evolution in groundwater chemical characteristics in this region [22,23]. Yellow River
water is transformed into groundwater through lateral seepage. Under the influence of
rock weathering, evaporation and concentration, and human activities, the hydrochemical
types of groundwater along the coast are changing [24,25]. On the right bank of the Yellow
River, there are loess hills, piedmont alluvial plains, flood plains, Yellow River floodplains,
and others, and Yellow River floodplain tourist areas, villages, farms, ecological parks,
and so on. Compared with the left bank, human activities are more frequent. In addition,
the 7.20 flood in Zhengzhou in 2021 attracted widespread attention. Due to the complex
hydrogeological conditions on the right bank of the Yellow River, little is known about
the impact of natural and human factors on groundwater chemistry. In this context, it is
necessary to understand the hydrochemical evolution and water quality of the Yellow River
and groundwater in the middle and lower reaches of the Yellow River in Henan.

The change in groundwater quality on the right bank of the middle and lower reaches
of the Yellow River is related to the evaluation, utilization, and planning of local water
resources and plays a very important role in the sustainable use of groundwater [26–28].
What are the main sources and mechanisms of groundwater pollution in the Yellow River
Basin? In recent years, research on the middle and lower reaches of the Yellow River has
mainly focused on water quality protection, water resource utilization, and changes in
water and sediment [29–31]. There are few studies on the main sources and mechanisms
of groundwater pollution on the right bank. The Yellow River in the right section of
the Yellow River is overhanging the river, which has close interaction with groundwater.
It is an important research topic to study the influence of the surface water of the Yellow
River on groundwater and pay attention to the hydrogeochemical evolution process and
genesis of the groundwater, which is of great importance to protect groundwater and
the ecological environment along the Yellow River. This study selected the Taohuayu to
Huayuankou section on the right bank of the Yellow River as the study area. Based on the
four groundwater quality test datasets for 1990, 2011, 2020, and 2021, the hydrochemical
evolution characteristics and causes of shallow groundwater in the middle and lower
reaches of the Yellow River were examined. The main objectives of this study were to
(1) analyse the spatial distribution of hydrochemical characteristics of shallow groundwater
in the study area, (2) reveal the main sources of groundwater pollution and the evolution
characteristics in the study area in recent years, and (3) explore the formation mechanism of
main groundwater pollution sources. The results of this study can provide a scientific basis
for the rational exploitation and utilization of groundwater and the protection of water
resources in this area [32].

2. Date and Materials
2.1. Study Area

The overall terrain in the study area is high in the west and low in the east. The land-
form is bounded by the Beijing–Guangzhou Railway. To the west of the railway and to the
north of the Ku River are the loess hills, and to the south of the Ku River is a piedmont
alluvial plain, and east of the railway is the Yellow River alluvial plain (Figure 1). The topog-
raphy of the loess hilly area is sharply undulated, with gullies in the edge area, for which
the cutting depth can reach 15~20 m. The gully valley is mostly of the wide-mouthed
‘U’ type. The gully is mainly composed of multilevel vertical gully walls where various
microgeomorphology types, such as loess columns and steep loess slopes, have developed.
The surface layer is Malan loess covered by the upper Pleistocene, and the underlying
middle Pleistocene is brown-red loess. The loess is rich in carbonate and the soil layer is
deep and loose, and the soil erosion is serious, resulting in strong mechanical erosion and
chemical weathering. The topography of the piedmont alluvial plain is relatively flat with
small fluctuations. The surface is upper Pleistocene alluvial silt with a thickness of approxi-
mately 20 m, and the lower part is middle Pleistocene alluvial silty clay, silt, and silty sand.
The Yellow River alluvial plain can be further divided into flood plains and Yellow River
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floodplains. The floodplain (II1) is distributed south of the Yellow River embankment with
flat terrain. The surface layer is composed of a fine sand layer of late Holocene aeolian facies
and silty clay of alluvial facies. The lower part is 1~3 layers of brownish-grey dark grey silt
and silty clay interbedded layers. The Yellow River floodplain (II2) is distributed north of
the Yellow River levee. The floodplain width is generally 0.5~2 km. The floodplain contains
a series of distribution ditches; the larger parts of the ditches have a width of 100~500 m
and a depth of approximately 0.5~1.5 m. Rivers erode a large amount of sediment from
the upstream and deposit it in the downstream. The sediment in the Yellow River alluvial
plain is rich in carbonate, and carbonate weathering will provide Ca2+ and Mg2+ for river
water. The study area is monsoon climate, carbonate weathering is sensitive to monsoon
climate, and the weathering rate is affected by seasonal changes.
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Figure 1. Geomorphic map of the study area.

The aquifers distributed in different geomorphic units in the study area present
different characteristics. The shallow aquifer floor of the loess hills is buried at a depth of
80~100 m and is mainly composed of silt and silty clay of the Quaternary Upper Pleistocene
and Middle Pleistocene. The infiltration of atmospheric rainfall forms the upper layer
of stagnant water. There is no stable phreatic surface, and the water abundance is weak.
The burial depth of the shallow aquifer bottom plate in the piedmont alluvial plain is
60~80 m, which is mainly composed of a fine sand layer of upper Pleistocene silt and
middle Pleistocene alluvial facies. The water-bearing sand layer is generally 3~5 layers,
and the single layer thickness is not large, approximately 5~8 m. The groundwater table
depth is 35~40 m, and it has obvious pressure-bearing properties.

The bottom plate of the shallow aquifer in the Yellow River alluvial plain is 60~80 m
deep and is composed of Holocene and Upper Pleistocene sand layers. The thickness of the
sand layer is 20~55 m, and the thickness gradually increases from west to east. There are
generally 2~3 layers of medium-fine sand layers in the vertical direction; the upper sand
layer is relatively coarse, and the lower sand layer is relatively fine (Figure 2). Shallow
groundwater is closely related to the hydraulics of the Yellow River. The aquifer is strongly
recharged by the lateral seepage of the Yellow River. The aquifer particles are coarse, thick,
and water-rich, and are the key research objects in this paper. The shallow groundwater
in the study area is mainly recharged by atmospheric precipitation, canal infiltration,
irrigation infiltration, and lateral infiltration of the Yellow River, and phreatic evaporation
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and artificial mining are the main discharge methods. The hydrochemical characteristics of
shallow groundwater in plain are affected by climatic conditions (rainfall, evaporation, etc.),
groundwater circulation conditions, aquifer medium, and human activities.
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2.2. Sample Collection

Combined with the actual situation of the study area, 13 shallow groundwater samples
in 1990, 5 in 2011, 32 in 2020 and 17 in 2021 were obtained, as were 1 Ku River sample
(1990) and 2 Yellow River samples (1 in 1990 and 1 in 2020). The spatial distribution of
the groundwater samples is shown in Figure 3. All samples were from civil wells with
a depth of less than 60 m and were defined as shallow aquifer groundwater from the
perspective of aquifer classification. The test items included pH, K+, Na+, Ca2+, Mg2+,
HCO3

−, SO4
2−, Cl−, TDS, NH4

+, NO3
−, NO2

−, and As. The As and NH4
+ test indexes

were separately sampled. The water samples of As were added with hydrochloric acid for
acidification protection, and the water samples of NH4

+ were added with sulfuric acid for
acidification protection. Samples were stored in 0~4 ◦C incubator after field sampling and
transferred to the laboratory for testing within 24 h. The pH was measured by portable pH
tester. K+, Na+, Ca2+, and Mg2+ were determined by inductively coupled plasma emission
spectrometer (iCAP6300). HCO3

− was determined by titration. SO4
2−, Cl−, and NO3

−

were determined by ion chromatograph (ICS-1100). TDS was determined by an analytical
balance (ME204E). NH4

+ and NO2
− were determined by a UV-Vis spectrophotometer (UV).

As was determined by double channel atomic fluorescence spectrometer (BAF-2000). In the
test of groundwater samples, adding 10% parallel samples for quality control, the error of
all repeated samples was less than 5%.



Water 2022, 14, 1846 6 of 17

Water 2022, 14, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 3. Distribution map of sampling points in the study area. 

2.3. Methods 

2.3.1. Piper Diagram 

Piper diagrams are widely used to study groundwater chemical types and can 

simply and effectively reflect comprehensive information of water chemical types. The 

piper diagram is drawn with the main ions in water, indicating the composition propor-

tion of water quality ions contained in the tested water sample and showing the water 

quality ions that play a major role in the water sample in the piper diagram, so as to ob-

tain the water chemical type of the water sample, and determine which aquifer the water 

sample belongs to according to the obtained water chemical type, as well as whether the 

water sample is a single source water or mixed water. 

The Piper diagram consists of three parts. The triangle below the left represents the 

relative mole fraction of cations, and the triangle below the right represents the relative 

mole fraction of anions [33]. The intersection point obtained by extending to the upper 

rhombus represents the relative content of anions and cations in water samples. The wa-

ter quality ion information is represented in the two triangles at the bottom, and then an 

outer extension line is made along the outermost edge of the triangle to the upper dia-

mond area. The two extension lines intersect at a point inside the upper diamond, and 

the intersection point is marked. That is, it can comprehensively represent the composi-

tion of water chemical components in water samples. Piper diagrams can intuitively 

show the characteristics of hydrochemical types of samples. 

2.3.2. Durov Diagram 

The Durov plot uses the equivalent concentration to calculate the percentage con-

tent, which is composed of three parts: the square projection area at the centre, the anion 

triangle plot at the left side of the square projection area, and the cation triangle plot 

above the square projection area [34]. To ensure the charge balance between anions and 

cations, the Durov diagram stipulates that the sum of the anions is 50%, the sum of cati-

ons is 50%, and the pH and TDS are increased, which are projected on the periphery of 

the square. The Durov diagram shows more characteristics of TDS and pH values on the 

basis of the Piper diagram. 

  

Figure 3. Distribution map of sampling points in the study area.

2.3. Methods
2.3.1. Piper Diagram

Piper diagrams are widely used to study groundwater chemical types and can simply
and effectively reflect comprehensive information of water chemical types. The piper diagram
is drawn with the main ions in water, indicating the composition proportion of water quality
ions contained in the tested water sample and showing the water quality ions that play a major
role in the water sample in the piper diagram, so as to obtain the water chemical type of the
water sample, and determine which aquifer the water sample belongs to according to the
obtained water chemical type, as well as whether the water sample is a single source water or
mixed water.

The Piper diagram consists of three parts. The triangle below the left represents the
relative mole fraction of cations, and the triangle below the right represents the relative
mole fraction of anions [33]. The intersection point obtained by extending to the upper
rhombus represents the relative content of anions and cations in water samples. The water
quality ion information is represented in the two triangles at the bottom, and then an outer
extension line is made along the outermost edge of the triangle to the upper diamond
area. The two extension lines intersect at a point inside the upper diamond, and the
intersection point is marked. That is, it can comprehensively represent the composition
of water chemical components in water samples. Piper diagrams can intuitively show the
characteristics of hydrochemical types of samples.

2.3.2. Durov Diagram

The Durov plot uses the equivalent concentration to calculate the percentage content,
which is composed of three parts: the square projection area at the centre, the anion triangle
plot at the left side of the square projection area, and the cation triangle plot above the
square projection area [34]. To ensure the charge balance between anions and cations,
the Durov diagram stipulates that the sum of the anions is 50%, the sum of cations is 50%,
and the pH and TDS are increased, which are projected on the periphery of the square.
The Durov diagram shows more characteristics of TDS and pH values on the basis of the
Piper diagram.
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2.3.3. Spatial Analysis

A geographic information system can use various spatial analysis methods to man-
age spatial data information and analyse and process the phenomenon and process of
distribution in a certain region [35]. Spatial analysis uses computers to analyse digital
maps to obtain and transmit spatial information. Spatial analysis has a wide range of
applications, including water pollution monitoring, urban planning, flood disaster analysis,
and topography analysis. The prevention and control of water environmental pollution
involves a wide range of regions. In this paper, the water quality type and water quality
index are combined with the regional position to obtain the spatial distribution charac-
teristics of various water chemical types and the distribution of main ions in the study
area. The spatial analysis method can show the enrichment characteristics and variation
rules for different characteristic ions in the study area. At the same time, this method plays
an important role in studying the evolution relationship between Yellow River water and
regional groundwater.

3. Results
3.1. Change of Groundwater Levels

The direction of shallow groundwater runoff in this area is from north to south.
The main recharge methods include lateral infiltration of the Yellow River, precipitation infil-
tration, irrigation recharge, etc. The discharge methods include mining, overflow, and lateral
runoff discharge. The results of the groundwater level survey in the study area in April 2021
are shown in the left of Figure 4. The groundwater flow direction in the study area is from
northeast to southwest. The groundwater depth is 4~16 m. The groundwater depth and
hydraulic gradient gradually increase from northeast to southwest. The upstream hydraulic
gradient is approximately 3.2‰, and the downstream hydraulic gradient is approximately
1.6‰. The groundwater drawdown funnel is formed around the water source exploitation
well, and the groundwater gathers around the funnel. The groundwater contour becomes
dense, and the hydraulic gradient is the largest at the funnel. The groundwater level of the
study area in September after the July 20 rainstorm in Zhengzhou in 2021 is shown in the
right of Figure 5. Compared with April, the flow direction of groundwater did not change in
September. The groundwater depth is 4~16 m. The groundwater depth and hydraulic gradi-
ent increase gradually from northeast to southwest. The hydraulic gradient of groundwater
near the Yellow River in the upper reaches is approximately 1.6‰. Along the direction of
flow to the Ku River, the groundwater level is approximately 2 m higher than that in April,
and the hydraulic gradient is 12.8‰. The water level in April represents the water level
in the dry season of the study area, and the water level in September represents the water
level in the wet season. The changes of the wet and dry water levels at different water level
monitoring points are shown in Figure 5. The water level elevations of all monitoring points
fluctuate between 75 m and 95 m. The water level in the wet season is higher than that in
the dry season.

The fluctuation of the water level of the Yellow River in the study area is proportional
to the rainfall. With the increase in rainfall in the wet season, the water level of the Yellow
River rises. In the dry season, the water level of the Yellow River decreases, and the
groundwater level is lower than that of the Yellow River. The farther away from the Yellow
River the groundwater is, the greater the water level difference (Figure 6).
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3.2. Characteristics of Groundwater Quality
3.2.1. Results of Statistical Analysis

The chemical data of shallow groundwater and surface water in the study area from
1990 to 2021 were statistically analysed (Table 1). The results showed that compared with
1990, the HCO3

− in the Yellow River water increased significantly in 2020, changing from
166.6 mg/L to 452 mg/L and the pH value decreased slightly, changing from 8.15 to 7.66.
The groundwater in the study area was weakly alkaline, the TDS was 156~1250 mg/L,
and there was no obvious fluctuation in each year. Except for two sample points in 2021,
the groundwater quality met the III standard (≤1000 mg/L). The anions in groundwater
were mainly HCO3

−, and Na+ in cations was the most dominant ion. The contents of Ca2+

and Mg2+ were relatively equal. Compared with 1990, the SO4
2− content in groundwater

has generally increased in the last 30 years, and even reached four times by 2021. The in-
crease in SO4

2− was mainly due to the influence of human activities, a large number of
industrial wastewaters and domestic sewage in some areas, and the infiltration of farm
breeding waste into shallow groundwater. In the past three decades, a number of fish
pond farms have been developed in the study area, resulting in the increase in SO4

2− in
groundwater in some areas.

Table 1. Statistical analysis table of hydrochemical characteristics of sampling points.

HCO3− SO4
2− CI− K+ + Na+ Ca2+ Mg2+ TDS pH NO3− NH4

+ NO2− As

Yellow
River

1990 166.6 132.6 85.1 97.3 46.5 23.9 483 8.15 6 0.1 / /

2020 452 89.3 48.6 51.2 94.2 40.1 672 7.66 0.85 / 0.16 0.003

Shallow
ground-
water

1990
Min 238.60 2.40 23.80 8.70 62.30 25.00 311.10 7.30 0.000 0.000 / /
Max 497.30 69.60 65.90 83.30 92.00 35.40 553.50 7.90 10.000 0.360 / /

Mean 400.05 32.13 36.96 49.52 72.46 30.62 430.10 7.48 2.800 0.187 / /

2011
Min 279.65 10.57 33.15 25.84 60.14 25.79 339.99 7.75 0.46 / 0.003 /
Max 564.31 118.68 105.04 114.00 109.86 55.47 795.83 8.07 17.00 / 0.119 /

Mean 448.46 62.18 81.08 64.43 90.90 45.98 589.60 7.91 8.25 / 0.031 /

2020
Min 133.00 6.15 7.15 22.33 39.00 5.96 156.00 7.29 0.52 0.000 0.000 0.000478
Max 648.00 211.00 175.00 135.04 142.00 105.00 897.00 7.87 36.00 0.153 1.840 0.0492

Mean 414.79 95.87 80.08 81.48 88.63 46.71 565.42 7.54 7.25 0.061 0.133 0.00819

2021
Min / 39.20 9.40 68.70 / / 466.00 6.90 0.01 0.028 0.000 0.0007
Max / 361.00 172.00 220.00 / / 1250.00 7.90 2.48 1.130 0.283 0.0138

Mean / 135.70 86.94 102.54 / / 712.76 7.48 0.73 0.334 0.052 0.003982

Note: All units except pH are mg/L, “/” means none.

3.2.2. Characteristics of Groundwater Chemical Types

The Piper diagram represents the relative concentration of chemical components in
groundwater. The Durov diagram shows the characteristics of the TDS and pH values on
the basis of the Piper diagram [36]. AQQA software was used to draw the Piper diagram
(Figure 7) and the Durov diagram (Figure 8) of the hydrochemical types of groundwater in
the study area. The hydrochemical components of groundwater and Yellow River water
are shown in Figure 9. These figures show that the TDS of groundwater is low and basically
meets the Grade III standard for groundwater quality (1000 mg/L). Most of the cation
sinks of groundwater are in the middle position of the lower left triangle. In 1990 and 2011,
the anion sinks of the samples were in the lower left of the lower right triangle, and were,
namely, bicarbonate water. In 2020, some of the anions in the samples were in the middle
position, and the contents of SO4

2− and Cl− were high.
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The chemical types of shallow groundwater in 1990 and 2011 were single, mainly
HCO3-Na·Ca·Mg and HCO3-Na·Ca. HCO3-Na·Ca type water was distributed in the
southwestern part of the study area, and HCO3-Na·Ca·Mg type water was distributed in
the north-eastern part of the Yellow River. In 2020, the chemical types of groundwater
in the study area became more complicated and increased, and HCO3·SO4-Ca·Mg·Na
and HCO3·SO4·Cl-Ca·Mg·Na types were added. The anions were still dominated by
HCO3

−, and the contents of SO4
2− and Cl− increased locally. Spatially, the contents

of HCO3
− and Mg2+ were lower as they were closer to the water of the Yellow River,

while the contents of SO4
2−, Cl− and Na+ were opposite, and the closer they were to

the water of the Yellow River, the higher they were. The local groundwater types along
the Yellow River were HCO3·SO4·Cl-Na·Ca·Mg, HCO3·Cl-Na·Ca·Mg, HCO3·SO4-Na·Ca,
and HCO3·SO4·Cl-Na·Ca (Figure 10).
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3.2.3. Spatial Distribution Characteristics of Typical Indicators

Arsenic and “three nitrogen” in shallow groundwater in the study area exceeded the
standard. Arsenic, nitrate, nitrite, and ammonia nitrogen were selected to analyse their
concentration distribution characteristics (Figure 11). In 2020, the excessive points of arsenic
(>0.01 mg/L) in groundwater were distributed in lakes in the Yellow River Wetland Park
and Houliubei in Huiji District. The excessive points of three nitrogen were distributed
in irregular spots. The excessive points of nitrate (>20 mg/L) were distributed at the
intersections of Jiangshan Road, Lixihe West Street, and Huagang Road in Huiji District.
The excessive points of nitrite were distributed at the intersections of Qunying Road and
Taoyuan Road in Huiji District. In 2020, compared with 1990 and 2010, the nitrate content
overall increased, the nitrite content overall decreased, and the ammonia nitrogen content
overall decreased.
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3.3. Study of the Chemical Causes of Groundwater
3.3.1. Analysis Based on Gibbs Diagram

The Gibbs diagram can macroscopically show the main ions and their changing trend
in groundwater, judge the hydrochemical formation mechanism, and divide the controlling
factors into atmospheric precipitation, evaporation concentration, and rock weathering [37].
The Gibbs diagram of the groundwater and Yellow River water in the study area is shown
in Figure 12. It can be seen from the figure that the groundwater TDS in the study area is
medium, and the γ(Na+)/γ(Na+ + Ca2+) values of groundwater are mostly between 0.4 and
0.8, which are jointly affected by water–rock interactions and evaporation concentrations.
Among them, the Na+/(Na+ + Ca2+) ratio is more dispersed, indicating that the proportion
of Na+ in different spatial positions is different. The sampling points on the left side are
far away from the Yellow River and are mainly affected by rock weathering. The Na+

ratio is only 0.2. The groundwater sampling points on the right have an Na+ ratio ranging
from 0.4 to 0.8. These sampling points are close to the Yellow River and are close to
the γ(Na+)/γ(Na+ + Ca2+) value of the Yellow River water, indicating that the closer to
the Yellow River, the shallower the groundwater depth, the weaker the rock weathering,
and the stronger the evaporation.
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3.3.2. Analysis Based on the Ion Proportion Coefficient

The ion proportional coefficient method can be used to determine the origin of ground-
water and the source or formation process of groundwater chemical composition by the
milligram equivalent proportional coefficient of different ions [38].

The coefficient of γ(Na+)/γ(Cl−) can characterize the enrichment degree of Na+ in
groundwater, which is a sign of salt leaching and the accumulation intensity of ground-
water. Cl- in natural groundwater often comes from salt rock. The γ(Na+)/γ(Cl−) values
of groundwater in the study area are almost all greater than one (Figure 13), indicating
that Na+ has other major sources in addition to salt rock. Different from the groundwater
affected only by evaporation, the γ(Na+)/γ(Cl−) value of groundwater in the study area
does not remain constant but increases with an increasing Cl− concentration, indicating
that the groundwater in the study area is jointly controlled by the evaporation concen-
tration and the water–rock interaction. The coefficient of γ(HCO3

−)/γ(Cl−) can reflect
the hydrogeochemical process of anions in groundwater along the runoff path (Figure 13).
The ratio of the two is above the 1:1 isoline, indicating that calcite, dolomite, and other
minerals are dissolved in the study area.
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The γ(Ca2+ + Mg2+)/γ(HCO3
−) ratio can reflect the dissolution characteristics of

carbonate rocks in groundwater (Figure 14). Most of the samples are located below the
1:1 isoline, indicating that the ratio of Ca2+ to Mg2+ to HCO3

− is slightly lower than one
based on the dissolution of carbonate rocks, which may result in cation exchange reactions
with Na+. Sample points are distributed in the carbonate dissolution area, indicating that
carbonate in groundwater is widely involved in the dissolution of carbonate minerals
(Figure 15).
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3.3.3. Analysis of Excessive Arsenic in Groundwater

High-arsenic groundwater is generally distributed in alluvial plains and closed basins
rich in organic matter. According to the data, the average As content in the Yellow
River water is 0.00275 mg/L, which is not enough to cause excessive As in groundwater
(content >0.01 mg/L). There are many fish ponds in the study area, but the migration
ability of arsenic in the sediment and surface soil of fish ponds is weak. The water source
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protection area is along the Yellow River, and there are no other pollution sources in the
area. The possibility of groundwater arsenic exceeding the standard is very small. The sed-
imentary environment of sediment interbedded structures in the Yellow River alluvial
plain has strong reducibility, and arsenic-rich ferromanganese oxides or hydroxides in
primary sedimentary strata are released into groundwater due to reducibility dissolution.
At the same time, the groundwater runoff is not smooth, and strong cation exchange occurs.
The evaporation and concentration of groundwater aggravates the enrichment of arsenic.
In addition, in recent years, water level changes caused by agricultural irrigation and
water source replacement in the Yellow River region are potential factors that cause arsenic
concentration changes.

3.3.4. Analysis of Excessive Three Nitrogen in Groundwater

There are three main sources of “three nitrogen” pollution in groundwater: agriculture
and human activities, including human and livestock manure, fertilizers, pesticide use,
and sewage irrigation; urban industry, including wastewater, waste gas, and solid waste
caused by chemical fuel combustion; and the random emission of “three wastes” of life.
Under suitable natural geological conditions, these nitrogen-containing substances infiltrate
into the groundwater through the soil and the vadose zone and accumulate continuously,
resulting in an increasingly serious groundwater “three nitrogen” pollution. There is less
development of industry in the right bank of the middle and lower reaches of the Yellow
River and more development of fish pond aquaculture and other industries. The excess
of “three nitrogen” in groundwater may be related to aquaculture and human domestic
wastewater discharge.

4. Conclusions

(1) The shallow groundwater in the study area is weakly alkaline, and the TDS is low.
The groundwater chemical types are mainly HCO3

−Na·Ca·Mg and HCO3
−Na·Ca.

In the past 10 years, the hydrochemical types have become more complex, and the
contents of SO4

2− and Cl− have increased locally. The closer HCO3
− and Mg2

+ are to
the Yellow River, the lower the contents are, and the closer SO4

2−, Cl−, and Na+ are
to the Yellow River, the higher the contents are.

(2) The shallow groundwater in the study area is jointly affected by water–rock interac-
tions and evaporation concentrations. The closer to the Yellow River the groundwater
is, the shallower its buried depth, the greater the effect of evaporative concentration,
and the stronger the cation exchange. The water–rock interaction is manifested in the
dissolution of calcite, dolomite, and other carbonate minerals in the study area. At the
same time, the carbonate in groundwater is also widely dispersed.

(3) The arsenic content of shallow groundwater in the study area exceeds the local
standard. The exceeding points are mainly distributed in the Yellow River alluvial
plain, and there is no class V (>0.05 mg/L) point. The class IV (≤0.05 mg/L) points
are mainly distributed in the Yellow River Wetland Park in Huiji District, Houliubei,
and other places. The possibility of the artificial pollution of excessive arsenic is very
small. The primary reductive sedimentary environment of sediment interbedded
structures, such as the Yellow River alluvial plain, intensifies the dissolution of arsenic-
rich ferromanganese oxides or hydroxides in the strata. At the same time, the strong
evaporation and strong cation exchange in the shallow groundwater depth region
aggravate the enrichment of arsenic.

(4) There are sporadic local excesses of “three nitrogen” in shallow groundwater in the
study area, which are attributable to previous fisheries and human domestic sewage
discharge. There are many fish ponds in the study area. The nitrogen element in
the feed that is put into the fish pond every day is the original source of ammonia
nitrogen and nitrite in the water body. Usually, the nitrogen element in the feed
that is not absorbed and utilized by the fish body is in the process of various mi-
croorganisms. Under the action, it is converted into ammonia nitrogen and nitrite in
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water. At present, domestic pond aquaculture basically discharges wastewater with-
out treatment. Nitrite, ammonia nitrogen, and organic nitrogen in domestic sewage,
domestic garbage and other discharges enter the groundwater through discharge,
leaching, and other channels, resulting in groundwater “three nitrogen” exceeding
the standard.
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