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Abstract: Monitoring the spatio-temporal dynamics of desertification is critical for desertification
control. Using the Urat front flag as the study area, Landsat remote sensing images between 2010
and 2020 were selected as data sources, along with MOD17A3H as auxiliary data. Additionally,
RS and GIS theories and methods were used to establish an Albedo–NDVI feature space based on
the normalized difference vegetation index (NDVI) and land surface albedo. The desertification
difference index (DDI) was developed to investigate the dynamic change and factors contributing
to desertification in the Urat front banner. The results show that: 1© the Albedo–NDVI feature
space method is effective and precise at extracting and classifying desertification information, which
is beneficial for quantitative analysis and monitoring of desertification; 2© from 2010 to 2020, the
spatial distribution of desertification degree in the Urat front banner gradually decreased from south
to north; 3© throughout the study period, the area of moderate desertification land increased the
most, at an annual rate of 8.2%, while the area of extremely serious desertification land decreased
significantly, at an annual rate of 9.2%, indicating that desertification degree improved during the
study period; 4© the transformation of desertification types in Urat former banner is mainly from very
severe to moderate, from severe to undeserted, and from mild to undeserted, with respective areas of
22.5045 km2, 44.0478 km2, and 319.2160 km2. Over a 10-year period, the desertification restoration
areas in the study area ranged from extremely serious desertification to moderate desertification, from
serious desertification to non-desertification, and from weak desertification to non-desertification,
while the desertification aggravation areas ranged mainly from serious desertification to moderate
desertification; 5© NPP dynamic changes in vegetation demonstrated a zonal increase in distribution
from west to east, and significant progress was made in desertification control. The change in
desertification has accelerated significantly over the last decade. Climate change and irresponsible
human activities have exacerbated desertification in the eastern part of the study area.

Keywords: urat front flag; desertification; spatio-temporal pattern; driving factor; albedo–ndvi; npp

1. Introduction

Desertification is a global ecological problem [1]. China has the world’s largest deserti-
fication area, the most affected population, and the most severe wind and sand hazards,
with the desertification land area reaching 1533 million km2, accounting for 15.9% of the
total national land area [2]. Inner Mongolia Autonomous Region is located on China’s
northern border, and is the largest and most comprehensive ecological function area in the
north of China. It is also one of the provinces with the highest concentrations of deserti-
fication and sandy land, as well as the most severe harm, with the majority of the region
being in arid, semi-arid, and subtropical arid climate zones. Within the distribution area of
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Badangilin, Tengger, Ulanbu, and Kubuchi’s “four deserts” and Mawusu, Hunshandake,
Horqin, and Hulunbeier’s “four sands”, desertification land covers 914 million mu, ac-
counting for 23.3% of the national desertification area, the area of sandy land is 612 million
mu, accounting for 23.7% of the national sandy land area, and the ecological environment
is extremely fragile [3–5]. At the moment, as a significant ecological barrier along China’s
northern border, the impact of human activities on the ecological environment has exac-
erbated land desertification, severely impeding the healthy and sustainable development
of human society and the improvement of the ecological environment suitable for human
habitation [6,7]. As a result, scientifically sound and accurate data on the desertification
status can serve as a critical foundation for desertification research and control [8].

Thus far, several researchers have used remote sensing and GIS techniques in their
research on desertification [9–11]. F. Basso et al. assessed the environmental sensitivity
of the Agri basin in southern Italy at the watershed scale using GIS and remote sensing
data [12]. Jeong et al. examined the change process of the desert transition zone in the Asian
region from 1982 to 2008 and concluded that Asia is more vulnerable to desertification
disturbances under global or regional warming conditions [13]. Salvati et al. evaluated the
extent of land desertification in Italy based on the ESAI framework [14]. Wang Fei et al.
and Zhang Jianxiang et al. analyzed the causes of land desertification in the Tarim Basin
and Loess Plateau region [15,16]. Xue et al. analyzed the dynamic change characteristics
of wind-eroded desertification areas in northwestern Shanxi using a transfer matrix [17];
Chen Fang et al. used MODIS data to monitor the degree of desertification in Mongolia
dynamically [18]. In addition, the widely used desertification evaluation indicators in
current remote sensing monitoring of desertification are vegetation cover, net primary
productivity, surface albedo, soil texture, crop yield, and water erosion [19–21]. After a
thorough examination of the causes, development process, and manifestations of deser-
tification formation, it was determined that vegetation is the most active and significant
influencing factor on the surface, as well as the most sensitive to changes in environmental
factors such as topography, landform, soil, hydrology, and climate, which can be used
as the primary basis for remote sensing monitoring of desertification [22]. For example,
Sternberg et al. used NDVI to evaluate the process of land desertification on the Mongolian
plateau [23]. Ying et al. used Albedo–NDVI feature space to assess the desertification of
the Loess Plateau [24]. Lei et al. estimated the vegetation cover using an image element
dichotomous model on the MOD13Q1-NDVI dataset and then examined the status of land
desertification in Kenya [25]. Muzetijiang-Abla et al. analyzed the degree of desertification
and spatial and temporal changes in the Loess Plateau region using GIMMS AVHRR NDVI
data, concluding that the majority of the Loess Plateau is covered by moderate to severe
desertification area, with the degree of desertification generally decreasing [26]. Zhu et al.
proposed that the different vegetation types have a different maximum light energy utiliza-
tion and developed a regional NPP estimation model using the Inner Mongolia vegetation
type as an example. The regional NPP estimation model estimated vegetation net pro-
ductivity and analyzed its spatial and temporal distribution characteristics [27]. However,
the majority of previous studies used MODIS–NDVI or GIMMS–NDVI models to analyze
desertification by calculating vegetation cover, while a few studies used an Albedo–NDVI
feature space approach for desertification in the Urat front flag. However, the research data
are outdated and unrepresentative. The majority of research focuses on the influencing
factors of desertification, desertification evaluation indexes, and the monitoring and com-
parison of desertification degrees in different periods. There are insufficient studies on the
rapid positioning, identification, and spatial distribution of desert areas formed by the land
degradation process under long time series, as well as the problems of strong subjectivity
of research results, difficulty in realization, low precision, and complexity of methods.
Desertification appears as a bare land surface in remote sensing images. The enhancement
of information and the weakening of vegetation information can be characterized by index
factors such as surface albedo, surface temperature, surface humidity, vegetation index,
and vegetation cover. The normalized vegetation index (NDVI) is a crucial biophysical
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parameter reflecting the state of surface vegetation, whereas the surface albedo is a physical
parameter representing the reflection characteristics of the surface to solar short-wave
radiation. As desertification increases, surface vegetation is severely damaged, surface
vegetation cover decreases, biomass drops, and surface roughness increases, which is
reflected in remote sensing images by a corresponding decrease in NDVI value and an
increase in surface albedo. Therefore, it is highly representative to research and analyze the
degree of desertification in the region using “Albedo–NDVI” feature space.

The dry climate, scarcity of precipitation, temperate continental arid climate, and
excessive impact of human activities on the ecological environment have resulted in the
ecological environment of the Urat front flag facing problems with soil salinization, sanding,
and pasture degradation, weakening the ecological environment [28,29]. According to
previous desertification research, combining the vegetation index and surface albedo by
constructing an “Albedo–vegetation index (NDVI) feature space” enables more effective
and convenient quantitative monitoring and research of the spatial and temporal distri-
bution and dynamics of desertification [30]. In addition, it can serve as a theoretical basis
for ecological restoration and environmental management in the region. In light of this, to
analyze the spatial and temporal characteristics and evolution patterns of land desertifica-
tion in the Urat front flag, this study created the region’s “Albedo–NDVI” feature space
between 2010 and 2020 using the ENVI and ArcGIS software platforms. Additionally, using
Landsat remote sensing images as the primary data source, as well as dynamic attitude
calculation [31], transfer matrix analysis [32], and center of gravity shift analysis [33], and
in conjunction with MODIS–NDVI data, the CASA model was used to estimate the net
primary productivity of vegetation between 2010 and 2020 [27,34]. To accurately and
objectively evaluate the ecological environment of the study area, this paper analyzes the
spatial distribution pattern and the impact of topographic factors on desertification. It also
provides a theoretical basis for the ecological environment governance of the Urat front
banner, and serves as a reference for the ecological environment protection and rational
development of Hetao oasis and arid and semi-arid areas.

2. Materials and Methods
2.1. Overview of the Study Area

The Urat front banner is located in the eastern part of the Loop Plain, where the
administrative division is under Bayannur City in the Inner Mongolia Autonomous Region.
The geographical coordinates are 108◦11′–109◦54′ E and 40◦28′–41◦16′ N. The climate is
temperate continental, with an annual average temperature of 6–7 ◦C, annual sunshine
hours of 2959.4–3456.7 h, annual evaporation of 2069.3–2365.3 mm, and annual precipitation
of 200–250 mm, mostly concentrated in June–September, accounting for 78.9% of the annual
precipitation. The total area of the district is 7476 km2, with the yellow irrigation area
covering 7.47 × 104 hm2, accounting for 54.55% of the arable land area. Specific location
information is shown in Figure 1.
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Figure 1. Geographical position map of the Urat front flag.

2.2. Data Source and Its Pre-Processing

Landsat images were obtained from the USGS [35], with time periods of 27 August
2010 and 7 September 2020, respectively. The selected time period has low cloud cover,
and the image quality meets the research requirements. The remote sensing images were
preprocessed using ENVI5.3 software, which took into account radiometric calibration,
atmospheric correction, and geometric refinement correction, while keeping the error to
less than one image element. Finally, the remote sensing images were stitched and cropped
based on the vector boundaries of the Urat front banner, and relevant parameters were
inverted on the preprocessed remote sensing images [36,37]. The normalized vegetation
index (NDVI) is a biophysical parameter representing the surface vegetation status, whereas
surface albedo reflects the physical characteristics of the surface. By combining these two
indicators to extract desertification information together and avoiding the use of a single
spectral information classification, quantitative dynamic monitoring of desertification can
be made more convenient and effective.

The MODIS/Terra MOD17A3H data products [38] provide accurate measurements
of terrestrial vegetation growth, including global gross primary productivity (GPP) and
annual net primary productivity (NPP). The NPP data were synthesized from 45 periods
(8-day synthetic data) at a spatial resolution of 500 m in gC/m2, and were processed
using projection change, mosaicking, and cropping to investigate the spatial and temporal
variation of NPP in the two years of 2010 and 2020 in the Urat front banner, as well as
to conduct the driving factor analysis for this study [39,40]. Negative values, fire point
instability values, and background noise are not removed from the monthly products of
NPP, but the annual data for 2010 and 2020 provide cloud-free mean lights and exclude
transient lights, so the use of MOD17A3 data for these two years to validate only the NPP
estimated by the CASA model is sufficient for the experiment.

2.3. Research Method and Process

In view of the principle of invertibility, reliability, and practicability of the desertifica-
tion degree discriminant index [41], vegetation parameters were selected as the discrimi-
natory index of desertification degree. Additionally, the normalized difference vegetation
index (NDVI) and the land surface albedo (Albedo) were obtained, which characterize the
biophysical characteristics of surface vegetation state and soil information, respectively. Fur-
thermore, using the MOD17A3 data obtained for the two years of 2010 and 2020, vegetation
annual NPP values were calculated using the CASA model to assess desertification genesis.
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2.3.1. Normalized Difference Vegetation Index (NDVI)

The normalized vegetation index (NDVI) was calculated using reflectance values in
the near-infrared and red wavelength bands [42]. Additionally, the NDVI value, N, was
normalized using the following formula to facilitate subsequent data comparison and
feature space construction.

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

N = (NDVI−NDVImin)/(NDVImax −NDVImax) (2)

where ρnir denotes the reflectance in the near-infrared band, ρred indicates the reflectance
in the red band, and NDVImax and NDVImin represent the maximum and minimum values
of NDVI.

2.3.2. Land Surface Albedo

The surface albedo was inverted using the inversion model established by Liang [43],
and the Albedo value, A, was normalized using the following equation.

Albedo = 0.356× ρblue + 0.130× ρred + 0.373× ρnir+0.085× ρswir1 + 0.072× ρswir2 − 0.0018 (3)

A = (Albedo−Albedomin)/(Albedomax −Albedomax) (4)

where ρblue indicates the reflectance of the blue band, ρred denotes the reflectance of the red
band, ρnir represents the reflectance of the near-infrared band, ρswir1 and ρswir2 show the
reflectance of two mid-infrared bands, and Albedomax and Albedomin are regarded as the
maximum and minimum values of Albedo, respectively.

2.3.3. Albedo–NDVI Feature Space Analysis

According to the findings of Y. Zeng et al. [30], there is a significant linear negative
correlation between NDVI and albedo in the one-dimensional feature space, and the
distribution of different surface cover types in the Albedo–NDVI feature space exhibits a
significant divergence pattern, allowing for easy differentiation of various surface cover
types [44,45] (Figure 2).
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Figure 2. Albedo–NDVI feature space. Note: A is arid bare soil (low NDVI and high Albedo),
B is water-rich bare soil (low NDVI and low Albedo), C is high vegetation cover with adequate soil
moisture content (high NDVI and low Albedo), and D is high vegetation cover area with low soil
moisture content and relatively high albedo (low NDVI and high Albedo).
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Surface albedo is a function of vegetation cover and soil water content in the Albedo–
NDVI space. The top boundary AD in Figure 2 represents the high albedo line, reflecting the
drought condition, and the bottom edge BC is the maximum low albedo line, representing
the condition of sufficient surface moisture [30].

The linear regression equation between NDVI and Albedo was constructed as follows
based on their linear negative correlation:

Albedo = k×NDVI + b (5)

where k is determined by the slope of the fitted curve in the feature space.

2.3.4. Desertification Difference Index (DDI)

The degree of desertification is not only a direct indicator of the severity of land
desertification, but also an indirect indicator and measure of the ease with which desertifi-
cation land can be restored to its productive and ecosystem functions [46]. The DDI [47] is
expressed as follows in terms of Albedo–NDVI feature space:

DDI = a×NDVI−Albedo (6)

2.3.5. Accuracy Verification of Desertification Classification

This study employs confusion matrix analysis to determine the classification accuracy
and reliability, which can indicate not only the total error for each category, but also the
category misclassification. The error matrix is composed of the number of image elements
classified into a category and a proportional array containing the high-resolution relative
test truth value for that category [48,49]. The confusion matrix can be used to calculate
the overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and Kappa
coefficient evaluation metrics, which are used to compare various aspects of desertification
recognition accuracy. The PA is the probability of a sample point being correctly classified,
which is a measure of missing error. Additionally, UA quantifies the inclusion error by
comparing the ratio of the correctly classified sample points in each row to the total sample
points in that row. Theoretically, its formula is expressed as follows:

OA = ∑i=5
i=1 Xii/N (7)

PA = Xii/Xi+ (8)

UA = Xii/X+i (9)

Kappa =

[
N ∑i=5

i=1 Xii −
(

∑i=5
i=1 X+i + X+i

)]
N2 −∑i=5

i=1 X+i + X+i
(10)

where N indicates the total sample count, Xii denotes the sample count in row i and column
i, and Xi+, and X+i represent the total sample counts of row i and column i, respectively.

To ensure the accuracy of the results, 100 validation points were distributed uniformly
and randomly throughout the experimental area. The validation points were visually
interpreted based on Landsat 8 true color images and Google Earth maps. The result-
ing interpretation data were compiled to construct a confusion matrix and solve for the
Kappa coefficient.

2.3.6. Desertification Land Transfer Matrix Model

The transfer matrix model in ArcGIS 10.5 was used to analyze the temporal dynamics
of different classes of desertification land. The transfer matrix was calculated as [50,51]:

Dij = Sij/ ∑n
i=1 ∑n

j=1 Sij (11)
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where i and j denote desertification land grades, Dij represents the transfer degree of
different desertification land grades, Sij indicates the transfer area of different desertification
land grades (km2), and n is regarded as the total amount of desertification land of the
same grade.

2.3.7. Dynamic Change Model of Desertification Land

To further reflect the annual rate of change in the land desertification area, the dynamic
attitude, K, is used to quantify the rate of change in desertification [52].

K =
u2 − u1

u1
× 1

t2 − t1
× 100% (12)

where K denotes the dynamic attitude of a desertification land type over the study period
(%), u1 represents the initial area (km2), u2 indicates the final area (km2), and t1 and t2
indicate the time corresponding to the initial and final areas, respectively.

2.3.8. Center of Gravity Migration Model of Desertification Land

The migration of the spatial center of gravity can be used to characterize the pattern
of spatial change in a landscape. The principle of population geography’s center of grav-
ity [53,54] is used to analyze the direction and distance of desertification land’s center of
gravity migration, as well as the spatial dynamic changes associated with various grades
of desertification land. The coordinates of a given grade of desertification land’s center of
gravity in year t are calculated using the following formula [55,56]:

Xt = ∑n
i=t Cti × Xi/ ∑n

i=t Cti (13)

Yt = ∑n
i=t Cti ×Yi/ ∑n

i=t Cti (14)

where Xt and Yt represent the latitude and longitude coordinates of the center of gravity,
respectively, for the distribution of a certain type of desertification land in year t, Cti denotes
the area (km2) of the ith patch of a certain type of desertification in year t, and Xi and Yi
indicate the latitude and longitude coordinates of the center of gravity, respectively, for the
distribution of the ith patch of a certain type of desertification in year t.

V(t2−t1) =

√
[xt2 − xt1]

2 + [yt2 − yt1]
2

t2 − t1
(15)

where V(t2−t1) indicates the migration rate of the center of gravity (m/a) for a certain type
of desertification land in a certain time period, t2 and t1 denote the study termination and
initiation times, respectively, and xt1, yt1, xt2, and yt2 represent the latitude and longitude
coordinates of the center of gravity for the distribution of a certain type of desertification
land in year t1 or t2, respectively [57].

2.3.9. CASA Model

The light energy utilization model to estimate NPP is based on a resource balancing
view and is one of the most well-documented inversion models for NPP remote sensing.
The Carnegie–Ames–Stanford approach (CASA) model, established by Potter et al. [58], is
the most widely used model for light energy utilization.

NPP(x, t) = APAR(x, t)× ε(x, t) (16)

where x denotes spatial position, t represents time, APAR(x,t) indicates the photosynthet-
ically active radiation (gC·m−2·month−1) absorbed by image element x in month t, and
ε(x,t) is regarded as the actual light energy utilization (gC·MJ−1) of image element x in
month t.

APAR(x, t) = SOL(x, t)× FPRA(x, t)× 0.5 (17)
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where SOL indicates the total solar radiation (gC·m−2·month−1), FPRA represents the
proportion of the incident photosynthetically active radiation absorbed by the vegetation
layer, and the constant 0.5 denotes the ratio of solar radiation utilized by the vegetation to
the total solar radiation [34,59].

3. Results and Analysis
3.1. Albedo–NDVI Feature Space Analysis

The ROI function in ENVI was used to randomly select 1600 sample points distributed
at various desertification levels across the study area. After normalizing the data of the two
periods, the NDVI and Albedo values were extracted from the 1600 sample points, and a
linear regression equation was constructed between them. The regression equations and
linear correlations in the study area for 2010 and 2020 (Figure 3) were as follows:

Albedo = −0.1505NDVI + 0.3855
(

R2 = 0.7004
)

(18)

Albedo = −0.098NDVI + 0.2190
(

R2 = 0.7033
)

(19)
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Figure 3. Albedo-NDVI linear regression analysis.

As illustrated in Figure 3, the Albedo–NDVI feature space is trapezoidal, and the R2

coefficients of linear regression equations are all greater than 0.7, and Albedomax is signif-
icantly negatively correlated with NDVI. Meanwhile, as the vegetation index gradually
increases, its surface albedo decreases, demonstrating a strong linear negative correlation
between the vegetation index and surface Albedo.

3.2. DDI Analysis

The DDI was estimated for all years using the Albedo–NDVI feature space (Figure 3).
To this end, k values were calculated using a × k = −1, and the final DDI expressions were
obtained for the two phases of the Urat front flag data as reported in Equations (17) and (18).

DDI2010 = 6.6445×NDVI−Albedo (20)

DDI2020 = 10.2041×NDVI−Albedo (21)

Desertification is characterized using DDI, which is classified into five categories based
on the natural break method, namely extremely serious desertification, serious desertification,
moderate desertification, weak desertification, and non-desertification [60,61].

3.3. Accuracy Validation

Classification error analysis using the Albedo–NDVI feature space (Table 1) revealed
that the overall accuracy of both the 2010 and 2020 images was over 95%, with Kappa
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coefficients of 0.96 and 0.93, meeting the requirements for desertification dynamics research
in the region. Among them, the Albedo–NDVI model has high production accuracy for
moderate, serious, and extremely serious desertification, implying that underestimation of
these three desertification levels is minimal. However, the production and user accuracy
for weak desertification is extremely low, indicating a high multimetric error in identifying
weak desertification areas.

Table 1. Error analysis of land desertification information extraction based on Albedo-NDVI feature space.

Year Extremely Serious
(%)

Serious
(%)

Moderate
(%)

Weak
(%)

Non-
Desertification

(%)
Kappa
Coeffi-
cient

OA
(%)

PA UA PA UA PA UA PA UA PA UA

2010 97.14 97.29 91.59 97.67 98.08 92.67 98.32 85.18 97.63 99.69 0.96 96.27

2020 99.98 100.00 98.45 98.62 95.57 87.83 82.10 65.73 81.38 99.77 0.93 95.06

The validation results demonstrate that the Albedo–NDVI feature spatial method
is capable of achieving optimal results in both the extraction of desertification land and
the classification of desertification degree with higher accuracy and efficiency than other
widely used remote sensing methods for desertification monitoring.

3.4. Spatial Distribution Characteristics of Desertification Land

The Urat front flag is a significant environmentally sensitive and ecologically fragile
area in Inner Mongolia due to its dense population distribution and the high level of
disturbance caused by human activities. To thoroughly investigate the spatial and temporal
evolution of desertification in the Urat front flag, it is necessary to examine the area’s
desertification process.

Desertification information was retrieved using the aforementioned methodologies
and indicators in ArcGIS 10.5 software, and finally, the desertification land grade map of
the study area was generated for two time periods of 2010 and 2020, as shown in Figure 4.
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Figure 4. Spatio-temporal distribution of desertification grade in the Urat front banner based on DDI.

As seen in Figure 4, the spatial distribution of desertification in the Urat front flag
10 years from 2010 to 2020 demonstrates a downward trend from south to north. In
2010, extremely serious desertification land was primarily distributed in the central and
northern parts (e.g., Erdenbrag Sumu and Bayannur City Dashetai Ranch), serious deserti-
fication land was mainly distributed on the northeast (e.g., Xiaoshetai Town and Mingan
Town), moderate desertification land gradually expanded from the south to the west,
weak desertification land was mainly distributed on the western and southern areas (e.g.,
Bayannur City Xin’an Farm, Bayannur City Zhongtan Farm, and surrounding areas), and
non-desertification land was mainly concentrated in the central and western areas (e.g.,
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Bayannur City Uliang Suhai Fishing Ground, Sudulun Town, and Bayannur City Sudulun
Farm). Comparing 2020 to 2010 reveals that the desertification degree is obviously reduced,
primarily as a result of the implementation of the policy of “returning farmland to forest
and grass and replacing it with food”, which has increased the vegetation cover in the
region and significantly enhanced the quality of the ecological environment. However,
after 10 years of development, the moderate desertification and non-desertification lands
in the Urat front flag are expanding, mainly to the southwest and northeast, while a part of
the non-desertification land in the central area has shifted to very serious desertification.
Additionally, the development of weak desertification land is mainly concentrated in the
center and south, and the changes of extremely serious desertification and serious land
have declined sharply.

3.5. Characteristics of Desertification Land Area Change

The changes in the total area of various types of desertification land reflect the general
development trend of desertification land in the study area. The statistical results for the
area of various types of desertification land in the study area in the two periods of 2010
and 2020 are reported in Table 2.

Table 2. Types and area of desertification land in the Urat front banner, km2.

The Type of
Desertification Land

2010 2020 2010–2020

Area % Area % Annual Rate of
Change (%)

Extremely serious 1236.1077 16.6 95.0265 1.3 −9.2

Serious 2253.2328 30.2 1400.8446 18.8 −3.8

Moderate 1535.6655 20.6 2790.1539 37.4 8.2

Weak 1042.2000 13.9 1471.8825 19.7 4.1

Non-desertification 1395.3690 18.7 1704.9951 22.8 2.2

Sum 7462.5750 100.0 7462.9026 100.0 1.5

The changes in the total area of various types of desertification land reflect the general
development trend of desertification land in the study area. The statistical results for
different types of desertification land areas in the study area in the two periods of 2010
and 2020 are reported in Table 2. As can be observed, the land area of the Urat front flag
expanded from 7462.5750 km2 to 7462.9026 km2 between 2010 and 2020, increasing the total
area by 0.3276 km2. Among these, the areas of extremely serious and serious desertification
land were both reduced to varying degrees, from 16.6% and 30.2% of the total desertification
land, respectively. The area of moderate desertification land increased from 1535.6655 km2

in 2010 to 2790.1539 km2 in 2020, while the area of weak desertification land increased
from 13.9% to 19.7%. Additionally, the area of non-desertification land increased from
1395.3690 km2 to 1704.9951 km2, with the proportion increasing from 18.7% to 22.8%. As
can be seen, the desertification land in the study improved overall throughout the 10-year
period from 2010 to 2020, with the degree of desertification reversing from serious and
extremely serious to moderate and weak, resulting in a spike in moderate desertification.

Between 2010 and 2020, the dynamic attitudes of extremely serious and serious deser-
tification areas were −9.2% and −3.8%, respectively, indicating that extremely serious and
serious desertification areas decreased by 9.2% and 3.8% per year, respectively, while the
moderate, weak, and non-desertification areas increased by 8.2%, 4.1%, and 2.2%, respec-
tively. Throughout the study period, the area of moderate desertification land increased
the most, whereas the area of extremely serious desertification land decreased the most,
demonstrating that desertification improved throughout the study period.
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3.6. Characteristics of Desertification Land Transfer Change

The transfer matrix efficiently expresses the interconversion relationship between
different types of land across the two periods of 2010 and 2020, and can be used to inves-
tigate the spatial evolution process and characteristics of desertification land. Using the
mathematical model of transfer matrix, the transfer matrix of desertification land from 2010
to 2020 was obtained as reported in Tables 3 and 4 and spatially depicted in Figure 5.

Table 3. Transition matrix of desertification in the Urat front banner from 2010 to 2020, km2.

2010
2020 Extremely

Serious Serious Moderate Weak Non-
Desertification

Total
(Reduced)

Extremely serious 27.5886 695.0610 420.8040 46.5273 45.8181 1235.7990

Serious 16.1136 433.18000 1476.2150 220.0040 107.3880 2252.9010

Moderate 22.5045 176.7820 662.2933 470.4828 203.3020 1535.3650

Weak 18.4590 51.3909 141.0400 415.2340 415.8430 1041.9670

Non-desertification 10.3428 44.0478 89.3223 319.2160 932.2280 1395.1570

Total (increased) 95.0085 1400.4620 2789.6750 1471.4640 1704.4790 7461.1880

Table 4. The change in the spatiotemporal pattern of desertification in the study area, km2.

2010–2020 Severe Dete-
rioration Deterioration No Change Restoration Obvious

Restoration

Area 2470.524 236.0673 653.1516 1625.8000 1043.8430

Percent (%) 41.0 3.9 10.8 27.0 17.3
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The area transformed into each type of desertification land in the Urat front flag
is 66.9% of the total area of the Urat front flag. Additionally, the amount of transfor-
mation into each type of desertification land from high to low is: extremely serious de-
sertification > moderate desertification > weak desertification > serious desertification
> non-desertification. The transformation of desertification types in the Urat front flag
mostly ranges from very serious to moderate, from serious to non-desertification, and
from weak to non-desertification, covering 22.5045 km2, 44.0478 km2, and 319.2160 km2,
respectively. Nearly half of the serious desertification land is transformed into other
types of land, and the area of other types of land transformed into serious desertifica-
tion land is 540.7380 km2, while the area of land converted from other types of land to
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non-desertification is 309.3220 km2, accounting for 18.2% of non-desertification land in
2020. This indicates that, as a result of the combined effect of the natural environment and
human activities, the conversion of the Urat front flag to diverse forms of desertification
has occurred on a larger scale and in a good direction. This underlines the fact that the Urat
front flag has achieved remarkable results in desertification control under the auspices of
the sand control project.

To gain a better understanding of the spatial dynamics of desertification in the study
area from 2010 to 2020, changes in desertification spatial patterns were classified into five
categories (Figure 5 and Table 4): severe deterioration (desertification increased by two
or more levels), deterioration (desertification increased to the adjacent level), no change
(desertification remained unchanged), restoration (desertification decreased to the adjacent
level), and obvious restoration (desertification decreased by two or more levels).

Spatial statistics indicate that between 2010 and 2020, the distribution of areas with
varying degrees of desertification in the Urat front flag remained stable. No change areas
were sparsely distributed, primarily in the west (e.g., Uliang Suhai Fishery in Bayannur City
and Xin’an Farm in Bayannur City) and the south (e.g., Baiyanhua Town). Deterioration
and severe deterioration areas were mainly concentrated in the central west (e.g., Xishanzui
Farm in Bayannur City and Xin’an Farm in Bayannur City) and south. Restoration and
obvious restoration areas were mostly situated in the northern (e.g., Shetai Ranch, Sudulun
Town, and Bayannur City) and central (e.g., Erdenbrag Sumu and Ming’an Town) areas. In
addition, between 2010 and 2020, the degree of desertification remained stable in certain
areas of the Urat front flag and did not change (10.8% of the study area), while the desertifi-
cation aggravation and the recovery areas accounted for 41% and 44.3% of the total area,
respectively. Among them, the desertification restoration area is 199.11 km2 larger than the
desertification aggravation area.

Meanwhile, according to the desertification land transfer matrix reported in Table 3, the
desertification recovery area in the study area between 2010 and 2020 is primarily derived
from the conversion of extremely serious to moderate, serious to non-desertification, and
moderate desertification to non-desertification, whereas the desertification aggravation area is
primarily derived from the conversion of serious desertification to moderate desertification.

3.7. Spatial Pattern Variation of Desertification Land

The dynamic changes in the spatio-temporal distribution of different types of desertifi-
cation land between 2010 and 2020 were quantified using the standard deviation ellipse
method, and the center of gravity migration model calculation. Equations (10)–(12) were
used to determine the migration rates of different levels of desertification land centers of
gravity in the Urat front flag from 2010 to 2020, respectively (Table 5). Additionally, the
longitudinal and latitudinal coordinates of each center of gravity were plotted according to
the spatial migration map of each center of gravity of desertification land between 2010
and 2020 (Figure 6).

Table 5. Change in the center of gravity for desertification land in the Urat front banner from 2010
to 2020.

The Type of
Desertification

Land

Barycentric Coordinates for 2010 Barycentric Coordinates for 2020
Migration

Distance during
2010–2020

Rate of
Migration

during 2010–2020

X (◦′′′) Y (◦′′′) X (◦′′′) Y (◦′′′) D (km) V (m/a)

Extremely serious 235◦39′14” 143◦18′11” 20◦11′44” 233◦17′20” 27.8533 12.8942

Serious 315◦17′17” 343◦32′08” 131◦25′08” 26◦11′51” 4.9716 31.8593

Moderate 12◦43′31” 114◦38′03” 233◦07′18” 206◦45′01” 5.1422 13.8593

Weak 87◦51′36” 106◦55′13” 289◦12′51” 319◦18′30” 7.9386 21.3242

Non-
desertification 299◦46′48” 161◦37′11” 73◦14′44” 253◦32′22” 2.0950 16.5944
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During the period of 2010–2020, the center of gravity of each desertification land has
been migrated and altered dramatically. The extremely serious desertification land mi-
grated 27.8533 km from the central southwest direction at a migration rate of 12.8942 m/a,
indicating that the repeated and excessive livestock feeding and trampling in the Xin’an
farm of Bayannur City and the Wuliang Suhai fishery of Bayannur City destroyed the com-
munity structure of forage grasses, reduced their quality, significantly decreased the edible
forage grass yield, thinned and shortened the plants, and gradually decreased the cover-
age, resulting in concentrated patches of bare grass. Serious desertification land migrates
4.9716 km from the central part to the northeast, with a migration rate of 31.8593 m/a,
mostly due to the low precipitation in the northeast region, drought, and water shortage.
Moderate desertification land migrates 5.1422 km along the central part to the west at a mi-
gration rate of 13.8593 m/a, indicating that desertification has developed to the south and
northeast of the oasis, at a migration rate of 13.8593 m/a. The main reason is that the soil
structure and surface vegetation are destroyed by excessive or indiscriminate reclamation.
Non-desertification land has the shortest distance of migration between 2010 and 2020, with
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only 2.0950 km from the southeast to the northwest, at a migration rate of 16.5944 m/a. De-
forestation of land is a result of anthropogenic activities such as deforestation and extensive
groundwater extraction.

The spatial migration pattern of the center of gravity for different desertification types
in the Urat front flag from 2010 to 2020 is depicted in Figure 6. Extremely serious deser-
tification occurs primarily in the central and northern parts of the study area. Weak and
non-desertification land is mostly distributed in the southwestern and northwestern parts
of the study area, where it is mixed and intermingled. Serious and moderate desertification
are mainly concentrated in the central, northeastern, and southeastern parts of the study
area. The reason is that the geographical location and climatic environment of the study
area lead to drought, low rainfall, and water shortages. The degree of desertification in the
region is dominated by serious, weak, and non-desertification land types. As the spatial
distribution patterns of desertification center of gravity and actual desertification land are
essentially the same, changes in the centers of gravity of different types of desertification
land can accurately reflect the spatial changes in desertification land.

4. Discussion

In order to further investigate the drivers of desertification land change from 2010
to 2020, the NPP values in 2010 and 2020 in Urat front flag were estimated using MODIS
image data and CASA model and their spatial distribution was analyzed using ArcGIS.

NPP has the most intuitive way to convey the degradation of vegetation productivity
and can be distinguished from the other forms of desertification land types. As illustrated in
Figure 7a, the annual NPP per unit area in 2010 in the Urat front flag can reach a maximum
of 306.3 gC/m2, with an annual average value of 122.2 gC/m2, in which the NPP of the
Dashetai Ranch in Bayannur City, Zhongtan Farm in Bayannur City, the southwestern part
of Dashetai Town, and some parts of Mingan Town is significantly higher than the NPP of
vegetation in the western and central and northeastern regions. This phenomenon indicates
that in the central and northern regions of the study area, the climate is arid, precipitation
is scarce, vegetation is sparse, desertification is severe, and NPP is low. As illustrated in
Figure 7b, the variation in NPP in 2020 is relatively obvious. The annual NPP can reach a
maximum of 354.5 gC/m2, while the annual average value is 159.5 gC/m2, which exhibits
an increase of 48.2 gC/m2 compared with 2010, and the areas with strong vegetation growth
were mainly concentrated in the southern, north-central, and east-central regions. In the
eastern and southern parts of the study area, more farms, pastures, grasslands, forests,
and water resources are reorganized, and the vegetation NPP is higher. There are obvious
differences in spatial distribution over the past 10 years, and the results of desertification
control are remarkable.
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According to earlier studies, changes in vegetation NPP result from a synergistic impact
of human activities and climate change [62–67]. The annual average NPP of vegetation in
the Urat front flag from 2010 to 2020 has a distinct spatial differentiation pattern (Figure 7),
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with an overall growing distribution in a band from west to east, and the differences are
related to hydrothermal conditions. The northwestern Bayannur City Xin’an Farm and the
north-central Dashetai Town have a higher vegetation NPP due to grassland and woodland
planting. The northeastern Xiaoshetai Town and parts of northern Sudulun Town have poor
natural conditions and a relatively low vegetation NPP, and the south-central Erdenbrag Sumu
is dominated by a stable continental climate with insufficient precipitation, sparse vegetation
cover, and low vegetation NPP. The NPP of vegetation is also higher because the southern part
is bordered by the Yellow River, with good climatic conditions and sufficient water resources.
In summary, climate change is the primary factor influencing vegetation recovery in Urat
former banner, while precipitation is the primary climatic factor controlling vegetation growth.
Wet climatic conditions and sufficient precipitation are conducive to vegetation growth, and
this effect is especially significant in arid and semi-arid areas. The effect of precipitation
on vegetation is primarily through affecting vegetation photosynthetic efficiency and plant
activity, thereby influencing vegetation organic matter production.

5. Conclusions

This paper analyzed the spatial and temporal evolution of land desertification in the
Urat front flag during the last decade from the perspective of time and space, utilizing the
Albedo–NDVI feature space method. It intends to conduct a scientific evaluation of the
effect of ecological restoration projects and ecological security status implemented in the
Urat front flag by investigating the spatial and temporal evolution laws of desertification,
as well as to serve as a technical reference for national desertification control research. The
study discovered that:

(1) The overall desertification status in the Urat front flag has improved, and the desertifi-
cation land area for each grade has been altered to different degrees.

(2) Between 2010 and 2020, the desertification recovery area in the study area is pri-
marily driven by the conversion of extremely serious to moderate, serious to non-
desertification, and moderate desertification to non-desertification, whereas the deser-
tification aggravation area is primarily driven by the conversion of serious desertifica-
tion to moderate desertification.

(3) In descending order, the conversion rate of each type of desertification land area
is as follows: extremely serious desertification > moderate desertification > weak
desertification > serious desertification > non-desertification.

(4) The study area is arid with little rainfall and a water scarcity as a consequence of its
geographic location and climatic environment, and the degree of desertification in the
region is dominated by serious, weak, and non-desertification land types.

(5) The dynamic change of vegetation NPP is the consequence of the combined effects
of climate change and human activities. Annual NPP per unit area in Urat front flag
reached 306.3 gC/m2 in 2010 and 354.5 gC/m2 in 2020, a rise of 48.2 gC/m2 each year
since 2010, and the overall distribution is growing in a band from west to east.
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