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Abstract: Constructed wetlands (CWs) are generally used for wastewater treatment and removing
nitrogen and phosphorus. However, the treatment efficiency of CWs is limited due to the poor
performance of various substrates. To find appropriate substrates of CWs for micro-polluted water
treatment, zeolite, quartz sand, bio-ceramsite, porous filter, and palygorskite self-assembled com-
posite material (PSM) were used as filtering media to treat slightly polluted water with the aid
of autotrophic denitrifying bacteria. PSM exhibited the most remarkable nitrogen and phospho-
rus removal performance among these substrates. The average removal efficiencies of ammonia
nitrogen, total nitrogen, and total phosphorus of PSM were 66.4%, 58.1%, and 85%, respectively.
First-order continuous stirred-tank reactor (first-order-CSTR) and Monod continuous stirred-tank
reactor (Monod-CSTR) models were established to investigate the kinetic behavior of denitrification
nitrogen removal processes using different substrates. Monod-CSTR model was proven to be an
accurate model that could simulate nitrate nitrogen removal performance in vertical flow constructed
wetland (VFCWs). Moreover, PSM demonstrated significant pollutant removal capacity with the
kinetics coefficient of 2.0021 g/m2 d. Hence, PSM can be considered as a promising new type of
substrate for micro-polluted wastewater treatment, and Monod-CSTR model can be employed to
simulate denitrification processes.

Keywords: nitrogen; phosphorus; substrates; constructed wetland; kinetics

1. Introduction

Industrial wastewater, agricultural wastewater, and domestic wastewater generated in
the process of human social life and production are generally treated by sewage treatment
plants before discharging into rivers [1–3]. However, water from treatment plants may
pollute surface water due to the limited biochemical treatment capacity and operation
investment of the sewage treatment plants [4]. In addition, the combined pollution of
nitrogen and phosphorus can easily lead to the eutrophication of rivers, which will further
endanger the aquatic environment and human life [5,6]. Thus, advanced processes for
tailwater treatment are required to ensure the safety of effluent [7]. Constructed wetlands
(CWs), as an ecological water treatment technology, have the advantages of high pollutant
removal efficiency, low investment and operation cost, easy management, and high land-
scape value and have been regarded as an efficient solution for nitrogen and phosphorus
treatment of slightly polluted water [8,9].

Substrate plays an important role in CWs, and it is the key to ensure efficient nitrogen
and phosphorus removal [10]. Currently, substrates can be divided into natural substrates
and artificial substrates [11]. Natural substrates refer to the minerals that exist in nature,
such as gravel, zeolite, manganese ore, etc., which have weak nitrogen and phosphorus
removal performance. The ammonia nitrogen (NH4

+-N), total nitrogen (TN), and total
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phosphorus (TP) removal efficiency of gravel used in CWs were 58.9%, 20.1%, and 28.8%,
respectively [12]. The average removal rates of nitrogen and phosphorus of other natural
substrates were less than 70% [13,14]. Artificial substrates include industrial or construction
wastes [15], agricultural wastes [16], and artificially designed new substrates [17] with
significant nitrogen and phosphorus removal. Li et al. [18] compared the nitrogen and
phosphorus removal performance of bricks, concrete, and three natural substrates. TP
removal rates of the first two artificial substrates reached 77–87%, which were better than
that of natural substrates. However, the NH4

+-N and TN removal efficiencies of bricks and
concrete were lower than that of zeolite by 1.6–25%. Industrial or construction wastes and
agricultural wastes were rich in Ca, Mg, and C elements. Therefore, their nitrogen and
phosphorus removal abilities were better than that of natural substrates [19]. However,
the new substrates among artificial substrates have the most significant nitrogen and
phosphorus removal performance. Bao [20] et al. synthesized iron oxide-based porous
ceramsite using attapulgite, goethite, and wood chips as raw materials for treatment
of domestic sewage. Compared with commercial ceramsite, the removal efficiencies of
NH4

+-N, TN, and TP of this new substrate were greatly improved and reached 94.2%,
46.3%, and 72.3%, respectively. The reason was that iron oxide-based porous ceramsite was
rich in C, Al, Fe, and Mg elements, which are beneficial to NH4

+-N ion exchange, microbial
denitrification, and phosphate precipitation.

This study constructed a laboratory-scale vertical flow constructed wetland (VFCWs)
to treat slightly polluted water containing nitrogen and phosphorus. Five substrates
(substrate from zeolite, bio-ceramsite, quartz sand, porous filter, and palygorskite self-
assembled composite material (PSM)) were selected, and their nitrogen and phosphorus
removal capacities were investigated. We also evaluated the effluent quality of micro-
polluted water after substrates treatment according to the environmental quality standard
for surface water in China (GB 3838-2002). Finally, two kinetics models were developed to
simulate the TN treatment processes based on the above-mentioned substrates in VFCWs.

2. Materials and Methods
2.1. Substrates and Wastewater Characteristics
2.1.1. Substrate Samples

Zeolite, quartz sand, bio-ceramsite, porous filter, and PSM were employed as sub-
strates in the established VFCWs system. Zeolite is an aluminosilicate mineral composed
of silica tetrahedron and alumina tetrahedron, which is often used in wastewater treatment
due to its strong adsorption, electrostatic attraction, and cation exchange properties. Quartz
sand is made from natural quartz ore through crushing, water washing, and fine screening.
It is widely used in water treatment industry because of its good water permeability and
strong pollution interception ability. Bio-ceramsite is a lightweight material that is prepared
using clay, binders, and additives. The material has high mechanical strength, stable chemi-
cal properties, easy microbial attachment and growth, and strong adsorption performance.
Zeolite, quartz sand, and bio-ceramsite were purchased from Zunguan Environmental
Protection Technology Co., Ltd. The porous filler employed in the present work was a
hollow spherical porous filler composed of sintered clay and external porous spherical
polypropylene plastic with a diameter of 5 cm. The sintered clay was a hollow spherical
filler with an outer diameter of 4.5 cm and an inner diameter of 2.5 cm, which was prepared
by injecting the mixture of sludge, straw, and clay into a spherical mold and then sintering
at 400 ◦C. The palygorskite self-assembled composite material (PSM) was prepared by
hydrothermal crystallization method [21] using the main raw materials of palygorskite
and ferrous sulfide. The detailed preparation process of PSM was that palygorskite was
calcined at 500 ◦C and mixed with sodium hydroxide evenly together. Then, the mixture
was calcined in air at 600 ◦C for 2 h. The deionized water was added into the mixture and
stirred vigorously for 12 h to obtain the suspension. The extracted solution containing the
silica aluminum source was separated from the suspension by a filtration process. Then, an
equal amount of cetyltrimethylammonium bromide and polyethylene glycol 4000 was dis-
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solved into deionized water. The extracted solution was slowly added to the homogeneous
solution with 1 h of stirring. After that, HNO3 was added to adjust the pH value to 7 and
continuously stirred for 2 h. Subsequently, ferrous sulfide was added to the above mixed
solution and stirred for 2 h without oxygen. Finally, the mixture was transferred to an auto-
clave for 12 h of hydrothermal reaction without oxygen. After crystallization, the reaction
product was filtered, washed repeatedly with deionized water to the pH value to 7, and
dried at 80 ◦C without oxygen. The as-synthesized product was calcined at 400 ◦C without
oxygen for 5 h to remove the template and form palygorskite self-assembled composite
material (PSM). The physical characteristics and chemical properties of zeolite (Z), quartz
sand (QS), bio-ceramsite (BC), porous filter (PF), and PSM were shown in Table 1, and all
substrates were inoculated with autotrophic denitrifying bacteria.

Table 1. Physical characteristics and main chemical compositions of five substrates.

Substrates SiO2
(%)

Al2O3
(%)

Fe2O3
(%)

MgO
(%)

CaO
(%)

K2O
(%)

Surface
Area

(m2/g)

Pore
Volume
(cm3/g)

Pore
Size/(nm)

Z 65.03 8.10 1.87 0.70 4.05 2.60 6.698 1.43 × 10−2 8.51
QS 50.29 7.37 6.11 1.76 8.12 4.56 4.618 2.18 × 10−4 468.30
BC 53.42 7.79 2.27 1.79 9.12 4.94 3.476 1.21 × 10−3 7.23
PF 59.89 10.18 3.73 2.75 10.93 2.33 7.724 1.12 × 10−3 14.67

PSM 55.15 7.31 17.38 6.34 1.52 2.11 49.23 0.93 36.50

2.1.2. Wastewater Preparation and Analysis

The experimental influent was micro-polluted wastewater prepared by NH4Cl, KNO3,
and KH2PO4. The average concentrations of NH4

+-N and TP in synthetic wastewater
prepared from NH4Cl and KH2PO4 were 1.5 mg/L and 0.3 mg/L respectively, which
was used to determine the NH4

+-N removal performance of substrates. The average
concentrations of TN and TP in synthetic wastewater prepared from NH4Cl, KNO3, and
KH2PO4 [c(NH4

+-N)/c(NO3
−-N) = 1:1] were 1.5 mg/L and 0.3 mg/L, respectively, which

was used to determine the TN and TP removal performance of substrates. The average
concentrations of NH4

+-N, TN, and TP in prepared synthetic wastewater all achieved water
quality of Class IV water (GB 3838-2002 in China). The average concentrations of NO3

−-N
were 1.25 mg/L, 1.50 mg/L, 1.75 mg/L, 2.00 mg/L, 2.25 mg/L, 2.50 mg/L, 2.75 mg/L, and
3.00 mg/L in synthetic wastewater prepared from KNO3 and KH2PO4, which was used
to determine the removal performance of substrates on NO3

−-N and simulate NO3
−-N

kinetic process. The VFCWs were fed with synthetic wastewater through all the experi-
mental period. After treatment, the effluent samples were filtered through 0.45 um filter
membranes. The contents of NH4

+-N, TN, and TP from influent and effluent samples
were measured by Nessler’s reagent colorimetric method, alkaline potassium persulfate
digestion-UV spectrophotometric method, and ammonium molybdate spectrophotometric
method using a UV–Vis spectrophotometer (752, Shanghai Shunyu Hengping Scientific
Instrument Co., Ltd., Shanghai, China).

2.2. Wetland System and Operation

In this study, a VFCWs experimental device was constructed to compare the nitrogen
and phosphorus removal efficiency of various substrates. Figure 1 illustrates the VFCWs
system consisting of a storage tank with synthetic wastewater, a peristaltic pump, a VFCWs
unit, and an effluent tank. The VFCWs unit was a vertical PVC column with a diameter of
10 cm and a height of 100 cm, which was filled with the selected substrates.
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Figure 1. Schematic diagram of VFCWs experimental device.

In the operation process, we first injected the synthetic wastewater into the top of the
PVC column through a peristaltic pump. Then, the wastewater flowed through the substate
bed and reached the bottom of the PVC column and finally flowed into the effluent tank.
In this experiment, the mode of operation in the VFCWs experiment was tidal flow, the
hydraulic load was 0.25 m3/m2 d, the duration of each cycle was 30 days, and it ran 8 h
every day. At the beginning of wetland system operation, all sampling ports (Sin and Sout
in Figure 1) of the PVC column should be closed. The influent flow was adjusted by a flow
meter. After 8 h of operation, water samples were collected from the water outlet (Sout in
Figure 1) of VFCWs unit and then detected. The water inlet and outlet were closed at the
end of the experiment on first day. When the system was operated for another day, the
water inlet and outlet were opened directly. After 8 h of operation, water samples were
collected from the water outlet (Sout in Figure 1) of VFCWs unit and then detected. After
one cycle, the water in the wetland system was emptied for the next experimental cycles.

2.3. Kinetics Modeling

Two kinetic models were developed in this section to simulate the process of removing
nitrate nitrogen in VFCWs. Approach 1: assuming that the pollutant reduction process
conformed to the simplified first-order-CSTR model; Approach 2: assuming that the pollu-
tant reduction process conformed to the simplified Monod-CSTR model. The reason for
combining kinetics with CSTR flow pattern was that synthetic wastewater in VFCWs filled
with substrates would flow in all directions of the main flow direction, which conformed to
the CSTR flow pattern rather than the plug flow pattern. The simplified first-order-CSTR
model and simplified Monod-CSTR model were suitable for wetland systems contain-
ing substrates under intermittent inflow mode. Since the constructed wetland system
was packed with substrates and batch fed (in flushes) with wastewater, the local flow
direction of the wastewater at any random position was likely to diverge rapidly (by the
saturated and unsaturated substrates) from the bulk flow direction during downwards
flow, resembling CSTR flow pattern [22–24].

First-order kinetic model is described as follows:

dC
dt

= −kvCout (1)

where dC
dt represents concentration at time t (mg/L d), kv represents volumetric rate

constant (d−1), and Cout represents outlet pollutant concentration (mg/L).
The Monod kinetic model is described as follows:

dC
dt

= −Kmax
Cout

Chalf+Cout
(2)
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where Kmax represents maximum volumetric pollutant removal rates (g/m3 d); Chalf repre-
sents half saturation constant of limiting substrate (mg/L).

CSTR flow pattern in a reactor is described as follows:

dC
dt

+
1
τ

Cin =
1
τ

Cout (3)

where τ represents hydraulic retention time (d); Cin represents inlet pollutant concentration
(mg/L).

Combining Equations (1) and (3) resulted a simplified first-order-CSRT model as
expressed in Equation (4). Combining Equations (2) and (3) resulted in a simplified Monod-
CSRT model as expressed in Equation (5).

q (Cin−Cout)= K1Cout (4)

q (Cin−Cout) (Chalf+Cout)= K2Cout (5)

where q represents hydraulic loading (m3/m2 d), K1 represents areal rate constant (m/d),
K2 represents maximum areal pollutant removal rate (g/m2 d), and Chalf for NO3

−-N was
0.14 mg/L in Monod-CSRT model [25].

Coefficient of determination (R2), relative root mean square error (RRMSE), and model
efficiency (ME) were used to investigate the relationship between the predicted value
of the model and the experimental value. The present work compared the applicability
of first-order-CSRT model and Monod-CSRT model by analyzing these three statistical
indexes. R2 ranged from 0 to 1, and experimental data fitted better as R2 was close to 1. The
range of RRMSE was 0~∞. Low RRMSE illustrated that the predicted value was close to
the experimental value The range of ME was −∞ to 1, and the model could be applied to
describe the experimental results when ME was close to 1.The calculation formula of R2,
RRMSE, and ME were as follows:

R2 =
|∑N

i=1(xi − x)(yi − y)|2

∑N
i=1(xi − x)2 ∑N

i=1(yi − y)2 (6)

RRMSE =

√
(1/N)∑N

i=1(yi − ŷ)2

y
(7)

ME = 1−
N

∑
i=1

(yi − ŷ)2/
N

∑
i=1

(yi − y)2 (8)

where xi and yi are two sets of data, x and y are mean of the data, yi is experimental
results, and ŷi is predictive value.

3. Results and Discussion
3.1. Ammonia Nitrogen Removal Efficiencies of the Substrates

It could be seen from Figure 2a that the NH4
+-N treatment capacities of zeolite (Z),

quartz sand (QS), bio-ceramsite (BC), porous filler (PF), and PSM within 30 days gradually
decreased with the increase of time. The NH4

+-N removal efficiencies of zeolite, porous
filler, and PSM showed a similar trend of rapidly decline at first and then stabilizing. The
results of the three substrates indicated that adsorption rates of substrates were faster in the
early stage and then became stable when the dynamic equilibrium of adsorption–desorption
was achieved. The three substrates presented good NH4

+-N treatment efficiencies, and
the highest removal rate could reach more than 90%. However, the highest removal
rates of quartz sand and bio-ceramsite were only 56% and 65%, respectively. The order
of treatment performance of five substrates was PSM > zeolite > porous filler > quartz
sand > bio-ceramsite, while their average removal rates were 66.4%, 64%, 61%, 41.7%, and
33.3%, respectively. Figure 2b described that the NH4

+-N concentrations in a water body
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treated by the substrates were greatly reduced. In particular, the quality of effluent treated
with PSM, zeolite, and porous filler was improved from Class IV water to Class III water
(≤ 1 mg/L) and could meet Class III water standard within 30 days. The reasons for better
ammonia nitrogen removal efficiencies of PSM, zeolite, and porous filler were: (1) The
three substrates had larger specific surface area and pore volume, which improved the
electrostatic attraction and physical adsorption capacities of substrates [26], and (2) the
three substrates were rich in Si, Al, and K elements, which enhanced the ion exchange
between substrates and NH4

+-N [27].
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3.2. Total Nitrogen Removal Efficiencies of the Substrates

Figure 3a illustrated the TN removal efficiencies of all substrates gradually decreased.
While PSM, porous filler, and zeolite showed high ammonia nitrogen removal efficien-
cies, the three substrates also possessed good TN treatment performance, and the average
removal efficiency reached 49.1–58.1%. However, the removal rates of quartz sand and
bio-ceramsite were only 33.1% and 16.6%, respectively. The TN removal order of substrates
was PSM > porous filler > zeolite > quartz sand > bio-ceramsite. Further, the TN removal
capacities of selected substrates were lower than NH4

+-N removal rates, indicating that the
denitrification ability of microorganisms on these substrates was weaker than the adsorp-
tion ability of substrates. The reason was that adaptability of microorganisms attached to
substrates was weak at the initial stage, and the reproduction rate of microorganisms was
less than their extinction rate, and subsequently, microorganisms adapting to this environ-
ment grew stably. According to Figure 3b, the TN content in effluent treated by substrates
could meet the standard for Class IV water (≤1.5 mg/L) within 30 days. Specially, after
the treatment using PSM, porous filler, and zeolite, the effluent quality all reached Class
III water standard (≤1 mg/L). PSM had better denitrification efficiency than porous fillers
and zeolite. The reason for this result is that electron-donor-providing PSM cooperated
with microorganisms to convert nitrate nitrogen into nitrogen gas without addition of
carbon sources and promoted TN removal. In addition, high specific surface area and large
pore volume of PSM facilitated adhesion and growth of microorganisms, which further
promoted denitrification reaction [28]. Consequently, PSM has a great potential for TN
removal in VFCWs.
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3.3. Total Phosphorus Removal Efficiencies of the Substrates

Figure 4 exhibited TP removal efficiencies of five substrates, and the order of treat-
ment performance was PSM > bio-ceramsite > porous filler > quartz sand > zeolite. TP
removal efficiencies of PSM decreased first and then increased. The reason was that the
reaction capability of substrates, microorganisms, and nitrate nitrogen was weak in the
early stage, and released iron ions and aluminum ions were gradually decreased, resulting
in the weakening of the chemical reaction between metal ions and phosphate. With stable
reproduction of microorganisms, the metal ions were released from substrates into water.
Then, the complexation between metal ions and phosphate was promoted, which restored
the TP removal capacity of PSM with the average removal efficiency of 85%. TP removal
efficiencies of porous filler, zeolite, bio-ceramsite, and quartz sand dropped sharply within
20 days. After 10 to 15 days, TP removal rates of various substrates were lower than
0%. The effluent TP concentration rose to 0.3 mg/L, even higher than the original level,
because the phosphorus adsorbed by the substrates was partially desorbed and released
back into the water after these substrates reached adsorption equilibrium. Hence, PSM
was proven to be the best substrate for TP removal among the selected materials, which
increased the water quality from Class IV (0.3 mg/L) to Class III (0.2 mg/L) and stabilized
for 30 days. The main reasons for the remarkable performance of PSM were as follows:
(1) The iron ions and aluminum ions generated by substrates and microorganisms in the
nitrate nitrogen removal process would enhance complexation of metal ions and phosphate;
(2) PSM itself was rich in Fe and Mg elements, which was conducive to the complexation
reaction between metal ions and phosphate [29].
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3.4. Dynamic Simulation and Kinetics Analysis

In this section, simplified first-order-CSTR and Monod-CSTR models were used to
simulate the nitrate nitrogen removal processes based on zeolite, quartz sand, bio-ceramsite,
porous filler, and PSM. In Figures 5–9, the R2 values (R2 = ME) of Monod-CSTR model
are higher than that of first-order-CSTR model for the substrates. Meanwhile, the RRMSE
values of Monod-CSTR model were also lower, which illustrated that Monod-CSTR model
was more suitable for simulating and predicting the NO3

−-N removal processes. The
simulated rate coefficients (K2) of zeolite, quartz sand, bio-ceramsite, porous filler, and
PSM in the Monod-CSTR model were 0.7643 g/m2 d, 0.6392 g/m2 d, 0.3191 g/m2 d,
0.9717 g/m2 d, and 2.0021 g/m2 d, respectively. The results showed that the order of the
substrates in terms of the efficiency of contamination removal was consistent with the
experimental results: PSM > porous filler > zeolite > quartz sand > bio-ceramsite. The
experimental results are shown in Table 2. The order of R2 value of five substrates in
the Monod-CSTR model was porous filler > PSM > zeolite > bio-ceramsite > quartz sand.
Monod-CSTR model was successfully applied to simulate the NO3

−-N removal processes
that employed porous filler, PSM, and zeolite as substrates since the R2 values of the three
substrates were higher than 0.95. Based on the kinetics studies, the Monod-CSTR model
could be used to simulate and predict the denitrification process of PSM in VECWs.
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Table 2. Kinetic experimental data of five substrates for denitrification.

Cin

Zeolite Quartz Sand Bio-Ceramsite Porous Filter PSM

Cout
(mg/L)

Removal
Rate
(%)

Cout
(mg/L)

Removal
Rate
(%)

Cout
(mg/L)

Removal
Rate
(%)

Cout
(mg/L)

Removal
Rate
(%)

Cout
(mg/L)

Removal
Rate
(%)

1.25 0.75 40.00 1.00 20.00 1.16 7.20 0.56 55.20 0.59 52.80
1.50 0.76 49.33 1.00 33.33 1.25 16.67 0.68 54.67 0.63 58.00
1.75 0.96 45.14 1.16 33.71 1.47 16.00 0.70 60.00 0.65 62.86
2.00 0.96 52.00 1.20 40.00 1.54 23.00 0.74 63.00 0.66 67.00
2.25 0.99 56.00 1.40 37.78 1.69 24.89 0.79 64.89 0.68 69.78
2.50 1.10 56.00 1.38 44.80 2.05 18.00 0.88 64.80 0.76 69.60
2.75 1.29 53.09 1.71 37.82 2.06 25.09 0.99 64.00 0.74 73.09
3.00 1.38 54.00 1.65 45.00 2.31 23.00 1.05 65.00 0.78 74.00

4. Conclusions

Compared with the natural substrates (zeolite and quartz sand) and the existing
substrate (bio-ceramsite and porous filler), the new type of substrate (palygorskite self-
assembled composite material (PSM)) prepared in this paper displayed more remarkable
nitrogen and phosphorus removal performance. PSM was proved to be the best substrate
among the selected materials, with the highest NH4

+-N, TN, and TP removal efficiency.
For other substrates, zeolite and porous fillers also showed good removal performance
for NH4

+-N and TN, while the effluent quality also satisfied Class III water in China
(GB 3838-2002) within 30 days. Bio-ceramsite and porous fillers had high TP removal rates
at the beginning of the process, but their capacities for removing TP significantly dropped
after 18 days. Therefore, PSM with efficient and significant nitrogen and phosphorus
removal performance shows a possible potential for use in constructed wetlands. The
first-order-CSTR model and Monod-CSTR model were developed to describe the NO3

−-N
removal kinetics of the substrates. The prediction results using Monod-CSTR model
matched actual experimental results. The simulated kinetic coefficient for PSM was higher
than that of other substrates in Monod-CSTR model. The order of the substrates in terms
of the efficiency of contamination removal was PSM > porous filler > zeolite > quartz
sand > bio-ceramsite. Thus, the Monod-CSTR model was proven to be a suitable model for
prediction of denitrification process in VFCWs.
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