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Abstract: Identifying the effects of nitrogen (N) addition under key environmental factors and N
addition methods can aid in understanding the paradigm of N addition in wetland ecosystems. In
this study, we conducted a meta-analysis of 30 field studies of wetland ecosystems and selected
14 indicators. We found that the changes in soil TN and SOC contributed significantly to the changes
in microbial community structure under N additions. The environmental factors and N addition
methods altered the direction or size of N addition effects on wetland soil properties, microbial
diversity and key C and N cycling genes. N-limited conditions and climate conditions determined
the N addition effect direction on SOC, and saline-alkali conditions determined the N addition
effect direction on microbial diversity and AOB abundance. Environmental heterogeneity and N
addition methods determine the response of wetland soil to nitrogen application. Therefore, it is
crucial to study the effects of environmental factors and N addition methods on the N deposition of
wetland soils.

Keywords: nitrogen addition; meta-analysis; wetlands; soil microbial diversity; functional genes

1. Introduction

Atmospheric nitrogen deposition under the interference of human activities has be-
come an important part of the global N biogeochemical cycle and an important driving
factor of global change. Predictable increase of N deposition is an inevitable develop-
ment trend [1,2]. At the same time, the trend of N deposition cannot be ignored since it
can affect soil ecosystems significantly in temporal and spatial scales [3,4]. N deposition
promotes plant growth, leads to soil acidification [5,6], changes in microbial community
structure [7,8], and enzyme activity [9,10]. So, it is necessary to study the effects of N
deposition on soils.

N addition can affect soil biochemical properties, such as soil pH, TN content, mi-
crobial diversity [11], and the abundance of microbial functional genes [12], etc. It could
reduce microbial biomass and influence microbial community structure, which can form
a more active copiotrophic microbial community. Moreover, N addition could result in
soil acidification and decrease the decomposition of SOC. It is generally believed that N
addition decreases forest and grassland soil pH [13], which is caused by H+ input, NH4

+

nitrification, NO3
− leaching loss and plant absorption [14]. In most terrestrial ecosystems,

N addition reduced microbial biomass and microbial diversity [11]. The decrease of soil
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microbial diversity caused by the competition of other restricted resources between plants
and microorganisms and soil acidification [14]. Soil salinization will affect soil properties
and reduce soil TN [14]. N addition can increase N content and soil microbial biomass in
saline soil. Most ecosystems are affected by N limitation, and N addition can greatly allevi-
ate the N limitation, increase soil nutrients, promote plant growth, and increase microbial
diversity [11]. Studies on the effects of N addition on key functional genes of soil C and
N cycling are not systematic at present, mainly focusing on CH4 and N2O generation [15].
Carey [15] reported the impact of N fertilization on the abundance of ammonia oxidizing
archaea (AOA) and bacteria (AOB), and found that AOB are more responsive than AOA to
N fertilization.

A wetland is an ecosystem with many unique functions. Wetlands play an important
role in maintaining ecological balance and biodiversity species resources, reducing pollu-
tion and regulating climate. However, previous studies mainly focus on the forests [16],
grassland [17] and farmland ecosystem. The study of N addition affect wetland ecosystem
is relative lack. In addition, wetland soils have more spatial and temporal heterogeneities
of N-limited conditions [18], water level, and salinity [19]. Thus, the way in which environ-
mental factors and N addition methods affected wetland ecosystems and the degree of this
effect needs to be clarified [20]. We need to determine and quantify these key environmental
factors and N addition methods as well as the N addition effect.

Based on this concept, we integrated 54 N addition treatments from 30 articles to
study the effects of N addition on microbial diversity and key functional genes of C and N
cycling [21] in wetland ecosystems. We aimed to address the following questions: (1) What
are the relationships among soil chemical properties, microbial diversity, and abundance of
key functional genes of C and N cycling in wetlands under N addition conditions? (2) Do
the effects of N addition on soil chemical properties, microbial diversity and abundance
of key functional genes of C and N cycling depend on the environmental factors and N
addition methods? Which factors affect wetlands soil?

2. Materials and Methods
2.1. Data Collection

Peer-reviewed articles reporting the effects of N addition on soil microbes and func-
tional genes in wetland ecosystems were collected globally by searching the Web of Sci-
ence (http://apps.webofknowledge.com, accessed on 27 February 2021), Scopus (https:
//www.scopus.com, accessed on 27 February 2021), Wiley (https://onlinelibrary.wiley.com,
accessed on 27 February 2021) and China National Knowledge Infrastructure (CNKI)
databases before January 2021. The keywords and terms used for the literature online-
searching were (N addition OR N application OR N enrichment OR N fertilizer OR N
amendment OR N elevated) AND (microbial biomass OR microbial communities OR
functional genes) AND (wetland OR marsh OR swamp OR everglade OR moist soil OR
quagmire OR humidly). Articles satisfying the following criteria were included in this
meta-analysis: (1) N was directly added to the wetland ecosystem, and at least one of
the considered indicators was measured. (2) If the experiment included treatments other
than N addition, only control and N treatment data were selected. (3) The amount and
duration of N addition were recorded. (4) The mean value and sample size of the selected
indicators are available or can be calculated from relevant publications. There are 89 articles
corresponding to our subject were obtained. All raw data were extracted from the body of
the publication, tables, charts, and appendices. When the data were presented graphically,
GetData Graph Digitizer 2.24 was used to retrieve the digital data. We aimed to collect all
available functional genes, but only nifH, archaeal amoA, bacterial amoA, nirK, nirS, nosZ,
mcrA and pmoA had sufficient data for this meta-analysis. There are only 30 articles could
finally obtain effective data successfully. So, we selected the 30 papers as our meta-analysis
objects in the study.

A total of 54 N addition treatments from 30 articles were collected in this study
(Tables S1–S3; Text S1) [22–51], and a total of 103 data points were identified, including

http://apps.webofknowledge.com
https://www.scopus.com
https://www.scopus.com
https://onlinelibrary.wiley.com
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18 Shannon index observations and 13 Chao1 index observations (Table S1). Greater than
half of the data points were released in the past five years (2017–2021). Soil organic carbon
(SOC) (2.31–139.25), total nitrogen (TN) (0.37–65.01) and pH (4.46–8.2) also showed wide
variation ranges. Urea and ammonium nitrate (NH4NO3) are the most commonly used N
fertilizers. N addition type of included in our database were N (66.3%), NP (12.6%), NK
(2%), and NPK (19.1%). Nitrogen addition methods include nitrogen addition rate and
time. According to the amount of N addition, the following groups were established: low N
addition rate (0–50 kg N ha−1 year−1), medium N addition rate (50–200 kg N ha−1 year−1)
and high N addition rate (>200 kg N ha−1 year−1). Among them, 50% of the experiments
applied N at a rate of less than 50 kg N ha−1 year−1, 31.4% applied between 50 and
200 kg N ha−1 year−1, and 16.6% applied >200 kg N ha−1 year−1. According to the
length of N addition time, the following groups were established: short-term N addition
(0–10 years), medium N addition (10–20 years) and long-term N addition (>20 years). The
time of N addition was also short-term (0–10 years) and long-term (>20 years) N addition
was noted in 55.5% and 22.2% of studies, respectively. The hydrological condition is a large
important characteristic of wetland ecosystems. Generally, wetlands can be classified into
flooded wetlands and non-flooded according to hydrological conditions. Moreover, based
on climate zone, N-limited conditions, and saline conditions, we divided the wetlands
into temperate wetlands and subtropical wetlands, N-limited wetlands and N-unlimited
wetlands, and saline wetlands and freshwater wetlands. We used a meta-analysis [52] to
determine the effects of N addition on soil properties (pH, soil organic C (SOC) and soil
total N (TN)), soil microbial diversity (Shannon, Simpson, Chao1, ACE) [53], key soil C and
N cycling microbial functional genes (nifH, nirK, nirS, nosZ, AOA, AOB, mcrA, pmoA) [54]
and soil greenhouse gas (CH4, CO2) [55] emissions.

2.2. Statistical Analyses

Microbial diversity (Shannon index, H; Simpson index, D) and richness (Chao1 in-
dex) [53] were calculated using the following equations:

Shannon index(H) = −∑s
i=1 pilnpi, (1)

Simpson
′
s diversity index(D)= 1−

s

∑
i=1

pi
2, (2)

where pi is the proportion (n/N) of individuals of one particular species found (n) divided
by the total number of individuals found (N), and s is the number of species.

Chao1 = Sobs +
F2

1
2F2

, (3)

where Sobs is the total number of species observed in a sample; F1 is the number of singleton
species; and F2 is the number of doubleton species. Chao1 represents microbial richness,
whereas the Shannon index considers both richness and the relative abundance of different
groups. Therefore, Chao1 is more sensitive to rare species in the community. It could be
possible that the Shannon index increases while Chao1 decreases under the same treatment,
which generally would suggest the potential loss of rare species.

To facilitate the comparison of N addition effects among different studies, the responses
of these indicators involved in soil properties, soil microbial diversity and soil C and N
cycling genes to N addition were standardized. Meta-analysis methods are as follows: For
each study, the response ratio (lnR), which was defined as the “effect size”, was thus used
to estimate the responses of soil microbial diversity and soil C and N cycling genes to N
addition effects. The lnR was calculated as follows:

lnR = ln(Xt/Xc)= ln(Xt)− ln(X c), (4)
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Where Xt and Xc are the mean values for the N addition treatment and control,
respectively. The variance of effect size was calculated using the following equation:

v =
st

2

ntXt2 +
sc

2

ncXc2 , (5)

where st and sc represent the standard deviation of the treatment and control groups, re-
spectively; nt and nc are the sample sizes for the treatment and control groups, respectively.
For each study, we calculated the weighting factor (w) with the following formula:

wij =
1
v

, (6)

The weighted mean response ratio (lnR++) was calculated from the RR of individual
pairwise comparisons between the treatment and control:

wij =
1
v

, (7)

lnR++ =
∑m

i=1 ∑k
j=1 wijlnRij

∑m
i=1 ∑k

j=1 wij
, (8)

where m is the number of groups (e.g., N addition rates), and k is the number of compar-
isons in the ith group. The SE of the lnRij (s (lnR++)) was calculated as follows:

s(lnR++) =

√
1

∑m
i=1 ∑k

j=1 wij
, (9)

If the number of data points used for assessing lnR++ of a concerned variable was
greater than 20, the 95% CI was calculated as follows:

95% CI = lnR++±1.96s(lnR++) (10)

If the number of data points was less than 20, the bootstrapping method was used
to obtain the lowest and highest 2.5% values as the bootstrap confidence based on 5000
iterations. If the 95% CI overlapped with zero, then it was considered an insignificant
N-induced response. The percentage changes in the variables induced by N addition were
measured as follows:

Effect size(%) =
(
exp(lnR++)− 1

)
×100% (11)

2.3. Structural Equation Modelling

We constructed a structural equation model (SEM) to determine the relationship
among wetland soil properties, soil microbial diversity and microbial function. We com-
pared the covariance matrix of implicit variance and observed variance. The maximum
likelihood estimation method is used to fit the data into the model. Given that some of the
variables introduced are not normally distributed, the probability that the path coefficient
is different from zero is tested using a bootstrap method. To simplify the model, we deleted
the unimportant path with low path coefficient. Then, the model was recalculated. Chi-
square (χ2) was used to test the overall goodness of fit of structural equation models. When
the χ2/DF model fitting index was between 0.00 and 3.00 and the p value was greater than
0.50, the structural equation model was considered acceptable.



Water 2022, 14, 1748 5 of 13

3. Results
3.1. The Effects of N Addition on Wetland Soil Properties Subsection

Firstly, across all of the studies, we found that N addition promoted soil acidification,
decreased pH by 28% (95% CI: −0.758, 0.088), increased SOC by 34% (95% CI: −0.1, 0.688)
and increased TN by 32% (95% CI: −0.283, 0.844) (Figure 1).
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Figure 1. Effect of N addition on soil properties (a) pH; (b) SOC; (c) TN and 95% confidence intervals
(CIs). Vertical lines are drawn when the effect size is zero. Special symbols represent the effect sizes.
The sample size is noted above each value. N, N fertilizer only; NPK, N P K fertilizer; 0–50, N
addition rate is 0–50 kg N ha−1 year−1; 50–200, N addition rate is 50–200 kg N ha−1 year−1; 200+,
N addition rate is >200 kg N ha−1 year−1; 0–10, N addition time is 0–10 years; 10–20, N addition
time is 10–20 years; 20+, N addition time is >20 years; tem, temperate wetlands; sub, subtropical
wetland; dry, non-flooded wetland; wet, flooded wetland; limited, N-limited wetlands; unlimited,
N-unlimited wetlands; fresh, freshwater wetlands; salt, saline wetlands.

Secondly, we analyzed the effects of N addition on soil properties under different
environmental conditions and different N addition methods. The specific results are as
follows. SOC and TN increased by 151% and 96% in temperate wetlands but reduced by
33% and 26% in subtropical wetlands. SOC and TN increased by 78% and 72% in N-limited
wetland but decreased by 67% and 80% in N-unlimited wetland (Figure 1).

Under low N addition rate, soil pH and TN decreased by 50% and 10%, and SOC
increased by 170%; under medium N addition rate, soil pH, SOC and TN increased by
32%, 8% and 56%; under high N addition rate, SOC decreased by 8%, and soil pH and TN
increased by 168% and 203%. Under short-term N addition, soil pH and TN decreased
by 31% and 14%, whereas SOC increased by 78%; under medium-term N addition, soil
pH decreased by 47%, and SOC and TN increased by 82% and 182%; under long-term N
addition, soil TN and SOC decreased by 69% and 14%, and soil pH increased by 758%
(Figure 1).

3.2. The Effects of N Addition on Wetland Soil Microbial Diversity

Firstly, across all of the studies, N addition reduced the soil microbial diversity: the
Shannon index decreased by 8% (95% CI: −0.475–0.303), the Simpson index decreased by
49% (95% CI: −1.144–−0.2), the Chao1 index decreased by 53% (95% CI: −1.19–−0.2), and
the ACE index decreased by 24% (95% CI: −1.89–1.33) (Figure 2).
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Figure 2. Effect of N addition on microbial diversity (a) Shannon index; (b) Simpson index; (c) Chao1
index and 95% confidence intervals (CIs). Vertical lines are drawn when the effect size is zero. Special
symbols represent the effect sizes. The sample size is noted above each value. N, N fertilizer only;
NPK, N P K fertilizer; 0–50, N addition rate is 0–50 kg N ha−1 year−1; 50–200, N addition rate
is 50–200 kg N ha−1 year−1; 200+, N addition rate is >200 kg N ha−1 year−1; 0–10, N addition
time is 0–10 years; 10–20, N addition time is 10–20 years; 20+, N addition time is >20 years; tem,
temperate wetlands; sub, subtropical wetland; dry, non-flooded wetland; wet, flooded wetland;
limited, N-limited wetlands; unlimited, N-unlimited wetlands; fresh, freshwater wetlands; salt,
saline wetlands.

Secondly, we analyzed the effects of N addition on soil microbial diversity under
different environmental conditions and different N addition methods. The specific results
are as follows. The Simpson index increased by 4% and Chao1 index decreased by 4% in
temperate wetlands; the Shannon index, Simpson index, and Chao1 index decreased by
9%, 64%, and 57% in subtropical wetlands. The Shannon index of wetland soil decreased
by 39% in N-limited wetland but increased by 703% in N-unlimited wetland (Figure 2).

Under low N addition rate, the Simpson index and Chao1 index decreased by 50%
and 24%, whereas the Shannon index increased by 52%; under medium N addition rate, the
Shannon index, Simpson index and Chao1 index decreased by 39%, 43% and 53%; under
high N addition rate, the Simpson index and Chao1 index decreased by 96% and 98%, and
the Shannon index increased by 9%. Under short-term N addition, the Simpson index and
Chao1 index decreased by 62% and 51%, and the Shannon index increased by 11%; under
medium-term N addition, the Shannon index and Chao1 index decreased 85% and 4%,
whereas the Simpson index increased 93%; under long-term N addition, the Shannon index
and Chao1 index decreased by 35% and 84%, whereas the Simpson index increased by
3% (Figure 2).

3.3. The Effects of N Addition on Key Wetland Soil C and N Cycling Genes

Firstly, across all of the studies, N addition increased the abundance of most of the key
microbial functional genes in C and N cycling in wetlands. The abundance of nifH, AOA,
AOB, nirK, nirS, nosZ and mcrA functional genes increased by 394% (95% CI: 0.725–2.481),
1080% (95% CI: 0.893–4.043), 21% (95% CI: −0.750–1.135), 4% (95% CI: −0.811–0.898), 69%
(95% CI: −0.367–1.414) and 60% (95% CI: −0.43–1.37). Only the gene abundance of pmoA
decreased by 92% (95% CI: −4.094–−1.067) (Figure 3).
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Figure 3. Effect of N addition on functional genes (a) nifH; (b) AOB; (c) nirS; (d) nosZ in microbial
C and N cycles and 95% confidence intervals (CIs). Vertical lines are drawn when the effect size
is zero. Special symbols represent the effect sizes. The sample size is noted above each value. N,
N fertilizer only; NPK, N P K fertilizer; 0–50, N addition rate is 0–50 kg N ha−1 year−1; 50–200, N
addition rate is 50–200 kg N ha−1 year−1; 200+, N addition rate is >200 kg N ha−1 year−1; 0–10, N
addition time is 0–10 years; 10–20, N addition time is 10–20 years; 20+, N addition time is >20 years;
tem, temperate wetlands; sub, subtropical wetland; dry, non-flooded wetland; wet, flooded wetland;
limited, N-limited wetlands; unlimited, N-unlimited wetlands; fresh, freshwater wetlands; salt,
saline wetlands.

Secondly, we analyzed the effects of N addition on key wetland soil C and N cycling
genes under different environmental conditions and different N addition methods. The
specific results are as follows. AOB gene abundance increased by 100% in temperate
wetlands, and nifH increased by 489% in subtropical wetlands. In addition, nifH gene
abundance increased by 397% in N-limited wetlands, and pmoA decreased by 100% in
N-unlimited wetlands. Moreover, nifH and AOB increased by 729% and 81%, in saline
wetlands (Figure 3).

Under low N addition rate, the abundance of nirS and pmoA genes decreased by 29%
and 87%, whereas the abundance of nosZ AOB and mcrA genes increased by 118%, 24% and
110%; under the medium N addition rate, the abundance of nosZ and mcrA genes decreased
by 7% and 17%, whereas the abundance of nifH and AOB genes increased by 450% and
100%; under high N addition rate, the abundance of nifH, nirS and AOB genes increased by
360%, 57% and 66%. Under short-term N addition, the abundance of nosZ and AOB genes
decreased by 54% and 24%, whereas the abundance of nifH and nirS genes increased by
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729% and 40%; under medium-term N addition, the abundance of nirS and AOB decreased
by 21% and 66%, whereas the abundance of nosZ increased by 126%; under long-term N
addition, the abundance of nifH and nosZ genes increased by 360% and 325% (Figure 3).

4. Discussion
4.1. Relationships among Different Indicators under the Effects of N Addition

To reveal the relationships among indicators under N addition, a SEM was constructed
(Figure 4). We found that the changes in soil TN and SOC could explain the changes
in soil microbial community structure better than pH under N addition. The change in
SOC explained the change in microbial diversity [54] and the change in abundance of key
microbial functional genes (except denitrifying functional genes) in the C and N cycle. The
change in soil pH only explained the change in C sequestration gene abundance. These
results indicated a sensitive feedback relationship between SOC and TN and soil C and
N cycling after N addition. Compared with pH, the changes in nutrients and C sources
were important factors determining the changes in microbial community structure under N
addition. This finding also explains why the SOC and microbial diversity we found in 4.2
have the same response pattern to wetland environmental factors (Figures 1 and 2; Table 1).
The change in mrcA gene abundance could not explain the change in SOC, and the change
in SOC under N addition might be mainly determined by plant biomass accumulation.
Besides TN and SOC, the changes in microbial diversity also resulted from the changes in
the abundance of nitrification [55] and denitrification functional genes. Changes in nifH
abundance did not contribute to changes in microbial diversity but contributed to methane
emission to a certain extent since methanogenic archaea were the main hosts and expression
groups of nifH in swamps [56]. N fixation is closely related to methane production.
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Figure 4. Structural equation model (SEM) depicting the effect of multiple drivers on the response
ratio of soil microbial diversity and key functional genes. SOC, TN, and pH are reported as the
response ratios of SOC, TN, and pH under N addition. R2 represents the ratio of microbial diversity
to the response ratio of C/N function explained by these drivers. The number next to the arrow is the
normalized path coefficient, which is similar to the relative regression weight and indicates the extent
of the influence of the relationship. χ2, chi-square DF; DF, degree of freedom; p, probability level;
nonsignificant χ2 test (p > 0.05) and CFI values greater than 0.90 are considered acceptable.
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Table 1. Effect of N addition on wetland microbial community structure under wetland environmental
factors and N addition methods.

Wetland Environmental Factors N Addition Methods
Climate

Conditions
Saline-Alkali
Conditions NLC 1 NAT 2 NAR 3

Different effect
directions SOC, Simpson AOB, Shannon SOC, Shannon Simpson pH

Significant
different effect size nifH, AOB, Chao1 nifH pmoA nifH nifH, Chao1

No Significant
effect

pH, TN, Shannon,
nirS, nosZ, mcrA

pH, SOC, TN, nirS,
nosZ, mcrA pH, TN, nirK

pH, SOC, TN,
Shannon, Chao1,
nirK, nirS, nosZ

SOC, TN, Shannon,
Simpson, nirK,

nirS, nosZ, AOB,
mcrA

1 N limited condition. 2 N addition time. 3 N addition rate.

4.2. Wetland Environmental Factors and N Addition Methods Affect the Direction and Extent of
the N Addition Effects

N addition effects derived from all of the studies could not represent the effects un-
der different environmental factors and N addition methods. Wetland environmental
factors and N addition methods determine the direction of N addition effects on some
indicators of soil properties, microbial diversity and the abundance of key microbial func-
tional genes in C and N cycling (Figures 1–3; Table 1). N-limited conditions and climate
conditions determined the N addition effect direction on SOC (Table 1). The wetland C
sequestration function mainly depends on the trade-off between plant C input and SOC
decomposition [57–61]. In general, N addition could both increase plant biomass and
SOC decomposition. The changes in SOC induced by N addition showed that N addition
had an asymmetric effect on plant biomass accumulation and SOC decomposition. Our
results demonstrated that with the increase of N addition rate, the plant C input and SOC
decomposition also changed, SOC content decreased. Plant biomass had greater response
to N addition than SOC decomposition under N-limited conditions, which had a smaller
response under N-unlimited conditions. Saline-alkali conditions determined the N addition
effect direction on AOB abundance (Table 1). As ammonia-oxidizing bacteria (AOB) grow
in neutral environments, soil acidification after N addition could inhibit the growth of
AOB [62]. Saline-alkali wetlands can neutralize soil acidification caused by N addition and
alleviate the adverse effects of N addition on soil microorganisms [63]. Opposite effects of
N addition on SOC and the microbial diversity index were significant in temperate and
subtropical wetlands. Therefore, to clarify the evolution of the wetland C sequestration
function under the background of global change, it is necessary to reveal the interaction
between N deposition, N-limited conditions and climate conditions, instead of studying N
deposition and the ecological effect as a single factor. In the aspect of N addition methods,
soil acidification just occurred under medium and high N addition rate (Figure 1). The pH
did not significantly decrease under low N addition rate which might be due to the large
uptake of inorganic N by plant roots and microorganisms and the buffering properties of
the soil itself.

Besides the above, environmental factors and N addition methods did not change the
direction of the effect but significantly changed the size of the effect on some indicators
(Table 1). As the N addition rate increased the decrease in the Chao1 index increased by
74%. The Chao1 index is indicative of the richness of microorganisms, especially for rare
species [64–66]. This finding indicates that the increase in the N addition rate is more
detrimental to rare soil microorganism species [66,67].

Considering all of the environmental factors and N addition methods, N addition
increased the soil nifH abundance. The nifH is a functional gene encoding nitrogenase
reductase during N fixation [68–71]. It is generally believed that biological N fixation is
a high energy consumption process [72–74], and the biological N fixation process will be
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reduced when N is sufficient in terrestrial ecosystems [75–77]. However, methanogens are
the main N-fixers in wetlands. The methane generation process of the C cycle is directly
related to the N fixation process [78–80]. In addition, plant root exudates, sugars, and
litters promote nonsymbiotic N fixation in wetlands [80,81]. N addition can increase the N
fixation process by increasing the available C in wetlands.

5. Conclusions

The changes in soil TN and SOC contributed significantly to the changes in microbial
community structure under N additions. Environmental factors and N addition altered the
direction or size of N enrichment roles, soil physical and chemical properties, microbial
diversity, and key C and N cycling genes in wetlands. The N-limited conditions and climate
conditions determined the effect of N addition on SOC content. The saline-alkali conditions
determined the effect of N addition on soil microbial diversity and AOB abundance. This
study clarified the type of wetlands by environmental factors. This study enriched the
cognition of effects of N addition on wetland soils under different wetland classification. It
is of great significance to guide wetland protection and restoration under the background
of global change. Due to the fact that N and OC play important roles in wetland soils under
N addition, it is strongly recommended that future studies focus on the dynamics of N
species and SOC.
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Simpson index, microbial ACE index, Table S3: Effects of nitrogen (N) addition on the abundance of
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gas emissions. (GHG), Text S1: A list of 30 primary studies from which the data were extracted for
this meta-analysis.
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