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Abstract: In this study, electrical resistivity was applied in six 400 m profiles around the Hulene-B
waste dump (Mozambique). Afterwards, an inversion was performed by RES2Dinv. The use of
the electrical resistivity method allowed us to characterize in detail some underlying aspects of the
DRASTIC index by identifying anomalous zones considered to be permeable and prone to leachate
migration. The modified DRASTIC index revealed high values in areas near contaminated surface
groundwater and surface layers of the vadose zone, characterized by low resistivities. Areas with
lower index results were characterized by high resistivity on surface layers and high depth at which
groundwater was detected. The overall modified DRASTIC index result revealed medium vulnera-
bility. However, high vulnerability index values were detected in areas with higher surface elevation,
suggesting groundwater contamination by horizontal dilution of leachates from the surrounding area
of the Hulene-B waste dump.

Keywords: resistivity; anomalous zones; modified DRASTIC model; groundwater vulnerability

1. Introduction

Urban areas are characterized by excessive production of solid waste [1], which is
often deposited in areas not prepared for disposal or treatment, thus posing a risk of envi-
ronmental contamination [2]. Soils and groundwater are described as extremely vulnerable
to pollution [3]. The concept of groundwater vulnerability was first described in the early
1960s, aiming to identify areas prone to contamination [4]. Groundwater vulnerability
depends not only on its flow system properties but also on contaminant sources’ proximity,
and contaminant characteristics, among other factors. These can promote potential contam-
inants to reach groundwater resources [5]. In urban areas, one of the main groundwater
contamination sources is leachates, resulting from the decomposition of solid urban waste
deposited without treatment in unplanned locations [6].

Several non-invasive models have been developed to assess groundwater vulnerability,
of which geophysics, in particular electrical resistivity, and the DRASTIC hydrogeological
model are pointed as the most relevant [7]. The electrical resistivity method has been used
for locating hazardous waste in depth, and to identify different sources of contamination
in subsurface environments [8,9]. Has been widely used to detect areas with heavy metal
contamination plumes [10], groundwater [7] and lithological variations [11].

The DRASTIC model was defined by Aller, [12]. Seven hydrogeological parameters are
included, being acronyms of the term “DRASTIC”, Depth of water table, net area Recharge,
Aquifer media, Soil media, Topography vadose zone impact, and hydraulic Conductivity.
This model has been applied to assess groundwater vulnerability in relatively large urban
areas (>40 ha) [13,14]. Shah et al. [15], Arowoogun et al. [16], Dhakate et al. [17] and
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George [18] showed its effectiveness when combined with electrical resistivity to study
contamination plumes migration, with different sources (e.g., dumps, mines, cemeteries)
and estimate groundwater vulnerability.

Voudouris’s [14] recent study on the application of the DRASTIC model to assess
groundwater vulnerability suggested the use of the DRASTIC method in areas >40 ha,
combined with GIS. Shah et al. [15] applied the DRASTIC model and electrical conduc-
tivity to evaluate groundwater vulnerability in Pakistan, revealing lithology significance
on different resistivity and contamination flow. Other studies by George [18] demon-
strated that groundwater vulnerability analysis, using a combination of electrical re-
sistivity and DRASTIC, was successfully achieved. Islami et al. [19] successfully com-
bined resistivity and DRASTIC methods around the Pekanbaru dumpsite in Pekanbaru,
Indonesia. Additionally, the original DRASTIC model was extensively modified to en-
hance groundwater vulnerability studies around landfills and dumpsites, e.g., El Naqa [20];
Vosoogh et al. [21]; Santhosh et al. [22]; Mohammadi et al. [23]. The modified DRASTIC
model allows the incorporation of other variables that influence groundwater vulnerabil-
ity [22]. Vosoogoh et al. [21] applied the modified DRASTIC (land use “L” effect) model to
study older and recent landfills in Iran. The same method was used to study groundwater
vulnerability around a landfill in Nigeria [24]. However, there are few studies that applied
electrical resistivity and modified DRASTIC methods in smaller areas without using the
layer interpolation method (DRASTIC factors), which is often pointed to create greater
spatial bias, being the less obvious choice of specific areas for structural intervention [24].

Previous studies on groundwater in Mozambique, particularly in Maputo city, con-
sidered it vulnerable to contamination due to the hydrogeological context characterized
by its shallow level and high urban growth without adequate planning and sanitation sys-
tems [25,26]. Hulene-B, the largest open-air dump in Mozambique (~17 ha) and its influence
on soil and groundwater contamination due to horizontal and vertical leachate migration
has been studied [27,28]. This study aims to integrate electrical resistivity and the modified
DRASTIC model to identify anomalous leachate migration and to estimate groundwater
vulnerability in the surrounding area of the Hulene-B waste dump, Maputo, Mozambique.

2. Materials and Methods
2.1. Study Area

The Hulene-B waste dump is considered the largest in Mozambique [29], and is
located in Maputo city (Figure 1), surrounded by Hulene-B and Laulane residential areas,
with approximately 49,000 inhabitants [30]. The immediate area of the dump was densely
populated until February 2018, when the fall of a large mass of wastes caused the collapse of
32 houses and the death of 18 inhabitants, which led to the forced removal of the population
within a range of 50 m to the dump [31]. The Hulene-B dump, an abandoned quarry with
no previous preparation for waste deposition receives all types of wastes produced in
Maputo City, e.g., domestic, industrial, medical, and construction [32,33]. The height of the
waste is estimated to be between 6 and 15 m in depth, in an area of ~17 ha [34,35].

Geologically, the Hulene-B waste dump is in the Mesocenozoic sedimentary basin, in
southern Mozambique [36] in a contact zone of two lithologies (Ponta Vermelha TPv, and
Malhazine QMa Formations) [27] (Figure 2). The Ponta Vermelha Formation dates from the
upper Pliocene to the lower Pleistocene, being composed in the upper part of ferruginous
sandstones and red silty sands, which gradually change to yellow and whitish sands [37].
On the surface this unit presents a red color, being poorly consolidated, and loose sands
may appear [26]. The Malhazine Formation, from the upper Pleistocene, consists of fine,
poorly consolidated sands with whitish to reddish colors, fixed by vegetation on successive
consolidation processes [26]. Waste deposition in the Hulene-B dump is mostly located in
QMa, spreading to the East (TPv).
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Figure 1. Study Area (a) intra dune depression; and (b) Hulene-B waste dump.

The eastern dump boundary corresponds to small slopes ranging from 52 to 54 m,
while the western boundary presents smaller slopes, ranging 32 to 34 m (Figure 2b).
Momade et al. [38] performed drillings L16 and L125 (Figure 2a) in two geological forma-
tions around the dump, showing that TPv formation underlain QMa, and TSa (Miocene-
Pliocene) is composed of clayey, calcareous sandstone with Ostrea cullata in its upper part.

Water 2022, 14, x FOR PEER REVIEW  3  of  19 
 

 

 

Figure 1. Study Area (a) intra dune depression; and (b) Hulene‐B waste dump. 

Geologically, the Hulene‐B waste dump is in the Mesocenozoic sedimentary basin, 

in southern Mozambique [36] in a contact zone of two lithologies (Ponta Vermelha TPv, 

and Malhazine QMa Formations) [27] (Figure 2). The Ponta Vermelha Formation dates 

from the upper Pliocene to the lower Pleistocene, being composed in the upper part of 

ferruginous  sandstones  and  red  silty  sands,  which  gradually  change  to  yellow  and 

whitish sands  [37]. On  the surface  this unit presents a red color, being poorly consoli‐

dated,  and  loose  sands may  appear  [26].  The Malhazine  Formation,  from  the  upper 

Pleistocene, consists of  fine, poorly consolidated  sands with whitish  to  reddish colors, 

fixed by vegetation on successive consolidation processes [26]. Waste deposition  in the 

Hulene‐B dump is mostly located in QMa, spreading to the East (TPv). 

The eastern dump boundary corresponds to small slopes ranging from 52 to 54 m, 

while  the western  boundary presents  smaller  slopes,  ranging  32  to  34 m  (Figure  2b). 

Momade et al. [38] performed drillings L16 and L125 (Figure 2a) in two geological for‐

mations around the dump, showing that TPv formation underlain QMa, and TSa (Mio‐

cene‐Pliocene) is composed of clayey, calcareous sandstone with Ostrea cullata in its up‐

per part. 

 

Figure 2. (a) Geological features; (b) study area topography; and (c) Hulene-B waste dump (adapt.
Momade et al. [38]).

The Hulene-B dump hydrogeological system is in the Tertiary-Quaternary aquifer
system [26]. The aquifer substrate is formed by a layer of clayey marl to grey clay [38].
The localized presence of the semi-impermeable layer (clayey sands), between fine and
coarse sand and sandstones, in the surroundings of the Hulene-B dump, causes water
circulation in these two sectors [28]. Coarse sands lie directly on top of the clay layer, in
some sections, promoting semi-confined conditions [25]. The water level on local wells
varies between 1.5 and 9.3 m in depth, with an average of 3.8 m [38]. Bernardo et al. [27]
used electrical resistivity profiles in 2020 and 2021, suggesting that groundwater in the
western boundary of the Hulene-B dump was at variable depths and with a potential
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risk of being contaminated by leachate plumes resulting from vertical and horizontal
migration, which, in the subsurface environment, were assigned d values 4.26 to 8.5 Ω.m.
The hydraulic conductivity was estimated to be 1 to 5 m/d on the surroundings of the
Hulene-B dump [28].

The predominant local climate is subtropical, with mean annual precipitation of
~789 mm, with two climatic seasons: (a) hot (mean 25 ◦C) rainy period from December to
March, representing >60% of the annual precipitation, with its peak in January (~125 mm);
and (b) dry and cold season, from April to September, with lower temperatures in June and
July (mean 21 ◦C), and scarce precipitation, whose minimum values recorded in August
(~12 mm) [39]. The prevailing winds are SE [40].

2.2. Electrical Resistivity

Electrical resistivity studies are based on electric current injected into the ground
through a pair of electrodes (A and B—current electrodes), and the resulting potential
difference between another pair of electrodes (M and N—potential electrodes) [41]. Ground
resistivity is calculated by distances between electrodes, applied current and measured
potential difference, based on the Law of Ohm [42].

The soil’s electrical resistivity is a characteristic closely linked to the type, nature,
and state of alteration of geological formations [8]. In areas with potential groundwater
contamination, it has been used for determining the depth of the groundwater table [43]
(Akhtar et al., 2021), determining the distribution of contamination areas and the direction
of migration of pollutants, assessing the thickness of wastes deposited in a landfill, and
identifying possible leachate plumes [41,44,45]. Soil apparent resistivity (ρa) can be deter-
mined based on the known difference between electric field potential (∆V), the current (I),
and the distance between electrodes [41], given by the equation:

ρa = k ∆V/I (1)

where ρa is apparent resistivity, I the intensity of current applied to the soil by electrodes
A and B (mA), ∆V the differential potential between electrodes M and N (mV), and k the
geometrical coefficient of electrode positioning (m). The geometrical factor k is dependent
on the distribution geometry of the electrodes, as follows:

k =
2π(

1
AM

− 1
BM

− 1
AN

+ 1
BN

) (2)

where AM, BM, AN and BN represent the geometrical distance between electrodes A and
M, B and M, A and N, and B and N, respectively.

In this study, 6 electrical resistivity profiles were performed in May 2021, of which,
4 were on the western border of the dump and 2 profiles were on the southern and northern
borders (Figure 3). Profile 3, on the north of the dump, was applied to understand the
possible migration of contaminants to areas further away from the dump (reference profile).

ABEM SAS 4000 was used for resistor data acquisition, including 4 rollers of 100 m
cables with 21 outlets connected to the same number of electrodes. The layout produced
by this sequence of cables corresponds to the standard of the reading program hosted by
the resistivimeter LUND Imaging System. Data acquisition employed a 50 Hz current
frequency, using GRAD4LX8 multigradient protocol, once provides dense coverage nearby
surface and adopts the Wenner–Schlumberger protocol (ABEM, 2018). The electrode spac-
ing for data acquisition was 5 m. All electrode take-outs were connected in the GRAD4S8
protocol. The resistivimeter automatically switches electrodes to serve as current or poten-
tial pairs. After the readings, data was transferred to the resistivimeter, which then takes
3 to 6 readings to obtain the smallest error average between readings. The inversion of
the electrical resistivity data obtained in the 6 lines was performed based on standards de-
fined in software RES2DINV3.59.106, namely, the application of the smoothness constraint
method in the resistivity values of the final model, calculation of the Jacobian matrix in
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each iteration, standard Gauss–Newton optimization method [46]. Profiles interpretation
was based on the direction of each profile over the entire length (400 m).
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2.3. Modified DRASTIC Groundwater Vulnerability

The DRASTIC model has been commonly used in areas where geographical, and
hydrogeological information is available and has been successfully applied in different
regions [15,47,48]. The word DRASTIC is an abbreviation of the initial letter of different
parameters such as ‘D’ to depth to water; ‘R’ to net recharge, ‘A’ to aquifer media, ‘S’
to soil media, ‘T’ to topography, ‘I’ the impact of the vadose zone media, and ‘C’ to the
hydraulic conductivity of the aquifer intrinsic vulnerability of groundwater is evaluated by
the DRASTIC index formula which is given below:

DRASTIC Index = DrDw + RrRw + ArAw + SrSw + TrTw +IrIw + CrCw (3)

where “r” is the rating value, and “w” is the weight assigned to each parameter. Each
factor is assigned a relative weight ranging from 1 to 5 (Table 1). Each DRASTIC factor
is divided into ranges that affect the contaminant potential. The range for each factor
lies from 1 to 10. The DRASTIC model depends on seven boundaries or layers, which
are used as input boundaries for modeling. Thus, the interpretation of the index follows
three categories: (i) indices <135 denote low vulnerability; (ii) indices between 135 and
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150 represent medium vulnerability; and (iii) indices >150 suggest a high vulnerability to
groundwater-related environmental impacts [6,12].

Table 1. DRASTIC parameters.

Factor Interval/Characteristics Value (r) Weight (w)

(D)
Groundwater depth (m)

0–1.5 10

5

1.5–4.6 9

4.6–9.3 7

9.3–15 5

15–23 3

23–30 2

>30 1

(R)
Net recharge rate (mm/year)

0–50 1

4

50–100 3

100–175 6

175–250 8

>250 9

(A)
Aquifer media Sand 7 3

(S)
Distance between the anomalous

surface layer and groundwater

0–1.5 10

2

1.5–4.6 9

4.6–9.3 7

9.3–15 5

15–23 3

23–30 2

>30 1

(T)
Terrain slope (%)

0–2 10

1

2–6 9

6–12 5

12–18 3

>18 1

(I)
Vadose Zone

Sandstones 4–8

5

Limestones,
sandstones, and shales 4–8

Sands and gravels
with significant silt

and clay content
4–8

Sands 8

(C)
Hydraulic conductivity (m/day)

1–4.1 1

3

4.1–12.2 2

12.2–28.5 4

28.5–40.7 6

40.7–81.5 8

>81.5 10
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In this study we applied the modified DRASTIC model combined with electrical resis-
tivity data. This allows a specific assessment of the vulnerability of the dump surrounding
area, based on the distance between anomalous surface layer (low resistivity; leachate
influenced) and groundwater. The soil variable was replaced since soils around the landfill
were classified as sandy, which is characteristic of the whole surroundings [38]. Thus, ‘S’
corresponds to the distance between the superficial anomalous layer and groundwater.
Values and weights of the variables were kept the same as for soil, given processes similarity,
controlled by these factors (migration and attenuation of leachate). Layers spatial distri-
bution was not made, given detailed description for each factor in depth and superficial
slight change, as well as study area size [49,50].

For resistivity models and groundwater vulnerability validation, groundwater depth,
pH and sulphates (PO4

3−) were measured in two wells in the surroundings of the dump
(Figures 3 and S1). Chemical analysis of total phosphate was performed with an HI96713,
with a resolution level of 0.01 mg/L (Figure S1).

3. Results
3.1. Resistivity Models and Potential Contamination Risk

For the analysis of the profiles, the resistivity values of the profiles were adjusted
to the same scale so that each color of the contour in the resistivity model implies the
same resistivity value (Figure 4). In this study, the electrical resistivity models were
analyzed to identify the possible influence of leachate on groundwater contamination.
Thus, anomalous zones that may reflect the leachate migration and contamination process
were identified: (i) leachate generation and migration areas (7.99–16.8 Ω.m); (ii) saturated
zones contaminated by leachate (4.96–7.99 Ω.m); (iii) groundwater and surface water
contaminated by leachate (1.535–7.99 Ω.m); (iv) waste and lithologies local (>16.8 Ω.m).
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Profile 1, from south to north of the dump (Figure 5a), is superficially characterized
by high resistivity associated with rubble, house debris and compacted waste in non-wet
environments from 0 to 35 m. From 240 to 280 m there were zones with a rather hetero-
geneous anomalous resistivity, which were considered leachate generation and migration
zones, (7.99–16.8 Ω.m) given the strong accumulation of surface leachates resulting from
the E-W movement (profile 2) that are diluted with the surface waters, causing possible
contamination (280 to 400 m) (1.535–7.99 Ω.m). At medium depths 30–56.5 we note the
predominance of a vast layer throughout the length of the profile that we interpret as TPv
lithologies, less resistive (12.9–16.8 Ω.m) given the possible influence of horizontal migra-
tion at depth described in profile 2. At deeper levels between 47 and 56.5 m, anomalous
zones are observed, which were considered as lithologies influenced by horizontal leachate
migration and possible contaminated groundwater (>45 m depth) (1.535–7.99 Ω.m).

Profile 2, along the W-E direction (Figure 5b), is quite heterogeneous, with high surface
resistivities from 0 to 140 m, which represents rubble, old house debris, and waste buried in
a non-wet environment west of the dump, followed, from 140 to 160 m, by a zone of possible
migration of surface leachate into the subsurface environment, causing an extensive zone
of subsurface anomalies, which were considered as lithologies contaminated by strong
horizontal migration of leachate with E-W direction (7.99–16.8 Ω.m) and saturated zone of
contaminated groundwater (1.535–7.99 Ω.m), differentiated levels of semi-confinement of
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aquifers. From 245 to 400 m depths, there were local anomalies and lithologies with higher
resistivities, corresponding to highly compacted waste with diverse contents. At depths
ranging from 30 to 160 m, semi-confined anomalies (<8.35 m depth) and aquifers (>10 m
depth) separated by semi-saturated layers were noted, demonstrating the existence of a
possible continuous connection between the two. These characteristics were described as
conducive to groundwater contamination at various depths, mainly in the surroundings
of the Hulene-B waste dump, where surface leachate flows were noted with successive
enrichment of lithological layers (7.99–16.8 Ω.m).

1 
 

 

Figure 5. Profiles of the variation of the electrical resistivity in the study area.

Profile 3 (Figure 5c) north of the dump in the S-N direction, to study possible dynamics
of groundwater contamination, ~300 m away from the dump. The profile at the surface level
exhibited generally high resistivities, alternating between rubble and highly compacted
soils. At the deeper level (>40 m) in the southern end, an anomalous zone was found and
considered as contaminated lithologies (7.99–16.8 Ω.m). This anomaly was associated with
the horizontal and vertical migration of leachate described in profile 2.

Profile 4, in the NE-SW direction (Figure 5d), from the starting point to 150 m, showed
generally high resistivities associated with compacted residues and rubble of old houses.
From 150 m depth to the end of the profile, a continuous decrease in resistivity was
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observed, which can be associated with saturated and wet areas with origin in a natural
receiving basin where new waste deposits were observed, a localized source of dilution,
and vertical migration of leachate and groundwater contamination (<7.99 Ω.m).

Between 300 and 310 m, relatively high resistivities were found, associated with waste
deposited in the intra dune depression with low surface moisture level. From 320 m to the
end of the profile, a shallow aquifer was evident (<7.99 Ω.m), as this area corresponds to the
end of the depression (SW) with a surface covered by humid soils, evidenced by low surface
resistivities. Between 6 and 56 m in depth, was noticed a large anomaly (16.3–7.99 Ω.m)
related to surface influence by leachates propagated to greater depths (>37.4 m) causing
possible groundwater contamination (<7.99 Ω.m).

Profile 5, with a west-east orientation, was at the southern end of the dump (Figure 5e).
The electrical resistivity results did not display significant changes at surface level and
showed higher resistivities associated with compacted soils and rubble (including road
asphalt where the profile was executed). This road, besides being in the southern boundary
of the dump, is an access route to the interior of the Hulene-B neighborhood. Between
130 and 145 m (>40 m depth) extended a resistive zone of low anomalous values, which
were interpreted as lithologies that might influence leachate migration (7.99–16.8 Ω.m Ω.m)
and possible water contamination by the vertical movement of leachates (1.535–7.99 Ω.m).

Profile 6, this profile was taken at the eastern limit of the dump, along the S-N direction,
between the dump and Julius Nyerere Avenue (Figure 5f). From the starting point to 200 m,
there were resistivities with average profile values (12.9–33.4 Ω.m). These resistivities
suggested soils with different levels of compaction and surface moisture that may be
associated with various activities south of the dump. The resistivity of 33.4–53.8 Ω.m
corresponding to a superficial but thick layer, between 160 and 200 m, indicated compacted
soils at the entrance of the dump. From 8.6 m depth, higher resistivity values (>70.3 Ω.m)
were noted which may be related to the sandstone stratum with different levels of alteration,
typical of the TPv formation [25]. Onwards, in the northern direction, resistivity starts to
decrease successively (<27.05 Ω.m) along thick layers with moisture levels that increase
until to groundwater (<10.44 Ω.m).

The saturated area occupied a large space, revealing the existence of an E-W ground-
water flow parallel, to the dune slope where the leachate is located. The groundwater
contamination process at this point may be occurring horizontally due to leachate diffusion,
causing localized anomalous resistivities (<10.445 Ω.m) close to the groundwater resistivity
(<7.99 Ω.m). From 240 m, resistivity begins to decrease, generating localized anomalous
zones in the subsurface, which are associated with vertical leachate migration, pointing to
the occurrence of two isolated “hot spots”. Between 240 and 280 m, below the first “hot
spots”, there was a tendency for a significant increase in resistivity, which may correspond
to less saturated layers up to the least conductive stratum (>33.4 Ω.m). Profile data showed
the existence of two mechanisms of possible saturated zone and groundwater contamina-
tion which were, horizontal dilution in the south and center of the profile, and vertical
migration (<16.8 Ω.m) and retention of leachate in localized “hot spots”.

3.2. Modified DRASTIC Index
3.2.1. Depth to Water Table (D)

Aller et al. [12] refer that the depth of the water table determines the depth through
which a contaminant moves before reaching the aquifer and determines the contact time
with the surrounding media. Thus, a greater possibility of contamination mitigation occurs
when the depth of the water table is greater because a deeper water table implies more
travel time and less vulnerability to contamination [13]. Thus, the deeper the phreatic
table implies more travel time and less vulnerability to contamination [13,47]. On the
eastern, southwestern and northern boundary of the dump (area covered by profiles
6, 4, 2 and 1), subsurface waters and groundwater were detected between 1.5 and 4.6 m,
and on the southern, northern and western boundary at depths >30 m (area covered by
profiles 5 and 3). Results for the eastern border southwest and northwest were similar to
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those published by [28], who classified the predominant aquifers in Maputo city as shallow
and phreatic aquifers, estimating their average depth between 1.5 and 9.3 m. DRASTIC
parameters of 9 and 1, respectively, were assigned, and D = 5 (Tables 1 and 2).

Table 2. Parameter values considered in the DRASTIC Index.

Characteristics of the Surroundings of the
Waste Dump P1 P2 P3 P4 P5 P6 Mean

Depth of groundwater level 45 45 5 45 5 45 31.6

Recharge capacity 32 32 32 32 32 32 32

Sands 21 21 21 21 21 21 21

Distance of anomalous surface layer
and groundwater 20 20 2 20 2 20 14

Plan, soft dune and interdune depression 10 5 10 10 5 10 8.3

Sands 40 40 20 40 20 40 33.3

Hydraulic conductivity 6 6 6 6 6 6 6

DRASTIC index: 174 169 96 174 91 174 146.3

P—Profile.

3.2.2. Net Recharge (R)

Net recharge is the amount of surface water that infiltrated the underground and
reaches groundwater [6], indicating the amount of water from precipitation that was
available for vertical transport, dispersion, and dilution of pollutants from a given applica-
tion point [5,12]. Recharge water in the dump’s surroundings is a source of contaminant
transport within the vadose zone to the aquifer [19]. The greater the recharge, the more
vulnerable the groundwater [51]. Given the small area analyzed in this study, data used ac-
cording to Momade et al. [38] and Vicente [36] estimates the value of groundwater recharge
in Maputo city between 165 and 185 mm/year for the entire Hulene-B dump surrounding
area. A value of 8 was assigned to the area and R = 4 (Tables 1 and 2).

3.2.3. Aquifer Media (A)

Aquifer media refers to a rock in the ground that serves as water storage [52]. It
indicates material property that controls pollutant attenuation processes based on the
permeability of each layer [53]. The attenuation characteristic of the aquifer material is
reflected by the mobility of contaminants through aquifer media [47]. In the surroundings
of the Hulene-B dump, two types of semi-confined (west of profile area, 2) and shallow
(south-west of profile area 1, 4 and area covered by profile 6) aquifers were assumed to
exist, which have been described by Momade et al. [38], Vicente [36], and Cendon et al. [26],
composed of inland dune sands and semi-permeable sands, and recharge occurs mainly by
precipitation given the permeable surfaces such as dune sands. The value of 7 was assigned
to the area around the Hulene-B dump and A = 3 (Tables 1 and 2).

3.2.4. Distance of the Anomalous Surface Layer and Groundwater (S)

The distance between anomalous surface layer (low resistivities) generally represents
surfaces contaminated by leachates in areas close to landfills [42]. Anomalous surface to
groundwater band areas were characterized by intense leachate migration, which was
evidenced by transected profiles 2 (<10.445 Ω.m) and 6 (<16.8 Ω.m). The area north of
profile 1 and southwest of profile 4 show intense anomalies that we interpret as a shallow
aquifer (4) and surface soils enriched by leachates (1) that accumulate successively to the
west that can easily migrate into the confined aquifer described in (2). However, other
profiles did not show bands with the continuous connection of anomalies and groundwater.
The area covered by profiles 1, 2, 4 and 6 was assigned the value 10 and other areas value 1,
and S = 2 (Tables 1 and 2).
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3.2.5. Topography (T)

Topography refers to the slope of an area [47]. It controls the probability of a pollutant
being transported by runoff or remaining in the soil where it may be infiltrated [12]. The
softer the slope (slope of 0–2%), the higher the water and/or pollutant holding capacity,
while in slopes >10%, lower water and/or pollutant holding capacity occurs [12]. In the
surroundings of the dump, the relief is heterogeneous (Figure 2). The area covered by
profiles 1, 3, 4 and 6 did not present slopes. However, the area covered by profiles 2 and
5 has sloped >10%. Thus, the area covered by profiles 2 and 5 was assigned the value 5 and
the other areas were assigned the value is 10, and T = 1 (Tables 1 and 2).

3.2.6. Vadose (I)

The vadose zone is the unsaturated zone that lies below the soil horizon and above the
water table [47]. It determines the attenuation characteristics of the contaminants [12]. The
movement of contaminants into the saturated zone is controlled by this parameter. Aller
et al. [12] and Asfaw et al. [47] refer that if the flood zone consists of sand, the potential risk
of contamination of the aquifer is very high. The surrounding soils of the Hulene-B dump
are dune sands. However, the combination of electrical resistivity data showed specific
characteristics, which allowed us to classify in detail the environment of the dump. The
area covered by profiles 3 and 5 was characterized by having very resistive surface layers,
showing a low infiltration rate, so a value of 4 was assigned. Profile 1 was heterogeneous,
with half of the area covered being very resistive(south) and with very low resistivities, the
assigned value was 8. Profiles 2, 4 and 6 had a lower resistivity, showing higher infiltration,
which is typical of sandy soils, so a value of 8 was assigned, and I = 5 (Tables 1 and 2).

3.2.7. Hydraulic Conductivity (C)

Hydraulic conductivity is described as the ability of materials to transmit water to
aquifers, in turn controlling the rate of groundwater and contaminant material flow under
a given hydraulic gradient [13]. It controls contaminant migration and dispersion from the
injection point within the saturated zone [47]. In the surroundings of the Hulene-B waste
dump, the hydraulic conductivity was estimated by Momade et al. [38] as 1–5 m/d. For
the whole studied area, a value of 2 was assigned, and C = 3 (Tables 1 and 2).

3.3. Descriptive Statistics of Electrical Resistivity and DRASTIC Index

The electrical resistivity values of the areas covered by the profiles were projected with
the vulnerability index values (Table 3). In general, the areas covered by profiles 2, 4 and
6 were classified as having a high DRASTIC index. The profile areas 2 and 4, with mean
resistivity values of 20.22 and 18.1 Ω.m, respectively, suggested the predominance of lower
resistivity across the profile surface area which extends into the groundwater, suggesting
successive leachate migration.

Table 3. Mean, maximum, minimum, standard deviation of resistivity values (Ω.m) and DRASTIC index.

ID Min Max Mean SD Modified DRASTIC

P1 8.64 42.36 20.78 5.72 174

P2 5.37 119.1 20.22 9.31 169

P3 10.12 50.8 31.01 7.3 96

P4 6.98 41.19 18.1 4.64 174

P5 1.04 477.1 37.35 31.86 91

P6 3.06 207 49.2 32.78 174
SD—standard deviation.

The area covered by profile 6 had an average of 49.2 Ω.m, a minimum of 3.06 Ω.m
and a maximum of 207 Ω.m. The average resistivity value was relatively higher but
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showed a much higher standard deviation (32.78 Ω.m), revealing resistivity heterogeneity,
marked by the existence of surface anomalous bands that connect with the groundwater
at various points, which may be associated with a greater migration of leachates and
groundwater contamination.

Areas covered by profiles 3 and 5 revealed a low DRASTIC index and heterogeneous
electrical resistivity. Thus, the area covered by profile 1 showed heterogeneity in surface
and subsurface anomalies that may be associated with vertical and horizontal migration of
contaminants with minimum resistivity values of (1.535–7.99 Ω.m) revealing a higher risk
of contamination of the semi-confined aquifers described in profile 2. However, the greater
depth at which the groundwater was detected reveals a natural attenuation mechanism
of contamination by the underlying lithologies. The area covered by profile 3 showed an
average resistivity of 31.01 Ω.m, ranging from 10.12 to 50.8 Ω.m. These results suggest the
predominance of high resistivity values, which is translated by a reduced predominance
of resistive surfaces that were interpreted as less permeable and less contaminated sub-
strates. The minimum resistivity at great depths (7.99–10.12 Ω.m) may be associated with a
saturated area or localized influence of horizontal migration of contaminants, described
in profile 2. The area covered by profile 5, presented an average resistivity of 37.35 Ω.m,
ranging from 1.04 to 477.1 Ω.m. Groundwater was detected at depths >40 m, with less risk
of contamination by vertical migration.

The low DRASTIC values in areas covered by profiles 3, and 5 resulted from the
combination of two factors, high resistivities prevailing in the surface lithologies suggesting
low infiltration, which greatly reduces the risk of vertical migration of leachate to deep
layers, and greater depth at which, resistivities interpreted as groundwater, were found.
In general, data showed areas covered by profiles, with high average resistivity, with
lower DRASTIC index (profiles 3 and 5) (Figure 6). Exceptionally, the area covered by
profile 6 showed a high DRASTIC index with relatively high mean resistivity values due
to its higher standard deviation and predominance of resistivities <10.445 Ω.m in a large
surface strip that was associated with leachate migration to groundwater at low depth
than in all profiles. However, in the area covered by profiles 1, 2 and 4, the presence of
resistive anomalies was considered as semi-confined and shallow aquifers and surface
anomalies that are conducive to contaminant migration were determining factors for high
DRASTIC index.
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4. Data Integration

The resistivity data of the areas covered by the profiles 1, 2, 4 and 6, with a predom-
inance of surface and groundwater resistivity anomalies, was described in other studies
suggesting leachate migration [54], and groundwater contamination [7], mainly in areas
surrounding non-isolated dumps where leachate can freely circulate through adjacent
lithologies and subsequently affecting the vadose zone and groundwater [55]. Surface
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circulation and leachate infiltration are well evidenced in profiles 1, 2, 4 and 6, by surface
and subsurface resistive anomalies, indicative of contamination [56].

In the area covered by profiles 1 (in the north), 2 and 4, continuous anomalies from
surface to groundwater were noted, described as lithological migration bands of leachate to
groundwater [57,58]. The area transacted by profile 6, besides showing an extensive layer
with low resistivities (<10.445 Ω.m), has been considered in similar studies as a saturated
zone and groundwater under leachate influence [45,59]. In the north of the dump, two
localized points of resistive anomalies were identified as “hot spots” [60,61] resulting from
vertical migration and localized accumulation of contaminants Feng et al. [62], and may be
associated with the confined aquifer system, described in this zone as quite vulnerable to
contamination given its proximity to the surface and sandy characteristics of the vadose
zone [26].

The electrical resistivity data of the areas covered by profiles 3 and 5 were character-
ized by high resistivities, and associated with low contaminant infiltration capacity [13],
given high surface compaction [63]. The area transacted by profile 3 is located far from
the waste dump (>350 m), revealing that contaminants may not be reaching this area.
Morita et al. [64] and Touzani et al. [9] demonstrated that a resistivity increase away from
dumpsites represents a significant decrease in contamination due to the attenuating role
of soils and groundwater. Groundwater at great depths in the area covered by profiles
1, 3 and 5 has been described in similar studies as a determinant of low contamination
risk [18,65], which partly explains the low DRASTIC index in these areas. Paul et al. [53]
and Boumaiza et al. [66] mentioned that the depth of groundwater and the characteristics
of the infiltration zone are the most important factors determining the DRASTIC risk.

Gemail et al. [13], Shah et al. [15] and Nasri et al. [67] integrated electrical conduc-
tivity and DRASTIC data and concluded that areas with the highest DRASTIC index
around dumps, generally exhibit low electrical resistivity associated with the migration of
contamination through adjacent lithologies that may subsequently reach groundwater.

The spatial projection of the Vulnerability Index in the surroundings of the Hulene-
B dump was revealed to be higher to the east, southwest and northwest of the dump,
with high and transient relief, and lower to the south and west of the dump with low
elevation, except for the southern area which is transient (Figure 7). Tan et al. [68] and
Blarasin et al. [69] have reported that contamination of the upper levels of water tables
leads to the dispersion of contaminants to larger areas.
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The combination of electrical resistivity data for the assessment of groundwater vulner-
ability indices is an important tool for DRASTIC factors assessment, such as: groundwater
depth, and intrinsic characteristics of the vadose zone. The modification of the “soil”
factor in the original DRASTIC by the “distance between the anomalous surface layer and
groundwater” is important in areas with potential contaminant migration to groundwater,
as well as in studies aiming to outline remediation measures in areas of groundwater
contamination flow.

Measured groundwater depth in the northern well (WN) was 6.5 m, and the southern
well (WS) was 5.1 m similar to the electrical resistivity model (Table 4). However, The WS
location was further south of the profile 4 area and results showed that groundwater levels
tended to be more at the surface when approaching intradunar depression. Groundwater
pH and PO4

3− was 6.1, 1.33 mg/L in WS and, 8.4 and 0.43 mg/L, respectively. Phosphate
results were above the natural groundwater reference value of 0.005 to 0.05 mg/L [70].
Previous studies suggested that active waste dumps have a phosphate production of
1–100 mg/L, which can be incorporated into groundwater by leaching [71,72]. The pro-
longed consumption of water contaminated with high levels of phosphates can damage
blood vessels, damage kidneys, cause osteoporosis and induce aging processes [73].

Table 4. Data validation of electrical resistivity and modified DRASTIC.

ID Depth pH RfD [70] PO43− RfD [70]

WS 5.1 m 6.1
6.5–8.5

1.33 mg/L
0.005–0.05 mg/L

WN 6.5 m 8.4 0.43 mg/L
RfD—Natural reference value.

5. Conclusions

In this study, the combination of electrical resistivity and modified DRASTIC models
was effective in describing the hydrogeological particularities, estimating in detail ground-
water vulnerability, and identifying areas of possible leachate migration into groundwater
in the surroundings of the Hulene-B dump. Areas covered by profiles 1 (north), 2, 4 and
6 showed strong indications of possible groundwater contamination, with a modified
DRASTIC index which was very high (169–174) due to the proximity of groundwater to the
contaminating surface (dump) and the connection of continuous anomalous layers from
the surface to the aquifers. In the area of profiles 3 and 5 the index was low (91–96) due to
the strong resistivity of the surface layers and the high depth at which groundwater was
detected (>40 m).

The overall value of the DRASTIC modified index for the surrounding area was
estimated at 146 representing a medium overall vulnerability. However, a higher vul-
nerability index in areas covered by profiles 1, 2, 4 and 6, given their relatively higher
altitude (2 and 6), suggested groundwater contamination by horizontal dilution. Studies
were underway to assess areas of suspected vertical migration of leachate by chemical
analysis as well as groundwater. Groundwater depth local validation data was similar to
the electrical resistivity model. Groundwater contamination risk identified by the modified
DRASTIC vulnerability index was confirmed by high levels of phosphates in groundwater
samples studied.

Several challenges remain for further studies, such as quantitative studies to validate
areas of leachate migration that continuously connect to groundwater in areas covered
by profiles 2, 4 and 6 and chemical analysis of surrounding wells water, and contamina-
tion studies of surrounding soils at different depths, especially in areas with suspected
contaminant migration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14111746/s1, Figure S1: Sampling and chemical analysis of well
water (a) Water collection—South well (b) Result of phosphate analysis —North well; (c) Chemical
analysis process (d) South well.

https://www.mdpi.com/article/10.3390/w14111746/s1
https://www.mdpi.com/article/10.3390/w14111746/s1
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