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Abstract: A multiphase extension of the 5-plus-SPH (smoothed particle hydrodynamics) model is
developed for modeling non-Newtonian multiphase flow. A modified numerical diffusive term
and special shifting treatment near the phase interface are introduced to the original 6-plus-SPH
model to improve the accuracy and numerical stability of the weakly incompressible SPH model.
The Herschel-Bulkley model is used to describe non-Newtonian fluids. A sub-particle term is added
in the momentum equation based on a large eddy simulation. The graphic processing unit (GPU)
acceleration technique is applied to increase the computational efficiency. Three test cases including, a
static tank, Poiseuille flow, and submarine debris flow, are presented to assess the performance of the
new multiphase SPH model. Comparisons with analytical solutions, experimental data, and previous
numerical results indicate that the proposed SPH model can capture highly transient incompressible
two-phase flows with consistent pressure across the interface.

Keywords: smoothed particle hydrodynamics; multiphase flows; non-Newtonian fluid; parallel
computing

1. Introduction

Non-Newtonian multiphase flows are widely found in different fields (e.g., sediment
transport [1], nuclear safety [2], geo-disasters [3]). A feature of multiphase flow is that
there are sharp density and viscosity discontinuities across the phase interface. Numerical
simulations of multiphase flows are still thought to be an open problem due to these sharp
material discontinuities. Multiphase flows may also undergo large interfacial deformation,
which adds further difficulties for numerical simulation methods. Extensive research
has been undertaken to develop advanced numerical methods to tackle these difficult
problems. For grid-based methods, such as the finite difference method [4] and finite
volume method [5], the evolution of physical quantities is performed on fixed-mesh nodes.
Interface-capturing methods, such as the volume of fluid (VOF) [6] and level set (LS) [7]
methods, must therefore be introduced to capture the evolution of the phase interface.
However, these methods may introduce additional errors that can compromise accuracy
and robustness. For instance, the VOF method requires reconstruction methods to calculate
the surface tension [8], and the LS method is characterized by a violation of local mass
conservation [9].

Unlike grid-based methods, particle-based methods are used to investigate mov-
able particles and the evolution of physical quantities. Interface-capturing methods are
not required for particle-based methods. The smoothed particle hydrodynamics (SPH)
method therefore has a great advantage in simulating multiphase flows. Numerous studies
have investigated the development of multiphase SPH models. By introducing a density
re-initialization procedure, Colagrossi and Landrini [10] tried to use an original SPH im-
plementation to handle multiphase flow. Hu and Adam [11] proposed a multiphase SPH
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model that provided an effective discrete form to calculate the viscous force between two
phases. However, this model cannot be used to simulate free flows owing to truncation
errors near the boundary [12]. Grenier et al. [13] developed a novel model for multifluid
flow based on the Lagrangian variational principle. Chen et al. [14] developed a multiphase
SPH model by making some simple changes to the single-phase SPH model based on
the assumption of continuity in the pressure field. However, current research has mainly
focused on inviscid fluids and Newtonian fluid flow, whereas studies on SPH models
for multiphase non-Newtonian flows are relatively scarce. Zainali et al. [15] proposed
a non-Newtonian multiphase incompressible smoothed particle hydrodynamics (ISPH)
model by introducing an improved interface treatment procedure, and Xenakis et al. [16]
developed an ISPH model for non-Newtonian multiphase flows.

The main difficulty for multiphase SPH modeling is to estimate the pressure gradient
across the phase interface due to the discontinuity of physical quantities [13]. The original
weakly compressible SPH model suffers from high-frequency noise in the pressure field [17].
Different numerical methods, such as moving least-squares interpolation [10], the Shepard
kernel [13], and the corrected density re-initialization treatment algorithm [14], have thus
been adopted to obtain a better pressure field. However, these methods are insufficient
to alleviate the high-frequency pressure noise [12]. Molteni and Colagrossi proposed
the 5-SPH method, which introduces an artificial diffusive term to improve the pressure
evaluation. Antuono et al. [18] conducted a theoretical analysis of different numerical
diffusive terms. The results verified that this kind of diffusive term is reliable and accurate.
Hammani et al. [12] exerted great effort to extend the 5-SPH diffusive term to multiphase
flow. Furthermore, the spatial disorder of particles is a negative factor in maintaining the
numerical stability and accuracy [19]. The particle shifting technique (PST) is a popular
solution that can preserve uniform particle configurations [20]. Sun et al. [21,22] proposed
the 6-plus-SPH scheme by combining the 6-SPH scheme with the PST. This model can
provide accurate free-surface evolution and pressure estimations in the simulation of
single-phase flows.

Another difficulty for multiphase SPH models is the high computational cost [23].
Parallel computing is a powerful tool that can alleviate this drawback. Different parallel
computing architectures have been developed based on different hardware [24]. Open
multiprocessing (OpenMP) is a directive-based parallel programming model that is founded
on the CPU-based shared memory of a single node. This parallel computing architecture is
relatively simple and widely adopted in SPH models [25,26]. The message-passing interface
(MPI) can structure the CPUs of a multi-machine cluster into a multi-node framework and
provides a feasible approach for massive-scale simulations [27,28]. Graphics processing
units (GPUs) are specialized computer processors that are very effective at data-parallel
computation-intensive tasks. For this reason, GPU acceleration techniques have been
increasingly applied to speed up simulations of the SPH model.

In this paper, we introduce two improvements that augment the non-Newtonian
multiphase WCSPH. First, to enhance the numerical robustness and accuracy, we extend
the 5-plus-SPH scheme to multiphase flow by introducing a modified numerical diffusive
term and special shifting treatment near the phase interface. The second contribution is
that we develop a GPU-accelerated SPH model to boost the computational efficiency.

The paper is organized as follows. Section 2 provides a brief description of the
governing equation. Section 3 describes the multiphase 5-plus-SPH scheme in detail. The
parallel implementation of the SPH model is briefly described in Section 4. Section 5
provides three typical numerical tests to examine the proposed model. The present work is
concluded in Section 6.
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2. Governing Equations

For a weakly compressible fluid, the governing equations in Lagrangian form can be
written as: Dp .
Dr = —pdiv(u)
pB4 = —VP+V-T+pa
P =F(p)

Dr

Dt — W

)

where p, u, and P represent the density, velocity, and pressure, respectively; T is the stress
tensor; a is the acceleration of fluid particles; and F is the state equation in which the
pressure of a fluid particle is determined based on its density. The phase change and
surface tension acting between different phases are not considered in this work.

The problem domain in mesh-free methods is often discretized into sets of arbitrarily
distributed particles with material properties [29]. However, the particle distribution exerts
a great influence on the numerical stability and accuracy of the simulation [30]. The particle-
shifting technique has been developed to overcome the numerical instability caused by
non-uniformly distributed particles [31,32]. Based on this concept, Sun et al. [22] and
Antuono et al. [33] developed a quasi-Lagrangian framework by introducing an arbitrary
velocity du into the Lagrangian framework and defining the second derivative as:

{‘Z = % +Vf-(u+du) = %{ + Vf-ou
Vf-0u = div(féu) — fdiv(ou) 2)
Vou-du = div(v  du) — vdiv(du),
where f is a generic fluid variable and v is a generic vector function. Using the above
equations, the governing equation (Equation (1)) can be expressed in a quasi-Lagrangian
framework as:

% = —pdiv(u + éu) + div(pdu)
P% = —VP + pdiv(u @ éu) — pudiv(ou) + V-7 + FB
P = f(p)

dr __
o = u+ou.

®)

Compared with Equation (1), the above equations contain additional terms due to
the introduction of éu. The arbitrary velocity du is proportional to the smoothing length /.
Equation (3) will return to Equation (1) when the smoothing length h converges to 0.

In this work, we only consider the fluid to be barotropic and weakly compressible.
Under these assumptions, it is possible to adopt an equation of state that only depends
on the density of the fluid [34]. The simple linear equation of state can provide a stable
pressure field [34] that can be expressed as:

P = Cg(p— po) + Py, @)

where Cj is the numerical sound speed to control the fluid compressibility, p is the reference
fluid density, and Py is the background pressure. To satisfy the weakly compressible
assumption, Cy is determined by the following formula [34]:

Cop > 10max (umax/ Pzzax ) ’ ®)
0

where Uy and Py donate the estimated maximum velocity and pressure, respectively.
For Newtonian and non-Newtonian models, the shear stress T can be expressed as:

T = 2ue, (6)
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where p is the total viscosity, which can be divided into dynamic viscosity y; and turbulence
viscosity ¢, and e is the strain rate tensor, which is defined as:

£ = % (Vu + VuT>, @)

in which the superscript T donates the transpose.
In rheology, € is commonly replaced with shear rate tensor D:

2¢ = D. (8)

The dynamic viscosity y, is given by the rheological model. The flow conditions of a
non-Newtonian fluid exert a strong influence on the dynamic viscosity. The stress owing to
dynamic viscosity in any fluid can be defined as:

© = pa(|D|)D, ©

1
D =1/ 5DijDij (10)

The Herschel-Bulkley model is adopted in the present work to study multiphase flow.
This model is widely used in different fields [35-38] and can be expressed as:

T =1, + KDV, (11)

where 7, is the yield stress, K is the consistency index, and N is the power law exponent.
This model can change into other models in certain situations. For example, if 7, = 0 and
n = 1, the Herschel-Bulkley fluid model reduces to the Newtonian fluid model; if 7, = 0
and n # 1, the model reduces to the power law fluid model; if 7, # 0 and n = 1, the model
reduces to the Bingham fluid model. The dynamic viscosity of the Herschel-Bulkley fluid
model can be expressed as:

. (12)
D=0, if |7| <.

{ w(ID|) = g+ KDV, if |t >

Turbulent flow may occur at high Reynolds numbers. Large eddy simulations (LESs)

can predict turbulent flow with a relatively low computation cost. The structure of the SPH

makes the LES approach the most suitable method to model turbulence flows in SPH [33,39].

In the present work, the turbulence viscosity . is modeled using the Smagorinsky model,
which can be expressed as [33,40]:

pe = p(Colpes)* D), (13)
where Cs = 0.12 is the Smagorinsky constant and /1. gg is the filter length.

3. Multiphase 6-Plus-SPH Model
3.1. The Basics of SPH

Smoothed particle hydrodynamics is a pure, mesh-free numerical method. In SPH,
the fluid domain is discretized by a group of particles. Each particle has a finite volume V
and local mass m. The local mass m of each particle is considered to be constant during the
flow simulation. By introducing the kernel approximation and particle approximation, the
quantities of each particle are smoothly smeared over a finite space region. A function f(r;)
and its derivation V f(r;) of particle i at position #; can therefore be expressed as:

(F) ) = [ Flr)Wlrs =, m)dry = X, £ () W (5 = 13, 1) Y, (14
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<Vf> (1‘1') = /f(r])VW(rl - 1”], dT] 2 f(r])Vl-Wl-jVj, (15)

A r; —1’]' 8W1/
ViWi; = - (16)

dp;

dt

—Pi

where () denotes a kernel approximation, the subscript j represents the neighboring parti-
cles in the support domain, V; is the volume of particle j, W (r; — rj, 1) is the kernel function,
h is the smoothing length as a measure of the support domain, and r;; is the distance
between particles i and j. A Wendland kernel function is applied in the present work:

4
Wij = W(Tl‘*r]‘,h) :D(D( *%) (26]+1) qugz, (17)

where ap = # in2Dand g = % As discussed in [33], the SPH approximation of the du
terms can be expressed as:

(div (ou)); = Yj(0u; — ou;)-V;W,;V;
{ (div (pdu)); = Y (pjéu]- +Pzéuz) -ViWi;Vj (18)
(div (u®@ou)); = 1 (uj @ ou; + u; @ du;) - VWi V.

3.2. SPH Description of Governing Equations

Different discrete forms for the governing equations have been proposed based on the
SPH approximation introduced in Section 3.1. In the present work, the continuity equation
in Equation (3) can be expressed as:

[(uj + (Suj) — (u,' + (5ui)} Viwij + (p]‘5u]‘ + piéui)ViWijVj + (SdhCODi, (19)

TEX
where the first term on the right-hand side is widely used in multiphase flow, and in which
the discontinuous physical properties are not involved, and x indicates that the second
term is computed only using the same phase particles. The last term was first adopted by
Molteni and Colagrossi [41] in a single-phase SPH model to remove the high-frequency
pressure noise. The coefficient J; controls the intensity of diffusion, which is equal to
0.1 in this paper. For multiphase flow, a general form of the artificial diffusive term was
developed by Qi et al. [42] to overcome the troubles induced by the density discontinuity:

r—r
Di=Y itV (20)
ij
Wij = 2(0pi — dpj) — [(V(5P)>f + (V(fSP)ﬂ (rj—m), (21)
where Jp denotes the density increment and can be written as dp = CZP 2, and the super-

script L indicates the renormalized density gradient [43], which is defined as:

(V(60)); = ¥;(dpj — 0pi) LiVi WV
O 22)
L= [zj(rj 1) @ ViW v} .

The pressure gradient term in Equation (3) can be discretized as follows:

1 1 X X
- VR » (PiVi + BV, )viwij. (23)

i

Based on Hu and Adams [44], the viscous term in Equation (3) can be expressed as:

1 2ittj (0 o (i) VW .
o . T = Z] o (Vi + V]> z (u; — uy), (24)
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where y; is the dynamic viscosity of particle i that can be expressed as:

wi=pl + i (25)

As there is a singular viscosity with zero shear rate in the Herschel-Bulkley model,

it is necessary to set a “cut off” shear rate |D|.,;, #f- The dynamic viscosity under the “cut
7 . _ Ty N—-1 .

off” shear rate |D|Cutoff iS peutoff = Dl + K|D|Cut0ff. An example of the evolution of

the dynamic viscosity as a function of shear rate is given in Figure 1. The dynamic viscosity
of particle i can thus be expressed as:

Feut if IDi| <|D|
i {T;uﬂqnll“ 11041 > DIy 26)
D ! th = cutof f*
For turbulence viscosity, the Smagorinsky model can be expressed as:
ut = pi(Cslpes)*|Dyl, (27)

where [} s is the reference length of the SPH filter and is set as the radius of the kernel
(ILEs = 2h when the Wendland kernel function is used). D; is calculated using the following
discrete form:

D;=) [(“f —u;) @ (Li-ViWy) + (Li-ViWy) &) (i — uj)] V. (28)

7 T T T

e Exact Herschel-Bulkley model
6 Threshold Herschel-Bulkley model

4.78
u(lph =5+ 0.0986|D|~0417

w = (2]
1 I 1

Apparent viscosity (Pa‘S)
1

0 L 1 L
107 107° 1072 107

Shear rate (S7')

Figure 1. An example of apparent viscosity as a function of the shear rate of the Herschel-
Bulkley model.

3.3. Particle Shifting Velocity

By introducing an arbitrary velocity du into the Lagrangian framework, Sun et al. [22]
developed the quasi-Lagrangian framework. The arbitrary velocity du is calculated based
on the particle shifting technique (PST). Lind et al. [32] proposed a method that links the
particle shifting vector with the particle concentration gradient based on Fick’s first law.
Differing from Lind’s method, Sun et al. [22] proposed a new method that links the particle
velocity deviation éu with the particle concentration gradient. The shifting velocity Ju; can
be written as:

_ Wi\
0ty = —Upax (2h) Zjex [1 + R(W(Ax)> ] ViV (29)
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where R and 7 are set as 0.2 and 4, respectively, Ax is the initial particle distance, and UX’””X
is the maximum velocity of the same phase of particle i. To prevent excessively large 6;
and maintain the model robustness, a limitation on the velocity deviation du is adopted:

(30)

umax -
5u2‘:min<|5ui||, X ) oty

2 ) llomll

Special treatment is required to prevent artificial mixing of the different phase particles.
For the particle belonging to the phase interfaces or domain boundaries, du is set to 0, as
with particle a in Figure 2. For the particle in the vicinity of the phase interfaces or domain
boundaries, du is set to be parallel to the phase interface of the domain boundaries when
éu* drives the particle to move toward another phase, as with particle b in Figure 2. For
other particles, no correction is needed, as with particles b and c in Figure 2. The correction
method developed in the present work can be expressed as:

0ifie S
(I—n;@n;)ou’ if i € Sy and ou-n; >0
ouj if i € Sy and éu;-n; <0
sutific Sy,

Su; = (31)

where S; indicates the subset belonging to the phase interfaces or domain boundaries, Sy
is the subset in the vicinity of the phase interfaces or domain boundaries, Sr is the subset
of inner particles, and n; is the normal vector to the phase interfaces or domain boundaries
of particle i.

The particle subsets are divided based on A;, which is the minimum eigenvalue of
tensor B; = [Zjex (ri—1)® VZ-WZ-]-V]} . In the present work, if A; < 0.55, particle i belongs
to Sp;if 0.55 < A; < 0.90, particle i belongs to Sy; if A; > 0.90, particle i belongs to Sr. The
normal vector to the phase interfaces or domain boundaries of particle 7 is defined as:

b= (),
i = VA (32)

{<W>i = = Ljex (Aj = M) LiViW; V.

@ Phase A particle

Phase B particle

Normal vector
of interface

— @ L @ @
Subset B&> Q @ - ’ ® O [ terface

& |
[ 9 9 — Su
Subset F ‘ ® @ 6 . ‘ G

Figure 2. Shifting treatment near the phase interface.

3.4. Boundary Condition

Different boundary treatments have been developed to model the boundary surface.
The fixed ghost particle technique [45] is adopted here to model the boundary surface. In
this technique, the solid boundaries are discretized by fixed ghost particles. For each fixed
ghost particle, there is a corresponding interpolation particle located in the fluid domain
(see ghost particle 4 and interpolation particle a’ in Figure 3). The physical quantities of the
interpolation particles are calculated by moving least-squares interpolation.
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4 -4%/»%“'?4};‘“%\\\4\% o 4040 0 £

+ ,+ i}j L %’\‘\"‘t i e o == Interpolation particle
+ ::.+ o 4 =Pr":! g\ T 9 9 O Fixed ghost particle
4 \+"+-?‘!°"+"+/ I =%\.alllﬂ e Ay T Phase interface
O 0 O —é) O 0 O 9/ o o o Boundary sur-face
O O O ®O O 0/0 OLb0O O Phase A particle
© 0 0 0 o O/C/) o 60 o Phase B particle
©co0000,600000

Figure 3. Boundary treatment.

The pressure of the ghost particle is calculated as follows to avoid the unphysical
penetration of the fluid particles:

_ MLS
PG =) jepaia WY (1)) Vi + 2dpgn-g, (33)

where d denotes the distance between the ghost particle and boundary surface, n is the
normal vector to the boundary surface, pf is the reference density of the denser fluid, and

WMLS is the moving least-squares kernel, which can be expressed as:

WMES (1)) = My e1 by W (1)

M§= YjcFluid bij @ bijW (1) V; (34)
by = [1, (xj—xi), (v; — vi)]
el =[1,0,0].

The no-slip condition is implemented by setting the velocity of the fixed ghost
particle as:

uc = — ZjeFluid WS (1) V. (35)

For multiphase flows, it is important to predict the dynamic viscosity near the bound-
ary to solve the viscous term in Equation (3). The viscous force provided by the boundary
force is calculated based on Equation (24). The viscosity of ghost particle ¢ plays a key
role in calculating the viscous force provided by the boundary surface. The viscosity of
ghost particle j is calculated based on the rheological model of the different phase. The
value of My, is used to determine the rheological model of the ghost particle. As shown in
Figure 3, the value of My; can be divided into the contribution of phases M, and M, If
M, > M|, then the viscosity of ghost particle i is calculated based on the rheological
model of phase A, as shown for particle a in Figure 3; if MY, > M7}, then the viscosity of
ghost particle j¢ is calculated based on the rheological model of phase B, as shown for
particle b in Figure 3.

3.5. Time-Step Scheme

The fourth-order Runge-Kutta integration scheme is used to integrate SPH equations.
The time step At is restricted by the maximum velocity and maximum viscosity. The
time-step constraints are expressed as [46]:

At = min(Af,, Aty), (36)

h
Ate < e, (37)

max
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2, .
Aty < " Pmin, (38)

Wmax

where a. and & are constants with an order of 0.1.

4. GPU Implementation

Particle-based methods are often criticized for their high calculation costs [47,48].
Different parallel computing architectures such as MPI [28], OpenMP [49], OpenCL [50],
and CUDA [51] are commonly used to alleviate this drawback. Among these parallel
computing architectures, CUDA is the most popular framework that can take advantage of
the GPU’s computational horsepower. In the present work, we develop a CUDA-based
parallel implementation on GPU architecture of the multiphase 5-plus-SPH model. As
shown in Figure 4, the model can be split into four main steps: (1) building neighbor
lists; (2) computing the physical quantities of ghost particles and the auxiliary variables of
fluid particles; (3) solving the momentum and continuity equations; (4) and updating the
physical quantities of the fluid particles.

Initial data CPU

CPU-GPU Memory transfer

&

Neighbor Lists \

Ca

-1’ Calculate the physical quantities of ghost particles

Preprocess -

2 Calculate the A;, L; and n; of each fluid particle

3) Calculate the Su; and (V(8p))F of each fluid particle

L(4) Calculate the y; of each particle GPU
- dpi

|

Particle Interaction

dr - —PQZWI‘IUJ +6u,|— U +(5!lg.iviw|‘}
I

GZIp;tsu; + peduy )V Wiy Vg + Shes Dy
Jex

|

d 12 W,
e Z(PV, 1 L e U z)w( i

dt m m; 7 Hipg

System Update | z@y@ﬁuj F u; @6uy) - Vi WiV + Z(éu] Suy) - Vi WV, ‘y
i 7}

GPU-CPU Memory transfer

Save data
(occasionally)

CpPU

Figure 4. Flow diagram of the SPH model implemented on a GPU.

Among these four main steps, the nearest-neighbor search subroutine is considered to
be the core of SPH [52]. Different nearest-neighbor search algorithms have been proposed
to reduce the run time and memory consumption [53,54]. The modified linked list proposed
by Green [55] is adopted in the present work. Similar to the cell-linked list method [56], the
computational domain is divided into 2 h x 2 h cells. As shown in Figure 5a, a particle must
only search its own cell and surrounding cells for possible particle interactions. To build
the linked list, each particle is assigned to the corresponding cell, as shown in Figure 5b.
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However, this unsorted list is properly grouped in memory and it is hard to locate neighbor
particles based on the cell ID. In the present work, the particles are sorted based on the
cell ID, as shown in Figure 5b. The list of the starting and ending indexes of each cell ID is
also built to make the sorted list useful. Based on these two lists, one can easily find the
neighbor particles of any particle.

Particle id Cell id Tarticle list Cellid Cel Start End
sorted by cell id I mdex index

(b)

Figure 5. Neighbor particle search algorithm. (a) Cell division in 2D; (b) sorted neighbor list.

The performance of the GPU implementation was evaluated by increasing the spatial
resolution of the static tank case (See Section 5.1 for details). Each case was run on two
GPU cards, namely an Nvidia Quadro P1000 and Nvidia Quadro P5000. The relationships
between calculation time per step and particle number are described in Figure 6. It shows
that the calculation time per step increased linearly with the particle number. The ratio
of the scalability (defined as the slope of the line) between the Quadro P1000 and Quadro
P5000 was 4.33 for calculation time per step.
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6 T T r r r
. | | ”
. —u— Quadro P1000 /

—e— Quadro P5000 /

o4

N’

53 /
23 /

()

[oF)

2 /

=2 b

T T

//.

0.0 0.2 0.4 0.6 0.8 1.0
Particle number (x10°)

Figure 6. The relationship between calculation time per step and particle number on different
GPU cards.

5. Numerical Results
5.1. Static Tank

A static tank is commonly applied to validate the efficiency of the boundary conditions
and long-time hydrostatic pressure. Here, we conducted a static test to show that our
model can remove the high-frequency pressure noise in the multiphase WCSPH model.

We considered a 2D 1.2 m x 1.5 m static tank, as presented in Figure 7. The static tank
contained two horizontal layers of fluid. The height of each layer was 0.6 m. Three pres-
sure monitor probes P4 (0.3,0.9), P,y (0.3,0.6), and P (0.3,0.3) were arranged to record
the pressure evolution during the numerical simulation. The physical and rheological
parameters of each phase are listed in Table 1. The gravitational acceleration g was set as
0, —9.8).

y

£
)
< —~+P, PhaseB
s}
. e
g
k)
=
Ll +P;  PhaseA
W=1.2m
X

Figure 7. Initial setup of the static tank test.
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Table 1. Physical and rheological parameters used in static tank test.

Parameter Phase A Phase B

p (kg/m3) 2000 1000

7y (N/m?) 10 0

K (Pa-sM) 100 0.001
N 0.8 1

The pressure field of the static tank at t = 3.5 s is given in Figure 8a. The present pressure
field obtained by the multiphase SPH model was smooth and continuous. Boundary
particles could obtain proper pressure values via MLS interpolation. The pressure profile in
the middle of the tank is presented in Figure 8b. In general, the numerical pressure profile
was consistent with the analytical profile. There was a little deviation near the free surface
owing to the backpressure used in the equation of state. Due to the SPH approximation
feature, the evolution of numerical pressure near the phase interface was smoother than
the evolution of the analytical pressure. The pressure history of the three monitor probes is
presented in Figure 9. The results show that the numerical pressure values of each probe
reached a steady state at 1 s. The numerical pressure of each probe thereafter agreed well
with the analytical values.

1.2
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3.1 \ Numerical results
0.8 N
25
B
~ 20 = 0.6
- 1.5 \
10 0.4 \\
0.5
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(a) (b)

Figure 8. (a) Snapshot of the pressure field at t = 3.5 s; (b) pressure profile at t =3.5s.
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Figure 9. Pressure history of the three monitor probes P4, Pg, and Pj,;.
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5.2. Two-Phase Poiseuille Flow

Poiseuille flows are used to validate the accuracy of the discretization scheme of
the viscous term in a momentum equation. Two 1.0 m wide immiscible incompressible
fluids were placed in the flow channel, as shown in Figure 10. The channel was limited by
two fixed walls. No-slip boundaries were applied in the fixed walls. Periodic conditions
were applied in the streamwise direction to produce a virtually infinitely large flow field.
The fluids were driven by a constant body force [[a| = 2.03. The density values of

the two fluids were p4 = pp = 1.01%. Two test groups were investigated to simulate
m
Newtonian/Newtonian interactions and Newtonian/non-Newtonian interactions.

F
\No-slip
g
> =
¥ Phase B n
e}
.8 / Q
3 X ” a g
ke 23 \ 3
51 > 4 f— 5
~ ~
I E
Phase A =
- _‘1‘:
/No-slip v

Figure 10. Configuration of two-phase Poiseuille flow test.

In the first test group, both phases were Newtonian fluids. The dynamic viscosity of
phase A was set as ji4 = 1.0 Pa-s. In the different test cases, the dynamic viscosity of phase
B was varied from 1.0 to 0.1 Pa-s. Bird et al. [57] proposed an analytical solution for the
velocity profile of two Newtonian fluids in the steady state.

The calculated velocity profiles were compared with the analytical solutions in
Figure 11. The velocity profiles of both phases formed a parabolic shape owing to the
no-slip boundary condition applied at the fixed ghost particles (Figure 11). The velocity
transition points of all test cases were located at the phase interface (Figure 11). Although
the errors increased slightly with the increasing dynamic viscosity ratio between the two
phases, there was still good agreement between the calculated velocity profiles and analyti-
cal velocity profiles.
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Figure 11. Velocity profiles of two-phase Newtonian Poiseuille flow tests.
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A convergence study was conducted for the case of y4 : yp = 4; the error can be
expressed as:

2
Z(ucalculated - uanalytical)
€12 = 3 (39)
)» uunalytical

As shown in Figure 12, the error decreased linearly with the particle spacing. The
convergence rate of 1.0 indicates that the accuracy of the numerical solution improved at
an expected rate with increasing spatial discretization.

0.1

I
0.02 0.04 0.06  0.08 0.1

Particle spacing (m)

Figure 12. Numerical solution convergence result for the multiphase §-plus-SPH model.

In the second test group, phase A was set as the non-Newtonian fluid and phase B
was set as the Newtonian fluid. The dynamic viscosity of phase B yip remained 1.0 Pa-s. For
the non-Newtonian phase A, the parameters changed between different cases. K remained
1.0 Pa-s¥ in different cases. For the power law fluid cases, T, was equal to 0 and N varied
from 0.125 to 8. For the Bingham fluid cases, N was equal to 1 and 7, varied from 1 to
1.5 Pa. Xenakis et al. [16] proposed a semi-analytical solution for the steady state velocity
profile of two-phase Newtonian/non-Newtonian Poiseuille flow.

A comparison between the calculated velocity profiles and semi-analytical solutions for
Bingham/Newtonian fluid interactions is presented in Figure 13a. As a typical viscoplastic
material, a Bingham fluid acts like a rigid body when the shear stress is below the yield
stress T, but flows like a viscous flow when the shear stress surpasses the yield stress 7.
As shown in Figure 13a, the proposed model could rationally describe the transition from
the yield zone to the non-yielding zone and the transition from the non-yielding zone to the
Newtonian fluid zone. However, the errors increased with increasing yield stress 7. This
was because we set a relatively high “cut-off” shear rate value to maintain the numerical
stability and obtain an acceptable time step. However, this relatively high “cut-off” shear
rate results in a relatively low “cut-off” viscosity. The low “cut-off” viscosity causes the
relatively soft non-yielding fluid.
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Figure 13. Velocity profiles of Newtonian and non-Newtonian interactions. (a) Bingham/Newtonian
fluid interactions; (b) power law /Newtonian interactions.

A comparison between the calculated velocity profiles and semi-analytical solutions
for the power law/Newtonian fluid interactions is presented in Figure 13b. The power-
law model can describe the shear-thickening or shear-thinning behavior depending on
the power index N. For this paper, the shear-thickening and shear-thinning fluids were
calculated with N > 1 and N < 1. For N > 1 cases, the calculated velocity profiles were
very close to the semi-analytical solutions. For N < 1 cases, this consistency decreased with
decreasing N. This phenomenon can also be attributed to the relatively high “cut-off” shear
rate value in the numerical simulations.

In general, the proposed model managed to describe both the non-Newtonian fluid
behaviors and their interaction with the Newtonian fluid.

5.3. Submarine Debris Flow

Submarine debris flows are widely distributed in offshore and coastal areas and can
generate tsunamis in coastal areas. Numerous experimental [58—-61] and computational
studies [58,62-65] have therefore been conducted to study their flow mechanisms and
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possible catastrophic consequences. Non-Newtonian fluids like those in the Herschel-
Bulkley model are commonly used to describe viscoplastic debris flow [58,63]. Thus, they
represent a good test case to assess the performance of the multiphase SPH model.

In the present work, the study conducted by Rzadkiewicz et al. [58] was simulated
to examine the proposed multiphase SPH model. The geometrical configuration of the
experimental setup is presented in Figure 14. The experiment was conductedina4 m x 2 m
tank. Phase A was water and the maximum water depth was h = 1.6 m. Phase B was the
mud mass, 0.65 m x 0.65 m in cross-section. The solid mass slid down along a slope of 45°.
The rheological and physical parameters used in the simulation are presented in Table 2.
The rheological parameters of phase B were chosen based on the numerical tests conducted
by Capone et al. [65].

0.65m

1.0m

Phase B

A

1.5m

)4

Phase A

1.5m

v

A 4

Figure 14. Geometrical configuration of a submarine debris flow. Modified from [58].

Table 2. Physical and rheological parameters used in submarine debris flow test.

Parameter Phase A Phase B
p (kg/m3) 1000.0 1950.0
7y (N/m?) 0 1000.0
K (Pa-sM) 0.001 1.0
N 1.0 1.0

Figure 15 shows the calcuated values obtained by the proposed model at typical
instants, where the particles of phase A are colored with their pressures. It can be observed
that the pressure field of phase A is smooth and continuous. The evolution of the velocity
and vorticity fields is presented in Figure 15, which describes the interaction between
mud mass and water. After the mud mass was released, it accelerated under gravity. As
shown in Figure 16a—c, surge waves were generated by the underwater mud mass flow.
Figure 16d—f show that a shear layer formed between the interface and front of the mud
mass and water, and a vortex was produced on the top of the mud mass as mud mass slid
along the slope.
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Figure 15. Snapshots of the pressure field at typical instants. (a) pressure field at t = 0.4 s; (b) pressure
field at t = 0.8 s; (c) pressure field att=1.2 s.

Vel(m/s) (d) t=0.4s

1.6
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~ 1.0
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Figure 16. Evolution of the velocity and vorticity fields at typical instants. (a) velocity field att = 0.4 s;
(b) velocity field at t = 0.8 s; (c) velocity field at t = 1.2 s; (d) vorticity field at t = 0.4 s; (e) vorticity field
att=0.8s; (f) vorticity field at t =1.2s.

The generated surge wave profiles at t = 0.4 and 0.8 s were compared with the experi-
mental data [58] and the WCSPH computational results [65]. The generated surge wave
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profile was found to be in accordance with the experimental data at t = 0.4 s, as shown in
Figure 17b. The calculated profile could reflect the experimental data well when x < 1.5 m.
However, similar to the results obtained by Capone et al. [65], the proposed method over-
predicted the free-surface profile when x > 1.8 m. Comparisons were also made for mud
mass between the results from the current work, the Nasa-Vof2D computational results [58],
and the WCSPH computational results [65], as shown as Figure 18. The configurations
of mud mass obtained in the current work were in good agreement with the Nasa-Vof2D
computational results [58].
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Figure 17. Comparison of surge wave profiles. (a) t=0.4s; (b) t=0.8 s.
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Figure 18. Phase B comparison between results from the current work, WCSPH [65], and Nasa-
Vof2D [58]. (a) t=0.4s; (b) t=0.8s.

6. Conclusions

Non-Newtonian multiphase flows are widely found in many fields and have tradition-
ally been considered to be a challenging topic due to the sharp material discontinuities and
complex interface. This paper presents an extension of the §-plus-SPH model for solving
multiphase flows.

Two major improvements are proposed in this paper. First, the modified numerical
diffusive term and special shifting treatment near the phase interface are developed and
implemented in the original J-plus-SPH model. These modifications allow the J-plus-SPH
model to describe multiphase flow. Secondly, the GPU-based parallel é-plus-SPH model is
implemented in CUDA and C++ to improve its computational efficiency in this paper.

After a detailed description of the proposed multiphase SPH model, three typical
numerical test cases are provided to assess the performance of the new multiphase SPH
model. Good agreements are found in the comparison with analytical solutions, numerical
results, and the experimental data available in the literature. It can be concluded that the
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improved J-plus-SPH model can provide more accurate and stable solutions for highly
transient incompressible two-phase flows.
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