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Abstract: Since the estimation of tail properties requires a stationarity of observations, it is necessary to
develop a de-trending method not dependent on underlying distributions for nonstationary hydrological
processes. Moreover, de-trending has been independently applied to hydrological processes, even
though the processes are observed in geometrically adjacent sites. This paper presents a distribution-free
de-trending method for nonstationary hydrological processes. Our method also provides clustered
regional trends obtained by sparse regularization in a general distribution. It aggregates the parameter
estimation and clustering within a unified framework. In the simulation study, our proposed method
has superiority over other compared methods with respect to MSE and variance of coefficients. In real
data analysis, the clustered trends of the annual maximum precipitation in the South Korean peninsula
are reported, and the patterns of the estimated trends are visualized.

Keywords: clustering; fused lasso; nonstationary distribution; regional frequency analysis; time
trend estimation

1. Introduction

One of the main problems in extreme data analysis is the lack of observations and
the scarcity of data, leading to large variances of the estimators, which deteriorate the
predictive performances of the statistical model [1–4]. The regional frequency analysis (RFA)
(e.g., [1,2]) has been commonly employed to overcome this problem. The RFA assumes
that the hydrometeorological variables across homogeneous regions follow a common
probability distribution. The observations are pooled on the identified homogenous regions,
and the parameters of the distributions are estimated by the pooled observations. Therefore,
the regionalization of the analyzed basins is a prerequisite for the RFA procedure, and its
success mainly depends on the selection of appropriate clustering methodology.

Various clustering techniques have been developed and applied in RFA [1–8]. The
geomorphological variables (e.g., drainage area, basin elevation, soil runoff coefficient) and
meteorological variables (e.g., mean precipitation, quantiles of precipitations, annual mean
degree days over 0 ◦C) are used to cluster the homogeneous regions. There is no consensus
as to which variables should be considered in clustering. Rather, the choice of variables
and clustering technique depends on the purpose of the analysis. However, since a specific
class of distributions is determined after the identification of homogeneous regions, it is
common to use the distribution-free clustering method.

A few researchers [9–13] proposed a new RFA under nonstationary circumstances. The
main problem of the conventional RFA is its asymptotical validity based on the stationary
assumption. For example, the L-moments used in RFA [1,2] should be obtained by the order
statistics from a stationary distribution. When the underlying distribution is nonstationary,
the large sample theory is not valid anymore. Furthermore, the homogeneity of the
distributions is not clearly defined under nonstationary circumstances, so there is no
universal framework to characterize regional homogeneity in the RFA.
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Ref. [11] assumes the nonstationary distribution with a linear trend and proposes the
nonstationary RFA where homogeneity is defined over de-trended distributions. According
to Ref [11], considering the homogeneous regions improves the estimation of nonstation-
arity, which affects the final decision of the RFA. Thus, we propose a distribution-free
de-trending method for nonstationary hydrological processes, which aggregates the pa-
rameter estimation and clustering within a unified framework. Building on Ref [11], a
two-stage de-trending method is considered: the decomposition of regional homogeneities
into stationarity and the estimation of nonstationarity. The first one includes regional spe-
cific factors considered in the conventional RFA, and the second one includes the patterns
of changes in hydrometeorological variables.

In this study, it is assumed that the patterns are represented by linear functions of time,
which implies nonstationarity, and we focus on detecting homogeneities on the linear trends.
This study proposes a new methodology to cluster the linear trends with use of sparse
regression models [14–20]. The proposed method simultaneously facilitates detection
of potential nonstationarity and estimation of the regression parameters without any
assumption of an underlying distribution. That is, the proposed method is a distribution-
free clustering technique for grouping nonstationarity.

This paper is organized as follows. Section 2 introduces the regression model to estimate
linear time trend of a nonstationary distribution. Section 3 explains the regularization method
for the regression model and defines the penalized risk function for estimating the linear
trends in the distribution. In addition, the optimization and the model selection follow in this
section. Section 4 illustrates some numerical results by grouping coefficients and conducts a
real data analysis. Discussion and concluding remarks are followed in Section 5.

2. Nonstationary Distribution with a Linear Time-Variant Mean

In the RFA, the class of distributions is identified only after determining the homoge-
neous regions. Because the regionalization contains the identification of the characteristics
in distributions, it is not recommended to pre-determine the class of distributions before the
regionalization. To avoid the misspecification of an underlying distribution, it is assumed
that Utj = β jt + εtj, where β j is a trend parameter at site j and εtj ∼iid f j for all t. Here, f j
denotes a general probability density function (pdf) at a site j. For example, f j is the pdf of
a three-parameter distribution with the location (ξj), scale

(
αj
)

and shape
(
κj
)

parameters,
such as the GEV distribution. The homogeneity on the distribution f js is investigated by
L-moments in the conventional RFA. Apart from the homogeneity of the distributions f js,
the homogeneity in the linear time trend is also defined by the values of β js. Thus, two
types of homogeneity in stationary and nonstationary parts are considered in the model,
and estimation of the latter one is of our interest in this study.

Let Yj be the time domain of the site j, and let the true parameter of linear trend
coefficients at a site j in Equation (1) be β∗j . Then, the distribution of ũtt′ j = utj − ut′ j is
symmetric at (t− t′)β∗j for all t and t′. That is, it can be rewritten by ũtt′ j = (t− t′)β∗j + ε̃tt′ j
with ε̃tt′ j = εtj − εt′ j of which the distribution is symmetric at zero. If β∗j = β∗ for all
j, or if there is a global mean trend in considered sites, then the β∗ can be estimated by
β̂ =

(
β̂1, . . . , β̂p

)
, which is minimized. Let Ỹj =

{
(t, t′) : t, t′ ∈ Yj, 0 < |t− t′| ≤ mj

}
for

some mj, j = 1, . . . , p, then the objective function is given by

∑p
j=1∑(t,t′)∈Ỹj

∣∣∣ũtt′ j −
(
t− t′

)
β j

∣∣∣, (1)

subject to β j = β j′ for all 1 ≤ j, j′ ≤ p. When mj is the number of elements of Yj,
Equation (1) is known as rank-based regression model, and β̂ is a generalization for the
classical Wilcoxon–Mann–Whitney rank statistics for independent observations [11,21].
In addition, β̂ can be understood as the least absolute deviation (LAD) estimator, which
is an M-estimator for minimizing the empirical risk with l1 loss function. Its asymptotic
properties are well studied by Refs [22,23].
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The estimation method of minimizing the empirical risk function with l1 loss func-
tion can be applied to analyze the linear trends combining the regionalization method.
Assume that the time trends are clustered with q groups. Let β =

(
β1, . . . , βp

)
∈ Rp and

U(β) =
{

γ1, . . . , γq
}

be the set of the unique values of β. Additionally, let
G(β) =

{
G1(β), . . . , Gq(β)

}
be the set of indices of grouped variables with β j = γk for

all j ∈ Gk(β). For example, let p = 4 and β1 = 1, β2 = −1, β3 = 1, β4 = −1. Then, set
q = 2, γ1 = 1, γ2 = −1, and G1(β) = {1, 3}, G2(β) = {2, 4} such that U(β) = {1,−1}
and G(β) = {{1, 3}, {2, 4}}. When ideally G(β∗), the true cluster, is known, the parameter
β can be estimated by

β̂ = argminβ=(β1,..., βp)

p

∑
j=1

∑
(t,t′)∈ Ỹj

∣∣∣ũtt′ j −
(
t− t′

)
β j

∣∣∣, (2)

subject to β j = β j′ for all j, j′ ∈ Gk(β∗) (k = 1, . . . , q).

By the constraint of Equation (2), each estimate in Gk(β∗) for k = 1, . . . , q has the same
value. However, Gk(β∗) is unknown in practice, such that such β̂ is an ideal estimate in
Equation (2). If the regions are clustered with the same linear time trend, the estimation of
the coefficient β j is expected to be improved by pooling data. Otherwise, the improvement
is not expected due to poor clusters of regions. That is, when the pooled observations
for regionalization are used, the bias of the estimator can be caused by heterogeneity
of populations with wrong clusters. That is, the clustering regions play a key role of
regionalization. In the next section, we explain a new method to estimate the clusters and
the linear time trend simultaneously.

Remark 1. It can be assumed that Utj = hj(t) + εtj, where εtj ∼iid f j, where hj is a time-varying
locational function. In this case, Ũtt′ j = Utj −Ut′ j is also symmetric at hj(t)− hj(t′), and the
nonparametric method [24] can be employed to estimate hj.

3. Proposed Method

The proposed method is based on a regularization method in the regression model,
which is widely studied in statistics and computer science. First, candidates of clusters are
obtained by the regularization method [16]. Second, sets of coefficients are recovered by
applying the method to estimate the linear time trend. At last, the estimated coefficients
are selected according to Bayesian information criterion [25].

3.1. Regularization Method for Regression Models

First, the empirical risk function Equation (2) is reformulated as a typical regression
model with predictors. Let lj be the number of elements in the set Ỹj for j = 1, . . . ,
p and rj : Ỹj 7→

{
1, . . . , lj

}
be a bijective function, which denotes the index of each element

(t, t′) ∈ Ỹj. Let x̃sj = t− t′ and ỹsj = ũtt′ j for s = rj(t, t′), and let x̃j =
(

x̃1j, . . . , x̃lj j

)T
∈ Rlj

and ỹj =
(

ỹ1j, . . . , ỹlj j

)T
∈ Rlj be the predictor and response vector in Equation (2). By con-

catenating the x̃js and the ỹjs, extended vectors Xj =
(

0T
sj−1

, x̃T
j , 0T

n−sj

)T
and

y =
(

ỹT
1 , . . . , ỹT

p

)T
are defined, where 0p is the p-dimensional zero valued column vec-

tor and sj =
j

∑
k=1

lk, and n = sp. Finally, let X =
(
X1 · · ·Xp

)
be n × p design matrix in

the regression model and xi be the ith row vector of X, and let yi be the ith element of
y. Then, the empirical risk function Equation (2) is written by the terms of yi and xi as
L(β) = ∑n

i=1
∣∣yi − xT

i β
∣∣, which is used in estimating the coefficients in the LAD regression

model. The regression coefficient is estimated by minimizing L(β), and the regularization
method is applied to the L(β).
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The regularization method gives a sparse estimate whose values are exactly zero or
grouped. The regularized estimator is defined by the minimizer of L(β) + pλ(β), where pλ(·)
is a non-negative valued function depending on λ ≥ 0. When pλ(β) = λ ∑

p
j=1

∣∣β j
∣∣, pλ(β) is

called the lasso penalty function [26], which gives a shrinkage estimate toward zero, such
that some components in the estimate become exactly zero. Using this property, a sparse es-
timator, simultaneously achieving model selection and parameter estimation, is obtained. In
our example, the model automatically detects the site with no linear trend. There is another
penalty function called the fused lasso penalty, defined by pλ(β) = λ ∑(j,k)∈N

∣∣β j − βk
∣∣with

N ⊂ {(j, k) : 1 ≤ j, k ≤ p}. The fused lasso penalty produces a shrinkage estimate toward
centers of the neighborhoods pre-defined by the network N. By a proper design of the
network N, the fused lasso penalty is used for detecting change point of time series [27,28]
and grouping regression coefficient [16,19] in the regression model. A regularized method
using this fused lasso penalty in the regression model is proposed, as follows. In our case,
the estimator is given by

β̂λ1,λ2 = L(β) + λ1∑p
j=1
∣∣β j
∣∣+ λ2∑(j,k)∈N

∣∣β j − βk
∣∣, (3)

where N is a set of index pairs of sites, and λ1 and λ2 are the tuning parameters with a
non-negative value.

The tuning parameters control the complexity of the estimate model, which is roughly
represented by the effective number of parameters in the model. When λ1 = λ2 = ∞,
β̂λ1,λ2 = 0. Especially, when λ1 = 0, λ2 = ∞, β̂λ1,λ2 is given by the minimizer of L(β) with
constraints β j = β j′ for all 1 ≤ j, j′ ≤ p. When λ1 = 0, λ2 = 0, β̂λ1,λ2 is the minimizer of
L(β) without the constraints. For λ1 = λ2, the proposed estimator is a minimizer of the
empirical risk function with constraints:

β̂ = argminβ L(β), (4)

subject to ∑
p
j=1

∣∣β j
∣∣+ ∑(j,k)∈N

∣∣β j − βk
∣∣ ≤ C for some C, which is a non-negative constant

corresponding to λ1. Figure 1 shows the boundaries of regions created by the constraints of
lasso and fused lasso penalty function. The non-differentiable points on the boundary give
a sparse or grouped solution minimizing L(β).
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Remark 2. The network N ⊂ {(j, k) : 1 ≤ j, k ≤ p} in the penalty function pλ(β) can be chosen
adaptively by observations. If an initial estimator β̃ j for β j with asymptotic variance being s2

j is

available, then we can use N =

{
(j, k) : |β̃ j−β̃k|√

s2
j +s2

k

≤ C, 1 ≤ j, k ≤ p

}
for some C. The edge in

the network N is based on the test statistics for the regression coefficients from two independent
populations. That is, for the pairs with significantly different regression coefficients, the associated
parameters are not regularized for grouping.

3.2. Recovering Procedure

The estimator β̂λ1,λ2 is known as a biased estimator, which shrinks toward zero or
grouped coefficients. Even when the coefficients are well clustered, the bias can mislead the
estimate of the linear trends. To avoid this problem, a recovering procedure is considered,
which refits the linear trends on the clustered sites. Recall that U(β) is a set of unique ele-
ments of β, and G(β) is the set of indices of grouped variables. With β̂λ1,λ2 , homogeneous

sites are given by G
(

β̂λ1,λ2

)
. Then, a linear trend in a homogeneous cluster is estimated by

β̂rc
h, λ1,λ2 = argminγ∑j∈Gk(β̂λ1,λ2 )

∑t,t′∈Yj

∣∣∣ũtt′ j −
(
t− t′

)
γ
∣∣∣, (5)

For h ∈ Gk

(
β̂λ1,λ2

)
and k = 1, . . . ,

∣∣∣U(β̂λ1,λ2

)∣∣∣. We call β̂rc
λ1,λ2 a recovered estimator

for linear trends. Then, a set of recovered parameters is constructed by varying the regular-
ization parameters λ1 and λ2, denoted by B =

{
β̂rc

λ1,λ2 ∈ Rp : 0 ≤ λ1, λ2 ≤ ∞
}

, and the
best estimate is chosen according to a model selection criteria.

3.3. Model Selection

The tuning parameters λ1 and λ2 control a complexity of the estimated model. The
desired asymptotic properties, such as selection consistency, risk optimality, always require
a proper selection of the tuning parameters in the regularization method. Under too large λ1
and λ2, too simple a model is obtained, where the unique groups of estimated coefficients
are not separated.

Under too small λ1 and λ2, the grouping of homogeneous sites fails. Generally, the
Bayesian information criterion (BIC) [25] is widely used to choose the tuning parameters. In
the quantile regression, BIC is derived by Ref [29], which showed the robustness and model
selection consistency of the BIC. We modify the conventional BIC [29] in the proposed
regression model because the response variables are highly correlated. The BIC of the
estimated model through β̂rc

λ1,λ2 is defined by

BIC(λ1, λ2) = log
(
∑n

i=1

∣∣∣yi − xT
i β̂rc

λ1,λ2

∣∣∣)+ ∣∣U(β̂rc
λ1,λ2

)∣∣ log(n∗)
2n∗

, (6)

where
∣∣U(β̂rc

λ1,λ2

)∣∣ is the number of unique elements in U
(

β̂rc
λ1,λ2

)
, and n∗ is the number

of observations. In the proposed regression model, yi for i = 1, . . . , n, is a pairwise
difference of two response variables. For a site j, the number of {yi} corresponding to
the site j is the number of elements in Ỹj such that the value of ∑n

i=1

∣∣∣yi − xT
i β̂rc

λ1,λ2

∣∣∣
has too much influence on BIC. For this reason, correcting the n by n∗ can be understood
as employing the effective number of observations. By choosing λ1 and λ2, the model
minimizing BIC(λ1, λ2) on B =

{
β̂rc

λ1,λ2 ∈ Rp : 0 ≤ λ1, λ2 ≤ ∞
}

is selected.
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3.4. Optimization

The proposed estimator is the minimizer of the convex function with non-differentiable
points. Generally, the optimization of the non-differentiable function requires much more
computational cost than the differentiable function. In particular, the fused lasso penalty
increases computational complexity in obtaining β̂λ1,λ2 . For example, the coordinate algo-
rithm [30] fails to achieve the minimum of the objective function due to non-differentiability
of ∑(j,k)∈N

∣∣β j − βk
∣∣ at β j = βk for (j, k) ∈ N. It is well known that the quantile regression

can be solved by linear programing, which is an optimization algorithm of a linear objec-
tive function, subject to linear equality constraints. Thus, the objective function and its
constraint are given as follows:

min
n

∑
i=1

(
ζ+i + ζ−i

)
+ λ1

p

∑
j=1

(
β+

j + β−j

)
+ λ2 ∑

(j,k)∈N

(
β+

jk + β−jk

)
(7)

s.t. ζ+i − ζ−i = yi − xT
i β, ζ+i , ζ−i ≥ 0 (i = 1, . . . , n)

β j = β+
j − β−j , β+

j , β−j ≥ 0 (j = 1, . . . , p)

β+
jk − β−jk = β j − βk, β+

jk, β−jk ≥ 0 (j, k) ∈ N.

Equation (7) is the minimization problem with respect to ζ+i , ζ−i for i = 1, . . . , n, β+
j ,

β−j for j = 1, . . . , p and β+
jk, β−jk for (j, k) ∈ N. Then, the solution of β =

(
β1, . . . , βp

)T in

Equation (3) is given by β j = β+
j − β−j for j = 1, . . . , p, where β+

j and β−j are the solution
of Equation (7). We implement the optimization algorithm using R, whose code is found in
https://github.com/chulhongsung/TrendClustering (accessed on 24 May 2021).

Remark 3. When n is large, the computational problem frequently occurs in maintaining physical
memory on the linear programing. In this case, we can replace the loss function in Equation (3) by
Huber loss [31] and apply the alternative directional multiplier method (ADMM) [32] to minimize
Equation (3). The ADMM consists of two convex problems, which can be easily solved by the MM
algorithm [33]. The computational cost of the ADMM does not depend much on n, such that we
can avoid the scalable problem in memory. However, the ADMM generally requires a large number
of iterations, so we should consider the time cost before applying the ADMM.

4. Numerical Studies
4.1. Simulation

We compare the performance of the proposed method with those of the other four
methods: the naive LSE(nLSE), the naive LAD(nLAD) estimator, the rank LSE(rLSE), the
rank LAD(rLAD) estimator. The first two methods use the conventional linear regression
model with utj, as the response variable and estimate coefficients by minimizing the
empirical risk with l2 and l1 loss function, respectively. The latter two methods use the
differences of the observed value utj − ut′ j and estimate the coefficients with l2 and l1 loss
function, which is known as rank regression [21]. These methods are known as being robust
to the underlying distributions of utj, while all methods except the proposed one do not
provide grouped coefficients. utj is generated from GEV(ξj + β jt, αj, κj) for t = 1, . . . , T and
j = 1, . . . , p, and the heterogeneity of characteristics of sites is modeled by ξj ∼ N(120, 20),
αj ∼ N(40, 10), κj ∼ U(−0, 3, 0.3). ar denotes (a, . . . , a) ∈ Rr. Throughout all simulations,
let p = 30 and T = 30, and the performances of the considered estimators are measured by
200 repetitions. In simulation 1, let β = (−510, 010, 510) and N = {(j, k) : 0 < |j− k| ≤ 15}.
In this case, the linear time trends in the sites are clustered into three large groups. Figure 2
shows the mean squared error of differences between the estimated parameters and the
true parameters.

https://github.com/chulhongsung/TrendClustering
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The proposed method is the best, and the naive LSE, or the rank LSE, is worst (note that
naive LSE or rank LSE are exactly equal in linear time trend model). It is found that the naive
LAD is slightly better than the naive LSE. Using l1 loss function, the variances are reduced
due to the robustness of the LAD estimator to heavy tailed distribution. The rank LAD has
smaller MSE than the naive LAD. The proposed method shows critical improvements in
estimating the coefficients compared with the rank LAD. Since the proposed method gives
grouped estimates, the variances are reduced, such that the MSE, surprisingly, decreases, as
shown in the left panel of Figure 3. In this simulation, the proposed method gives 3.6 clusters
of estimated coefficients, on average. In simulation 2, we let β = (−55,−2.55, 010, 2.55, 55)
and N = {(j, k) : 0 < |j− k| ≤ 15}. In this case, the strength of signal in the time trend is
weaker, and the grouping coefficient is more difficult than in simulation 1. As shown in
Figure 4, in MSE, the proposed method is still the best, and the naive LSE is the worst. In this
simulation, the rank LAD estimator is still better than the naive LAD estimator. However, the
improvement of the proposed method becomes less compared with the result in simulation 1.
Figure 5 shows that a promising improvement of the proposed method is not achieved when
the true coefficients between clusters are not separated well.
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4.2. Real Data Analysis

We apply the proposed method to estimate the linear time trend of the annual maxi-
mum of daily precipitation in South Korea. Our research area, the southern portion of the
Korean Peninsula, is located in east Asia between the longitude 126◦–132◦ and latitude
33◦–38◦. About 70% of the Korean Peninsula’s topography is composed of mountains. One
of the important geographical factors affecting the climate in South Korea, the Taebaek
Mountain range, is located on the east side from north to south. It creates overarching
geographical property, which is east high and west low and climate diversity of South
Korea (Figure 6). This area has four seasons, with glaringly distinctive climate features. In
particular, the amount of precipitation is mainly in the summer, and 50 to 60% of the annual
precipitation is concentrated at this time. The annual maximum of daily precipitation
from 1971 to 2021 collected from 60 meteorological observatories is analyzed, and the
information about the observatories is listed in Table A1. Define a set of indices of site pairs
by neighborhood N defined in Section 3.1, whose distance is less than 100 km. In addition,
let Ỹj by

{
(t, t′) : t, t′ ∈ Yj, 0 < |t− t′| ≤ 50

}
. By varying the tuning parameter, the set

of estimates is obtained, and the tuning parameter, the minimizing BIC in Section 3.3, is
chosen. The BIC is minimized at λ1 = λ2 and λ2 = 330. Figure 7 illustrates the solution sets
defined by

{
β : β = β̂rc

λ1,λ2 , λ1 = λ2 and λ2 > 0} and shows the BIC corresponding to
the solution sets. The estimated trend coefficients achieving the minimum BIC are provided
in Table A2.
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Figure 7. Path of coefficients (a) and BIC plot (b) with respect to tuning parameter λ2.

The coefficients are clustered into twelve groups. The largest group consists of
27 sites, which are located in southeastern coastal line of South Korea. The estimated
trend coefficient of the group is about 0.47, such that the increasing trend of extreme rainfall
is detected. The second largest group consists of 22 sites, which are located in the midland,
and the estimates are about 0.16. From the obtained estimates, the trends in the west and
the midland are much weaker than the ones in the south and east. In the western coastal
site, the homogenous site is estimated, and relatively weak trend is detected.

Figure 8 summarizes the results that display the trend coefficient on the southern
portion of the Korean Peninsula by the Kriging method with Gaussian filter. The trend
coefficients illustrated in Figure 8 are estimated with λ1 = λ2 and λ2 = 510, 330, 270.
Even though the trend maps are different to each other, it is remarkable that the pattern
in the increasing trend is separated in western sites and southern sites when the number
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of clusters grows. Moreover, Figure 8 indicates that weak trends in the western coastal
line and the midland are estimated, and strong positive trends in Jeju, which is the largest
island in South Korea, and Ulleung, which is an island located 120 km east of the Korean
Peninsula, are estimated. As the clusters are subdivided, the negative trend in Ganghwa,
which is located in the northwestern end, tends to be clear. Compared to the west site, the
east site has a relatively strong and nonstationary trend in heavy rainfall. These results
imply that (1) the intensity of heavy rainfall tends to be increasing, and nonstationarity,
represented by trend coefficients of the Jeju and Ulleung islands, is more severe; (2) the
heavy rainfall trend in the coastal site has distinct characteristics depending on its location;
(3) the trend in Ganghwa uniquely shows a negative trend.
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5. Discussion and Concluding Remarks

We proposed a new method of simultaneously detecting and clustering regional time
trends in the nonstationary distribution. The proposed method has three advantages. The
first is that it does not depend on the underlying distribution of the observations. When the
de-trending method is considered in the conventional RFA, it is essential to estimate the
linear trend without any knowledge of the unknown distribution. The proposed method is
distribution free, so the moment condition corresponding to the underlying distribution is
not required. The second is that the proposed method provides an easy way to determine
the number of clusters. Even though the typical clustering algorithm can be applied to
group the statistics for the linear trends, it is not clear how to consider the estimation errors
in the clustering algorithm. However, since our method gives clustered coefficients based
on the empirical risk, the information criteria guarantee the selection of optimal clusters,
theoretically. Lastly, the variance of estimated linear time trends is reduced. By pooling
observations [21], more accurate estimated trends can be obtained.

In the real data analysis for the annual maximum daily precipitation, it is found that
there is a pattern of homogeneity of nonstationarity across the South Korean peninsula. The
result of our analysis shows that there are different patterns in the south and east sites and
the west sites of the South Korean peninsula. The decreasing or stationary trends of extreme
precipitation were found in the western sites. On the contrary, it was found that positive linear
trends are clustered in the sites of eastern and southern coastal lines, and it is expected that
the extreme events are more frequently observed on those sites. These results are interesting,
in that Ref [11] found that the probability of extreme events was higher in the southern sites
than others; however, our result shows that temporal trends of extreme events are decreasing
in the southern sites. This means that a further analysis should be performed to detect the
patterns of extreme climate events. We believe that our work can contribute to future research
on regional frequency analysis under nonstationary distribution.

However, the proposed estimator severely depends on the tuning parameter selection.
For example, a careless selection of the tuning parameter can mislead the result of estimating
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the linear time trend. Thus, it is essential to develop or justify a tuning parameter selection
method, and we leave this problem for our future work.
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Appendix A

Table A1. Site information.

Site ID Site Latitude Longitude Site ID Site Latitude Longitude

90 Sokcho 38◦15′ 128◦33′ 202 Yangpyeong 37◦29′ 127◦29′

100 Daegwallyeong 37◦40′ 128◦43′ 203 Icheon 37◦15′ 127◦29′

101 Chuncheon 37◦54′ 127◦44′ 211 Inje 38◦03′ 128◦10′

105 Gangneung 37◦45′ 128◦53′ 212 Hongcheon 37◦41′ 127◦52′

108 Seoul 37◦34′ 126◦57′ 221 Jecheon 37◦09′ 128◦11′

112 Incheon 37◦28′ 126◦37′ 226 Boeun 36◦29′ 127◦44′

114 Wonju 37◦20′ 127◦56′ 232 Cheonan 36◦46′ 127◦07′

115 Ulleung 37◦28′ 130◦53′ 235 Boryeong 36◦19′ 126◦33′

119 Suwon 37◦16′ 126◦59′ 236 Buyeo 36◦16′ 126◦55′

129 Seosan 36◦46′ 126◦29′ 238 Geumsan 36◦06′ 127◦28′

130 Uljin 36◦59′ 129◦24′ 243 Buan 35◦43′ 126◦42′

131 Cheongju 36◦38′ 127◦26′ 244 Imsil 35◦36′ 127◦17′

133 Daejeon 36◦22′ 127◦22′ 245 Jeongeup 35◦33′ 126◦51′

135 Chupungnyeong 36◦13′ 127◦59′ 247 Namwon 35◦24′ 127◦19′

136 Andong 36◦34′ 128◦42′ 256 Juam 35◦04′ 127◦14′

138 Pohang 36◦01′ 129◦22′ 260 Jangheung 34◦41′ 126◦55′

140 Gunsan 36◦00′ 126◦45′ 261 Haenam 34◦33′ 126◦34′

143 Daegu 35◦53′ 128◦37′ 262 Goheung 34◦37′ 127◦16′

146 Jeonju 35◦49′ 127◦09′ 272 Yeongju 36◦52′ 128◦31′

152 Ulsan 35◦33′ 129◦19′ 273 Mungyeong 36◦37′ 128◦08′

156 Gwangju 35◦10′ 126◦53′ 277 Yeongdeok 36◦31′ 129◦24′

159 Busan 35◦06′ 129◦01′ 278 Uiseong 36◦21′ 128◦41′

162 Tongyeong 34◦50′ 128◦26′ 279 Gumi 36◦07′ 128◦19′

165 Mokpo 34◦49′ 126◦22′ 281 Yeongcheon 35◦58′ 128◦57′

168 Yeosu 34◦44′ 127◦44′ 284 Geochang 35◦40′ 127◦54′

170 Wando 34◦23′ 126◦42′ 285 Hapcheon 35◦33′ 128◦10′

184 Jeju 33◦30′ 126◦31′ 288 Miryang 35◦29′ 128◦44′

189 Seogwipo 33◦14′ 126◦33′ 289 Sancheong 35◦24′ 127◦52′

192 Jinju 35◦09′ 128◦02′ 294 Geoje 34◦53′ 128◦36′

201 Ganghwa 37◦42′ 126◦26′ 295 Namhae 34◦48′ 127◦55′

https://data.kma.go.kr/data/grnd/selectAsosRltmList.do
https://data.kma.go.kr/data/grnd/selectAsosRltmList.do
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Table A2. Trend coefficients of sites.

Site ID Site Trend Coef. Site ID Site Trend Coef.

90 Sokcho 0.474071 202 Yangpyeong 0.159259
100 Daegwallyeong −0.465909 203 Icheon 0.159259
101 Chuncheon 0.474071 211 Inje 0.474071
105 Gangneung 0.474071 212 Hongcheon 0.159259
108 Seoul −0.465909 221 Jecheon 0.474071
112 Incheon 0.070833 226 Boeun 0.159259
114 Wonju 0.159259 232 Cheonan 0.159259
115 Ulleung 0.766667 235 Boryeong 0.159259
119 Suwon 0.159259 236 Buyeo 0.159259
129 Seosan 0.159259 238 Geumsan 0.159259
130 Uljin 0.793181 243 Buan 0.159259
131 Cheongju 0.159259 244 Imsil 0.159259
133 Daejeon 0.159259 245 Jeongeup 0.474071
135 Chupungnyeong 0.159259 247 Namwon 0.474071
136 Andong 0.474071 256 Juam 0.474071
138 Pohang 0.474071 260 Jangheung 0.474071
140 Gunsan 0.159259 261 Haenam 0.159259
143 Daegu 0.474071 262 Goheung 0.474071
146 Jeonju 0.159259 272 Yeongju 0.159259
152 Ulsan 0.474071 273 Mungyeong 0.159259
156 Gwangju 0.159259 277 Yeongdeok 0.474071
159 Busan 0.474071 278 Uiseong −0.220588
162 Tongyeong 0.474071 279 Gumi 0.474071
165 Mokpo 0.023529 281 Yeongcheon 0.474071
168 Yeosu 0.474071 284 Geochang 0.474071
170 Wando −0.341463 285 Hapcheon 0.474071
184 Jeju 0.5 288 Miryang 0.474071
189 Seogwipo 1.634286 289 Sancheong 0.474071
192 Jinju 0.474071 294 Geoje 0.474071
201 Ganghwa −0.47 295 Namhae 0.474071

References
1. Hosking, J.; Wallis, J. Some statistics useful in regional frequency analysis. Water Resour. Res. 1993, 29, 271–281. [CrossRef]
2. Hosking, J.; Wallis, J. Regional frequency analysis. In Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge

University Press: Cambridge, UK, 1997; pp. 1–13. [CrossRef]
3. Rao, A.R.; Srinivas, V.V. Regionalization of watersheds by fuzzy cluster analysis. J. Hydrol. 2006, 318, 57–79. [CrossRef]
4. Shu, C.; Ouarda, T. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system.

J. Hydrol. 2008, 349, 31–43. [CrossRef]
5. Chebana, F.; Ouarda, T. BMJ. Multivariate L-moment homogeneity test. Water Resour. Res. 2007, 43, 1–14. [CrossRef]
6. Sadri, S.; Burn, D.H. A Fuzzy C-Means approach for regionalization using a bivariate homogeneity and discordancy approach.

J. Hydrol. 2011, 401, 231–239. [CrossRef]
7. Yu, Y.; Shao, Q.; Lin, Z. Regionalization study of maximum daily temperature based on grid data by an objective hybrid clustering

approach. J. Hydrol. 2018, 564, 149–163. [CrossRef]
8. Asadi, P.; Engelke, S.; Davison, A.C. Optimal regionalization of extreme value distributions for flood estimation. J. Hydrol. 2018,

556, 182–193. [CrossRef]
9. Leclerc, M.; Ouarda, T. Non-stationary regional flood frequency analysis at ungauged sites. J. Hydrol. 2007, 343, 254–265.

[CrossRef]
10. Sun, X.; Thyer, M.; Renard, B.; Lang, M. A general regional frequency analysis framework for quantifying local-scale climate

effects: A case study of ENSO effects on Southeast Queensland rainfall. J. Hydrol. 2014, 512, 53–68. [CrossRef]
11. Sung, J.H.; Kim, Y.O.; Jeon, J.J. Application of distribution-free nonstationary regional frequency analysis based on L-moments.

Theor. Appl. Climatol. 2018, 133, 1219–1233. [CrossRef]
12. Bracken, C.; Holman, K.D.; Rajagopalan, B.; Moradkhani, H. A Bayesian hierarchical approach to multivariate nonstationary

hydrologic frequency analysis. Water Resour. Res. 2018, 54, 243–255. [CrossRef]
13. Yang, Z. The unscented Kalman filter (UKF)-based algorithm for regional frequency analysis of extreme rainfall events in a

nonstationary environment. J. Hydrol. 2021, 593, 125842. [CrossRef]

http://doi.org/10.1029/92WR01980
http://doi.org/10.1017/CBO9780511529443.003
http://doi.org/10.1016/j.jhydrol.2005.06.004
http://doi.org/10.1016/j.jhydrol.2007.10.050
http://doi.org/10.1029/2006WR005639
http://doi.org/10.1016/j.jhydrol.2011.02.027
http://doi.org/10.1016/j.jhydrol.2018.07.007
http://doi.org/10.1016/j.jhydrol.2017.10.051
http://doi.org/10.1016/j.jhydrol.2007.06.021
http://doi.org/10.1016/j.jhydrol.2014.02.025
http://doi.org/10.1007/s00704-017-2249-8
http://doi.org/10.1002/2017WR020403
http://doi.org/10.1016/j.jhydrol.2020.125842


Water 2022, 14, 1720 14 of 14

14. Bondell, H.D.; Reich, B.J. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with
OSCAR. Biometrics 2018, 64, 115–123. [CrossRef] [PubMed]

15. Shen, X.; Huang, H.C. Grouping pursuit through a regularization solution surface. J. Am. Stat. Assoc. 2010, 105, 727–739.
[CrossRef]

16. Petry, S.; Flexeder, C.; Tutz, G. Pairwise Fused Lasso; Technical Reports; LMU: Munich, Germany, 2011; p. 102. [CrossRef]
17. Shen, X.; Huang, H.C.; Pan, W. Simultaneous supervised clustering and feature selection over a graph. Biometrika 2012, 99, 899–914.

[CrossRef]
18. Ke, Z.T.; Fan, J.; Wu, Y. Homogeneity pursuit. J. Am. Stat. Assoc. 2015, 110, 175–194. [CrossRef]
19. Jeon, J.J.; Kwon, S.; Choi, H. Homogeneity detection for the high-dimensional generalized linear model. Comput. Stat. Data Anal.

2017, 114, 61–74. [CrossRef]
20. Li, F.; Sang, H. Spatial homogeneity pursuit of regression coefficients for large datasets. J. Am. Stat. Assoc. 2019, 114, 1050–1062.

[CrossRef]
21. Jung, S.H.; Ying, Z. Rank-based regression with repeated measurements data. Biometrika 2003, 90, 732–740. [CrossRef]
22. Bassett, G., Jr.; Koenker, R. Asymptotic theory of least absolute error regression. J. Am. Stat. Assoc. 1978, 73, 618–622. [CrossRef]
23. Pollard, D. Asymptotics for least absolute deviation regression estimators. Economet. Theory 1991, 7, 186–199. [CrossRef]
24. Yu, K.; Lu, Z.; Stander, J. Quantile regression: Applications and current research areas. J. R. Stat. Soc. Ser. D-Stat. 2003, 52, 331–350.

[CrossRef]
25. Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. Available online: https://www.jstor.org/stable/2

958889 (accessed on 24 May 2022). [CrossRef]
26. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B-Stat. Methodol. 1996, 58, 267–288. [CrossRef]
27. Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B-Stat.

Methodol. 2005, 67, 91–108. [CrossRef]
28. Jeon, J.J.; Sung, J.H.; Chung, E.S. Abrupt change point detection of annual maximum precipitation using fused lasso. J. Hydrol.

2016, 538, 831–841. [CrossRef]
29. Machado, J.A. Robust model selection and M-estimation. Economet. Theory. 1993, 9, 478–493. [CrossRef]
30. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat.

Softw. 2010, 33, 1–22. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/ (accessed on 24 May 2022).
[CrossRef]

31. Huber, P.J. Robust estimation of a location parameter. Ann. Stat. 1964, 35, 73–101.
32. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]
33. Hunter, D.R.; Lange, K. A tutorial on MM algorithms. Am. Stat. 2004, 58, 30–37. [CrossRef]

http://doi.org/10.1111/j.1541-0420.2007.00843.x
http://www.ncbi.nlm.nih.gov/pubmed/17608783
http://doi.org/10.1198/jasa.2010.tm09380
http://doi.org/10.5282/ubm/epub.12164
http://doi.org/10.1093/biomet/ass038
http://doi.org/10.1080/01621459.2014.892882
http://doi.org/10.1016/j.csda.2017.04.001
http://doi.org/10.1080/01621459.2018.1529595
http://doi.org/10.1093/biomet/90.3.732
http://doi.org/10.1080/01621459.1978.10480065
http://doi.org/10.1017/S0266466600004394
http://doi.org/10.1111/1467-9884.00363
https://www.jstor.org/stable/2958889
https://www.jstor.org/stable/2958889
http://doi.org/10.1214/aos/1176344136
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1111/j.1467-9868.2005.00490.x
http://doi.org/10.1016/j.jhydrol.2016.04.043
http://doi.org/10.1017/S0266466600007775
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.1561/2200000016
http://doi.org/10.1198/0003130042836

	Introduction 
	Nonstationary Distribution with a Linear Time-Variant Mean 
	Proposed Method 
	Regularization Method for Regression Models 
	Recovering Procedure 
	Model Selection 
	Optimization 

	Numerical Studies 
	Simulation 
	Real Data Analysis 

	Discussion and Concluding Remarks 
	Appendix A
	References

