
Citation: Ren, Y.; Zeng, S.; Liu, J.;

Tang, Z.; Hua, X.; Li, Z.; Song, J.; Xia,

J. Mid- to Long-Term Runoff

Prediction Based on Deep Learning at

Different Time Scales in the Upper

Yangtze River Basin. Water 2022, 14,

1692. https://doi.org/10.3390/

w14111692

Academic Editors: Zheng Duan and

Babak Mohammadi

Received: 24 April 2022

Accepted: 23 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Mid- to Long-Term Runoff Prediction Based on Deep Learning
at Different Time Scales in the Upper Yangtze River Basin
Yuanxin Ren 1,2,3,4, Sidong Zeng 1,2,4,* , Jianwei Liu 1,2,4, Zhengyang Tang 1, Xiaojun Hua 1, Zhenghao Li 2,4,
Jinxi Song 3 and Jun Xia 2,4,5

1 Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co., Ltd.,
Yichang 443000, China; yxren@stumail.nwu.edu.cn (Y.R.); s200231117@stu.cqupt.edu.cn (J.L.);
tang_zhengyang@ctg.com.cn (Z.T.); hua_xiaojun@cypc.con.cn (X.H.)

2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
Chongqing 400714, China; lizh@cigit.ac.cn (Z.L.); xiajun@cigit.ac.cn (J.X.)

3 Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and
Environmental Sciences, Northwest University, Xi’an 710127, China; jinxisong@nwu.edu.cn

4 Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
5 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,

Wuhan 430072, China
* Correspondence: zengsidong@cigit.ac.cn

Abstract: Deep learning models are essential tools for mid- to long-term runoff prediction. However,
the influence of the input time lag and output lead time on the prediction results in deep learning
models has been less studied. Based on 290 schemas, this study specified different time lags by
sliding windows and predicted the runoff process by RNN (Recurrent Neural Network), LSTM
(Long–short-term Memory), and GRU (Gated Recurrent Unit) models at five hydrological stations in
the upper Yangtze River during 1980–2018 at daily, ten-day, and monthly scales. Different models
have different optimal time lags; therefore, multiple time lags were analyzed in this paper to find out
the relationship between the time intervals and the accuracy of different river runoff predictions. The
results show that the optimal time-lag settings for the RNN, LSTM, and GRU models in the daily,
ten-day, and monthly scales were 7 days, 24 ten days, 27 ten days, 24 ten days, 24 months, 27 months,
and 21 months, respectively. Furthermore, with the increase of time lags, the simulation accuracy
would stabilize after a specific time lag at multiple time scales of runoff prediction. Increased lead
time was linearly related to decreased NSE at daily and ten-day runoff prediction. However, there
was no significant linear relationship between NSE and lead time at monthly runoff prediction.
Choosing the smallest lead time could have the best prediction results at different time scales. Further,
the RMSE of the three models revealed that RNN was inferior to LSTM and GRU in runoff prediction.
In addition, RNN, LSTM, and GRU models could not accurately predict extreme runoff events at
different time scales. This study highlights the influence of time-lag setting and lead-time selection in
the mid- to long-term runoff prediction results for the upper Yangtze River basin. It is recommended
that researchers should evaluate the effect of time lag before using deep learning models for runoff
prediction, and to obtain the best prediction, the shortest lead-time length can be chosen as the best
output for different time scales.

Keywords: mid- to long-term runoff prediction; deep learning models; time lag; lead time

1. Introduction

Mid- to long-term runoff prediction plays an important role in the optimal allocation
of water resources and flood mitigation [1,2]. The development of runoff prediction is
mainly divided into the physically driven models that describe the runoff process and
the data-driven models based on data. The physically driven models are based on the
concept of hydrology and focus on analyzing the complex process of runoff formation [3],
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such as Xin‘anjiang model [4] and SWAT model [5]. In addition, parameters such as
meteorology, topography, soil, etc., need to be considered in the physically driven models.
Therefore, such models can achieve good results in runoff prediction in areas with complete
information. However, the variation in data across regions and the uncertainty in the model
structure and parameters will result in a corresponding accumulation of errors. In the
current hydrological ensemble forecasting systems, statistics-based hydrological models
for prediction (such as artificial neural networks and autoregressive models) are common
methods. Moreover, it is also possible to obtain the desired prediction results by using
only the observed runoff data as predictors [6]. Graeff et al. [7] predicted runoff coefficients
using statistical methods of generalized linear models. Prediction of runoff by geostatistical
methods (such as topological kriging) is also considered to be feasible [8].

Consequently, the data input conditions significantly constrain the physically driven
models [9–11]. In contrast, data-driven models do not need to clarify the runoff process and
produce significant prediction effects by establishing the functional relationship between
driving factors and predictors [12]. Therefore, relying on data-driven models to predict
runoff processes is considered a simple and effective method [13].

Traditional data-driven models include nearest neighbor bootstrapping regressive
(NNBR), wavelet analysis (WA), mean generation function (MGF), multiple stepwise re-
gression (MSR), artificial neural network (ANN), backpropagation network (BPN), support
vector machines (SVM), random forest (RF), etc., which are commonly used in runoff
prediction [14–16]. Traditional data-driven models require a great deal of pre-processing
of the data by senior researchers before they can be built. However, deep learning mod-
eling frameworks can automate the time-series prediction process required to create a
model and are proposed as an effective tool for runoff prediction [17]. Data-driven models
based on deep learning are widely used in hydrology and water resources. The deep
learning models are directly trained based on many data samples, which can significantly
improve the ability of data-driven models and make up for the disadvantage of traditional
data-driven models in dealing with large amounts of data [18]. Shi et al. [19] combined
fuzzy neural network and Markov prediction model to predict the runoff of Wei Jiabao
station. The 696 months of runoff data were divided into three parts, namely 420 months
of training, 120 months of testing, and 156 months of forecasting, with absolute percentage
errors of less than 7.0% in the prediction results. Ahmad et al. [20] proposed several novel
hybrid adaptive neuro-fuzzy system (ANFIS) methods to predict scour depth downstream
of a sluice gate. Li et al. [21] developed an artificial neural network model for mid-to
long-term runoff prediction in the Nenjiang Basin based on long-term hydrometeorological
information. With the accumulation of prediction data and the maturity of prediction
algorithms, the deep learning models in mid- to long-term runoff prediction have become
the hot spot in current researches [22].

Nowadays, recursive neural network (RNN), long–short-term memory (LSTM), and
gate recurrent unit (GRU) models are widely used in runoff prediction as mainstream
models of deep learning. RNN and its variants (such as LSTM and GRU) had the won-
derful ability to deal with the high nonlinear interactions among the complex hydrology
factors [23]. Wang et al. [24] performed downscaling calculations of precipitation processes
using the RNN model and evaluated the response relationships of meteorological data to
hydrological processes in conjunction with the SWAT model, comparing the advantages of
the RNN model over the traditional ANN model. To explore the impact of extreme rainfall
events on runoff prediction, Xie et al. [25] constructed the PHY-LSTM model based on the
relationship between soil moisture and rainfall that effectively predicted rainfall and runoff
processes under extreme conditions. Mao et al. [26] used LSTM model and FLEX-Topo
model to predict runoff in the Heihe basin and found that LSTM prediction accuracy was
higher. Thapa et al. [27] conducted snowmelt runoff process prediction in Hindu Kush
Himalaya (HKH) and demonstrated that RNN, LSTM, and GRU models had good applica-
bility in this region. The results of RNN runoff prediction are affected by the combination
of the previous step of neuron calculation and the current one-step neuron calculation. As



Water 2022, 14, 1692 3 of 21

a result, there is often an exploding gradient problem in the runoff prediction of long time
series. LSTM adds a “processor” based on RNN to solve the problem of gradient explosion.
GRU is the simplification of the model under the exact control mechanism of LSTM, which
improves the prediction efficiency of the model in the algorithm [28].

Currently, longer-term runoff prediction is developing to satisfy water management
plans [29]. Therefore, researchers have gradually begun to focus on the length of time
for which future runoff predictions are valid [30]. Meanwhile, the optimal number of
samples required as input to the prediction model also deserves to be investigated [31].
The predicted time is from 3 days to 12 months for mid- to long-term runoff prediction.
Generally, the predicted time of 3 to 10 days is the mid-term prediction, and the predicted
time of 10 days to 12 months is the long-term prediction [32]. The increase of predicted
time will calculate more data volume. Therefore, it is significant to study the application of
neural network models in mid- to long-term runoff prediction [33].

Furthermore, we need to preprocess the time series of runoff data using sliding
windows before the deep learning model operations. The sliding window size is the time
lag, and the data sequence inside the sliding window is the input of the model. Meantime,
the model needs to set lead time. For instance, The runoff data samples need to predict
future runoff for 1, 3, and 5 days, and these days are the lead time. The time series of
runoff data need to be preprocessed by a sliding window. The data sequence in the sliding
window is the input parameter of models. In addition, there are lead times chosen in runoff
prediction. Therefore, optimizing the time lag and choosing the best lead time will directly
affect the final prediction results [34]. Chen et al. [35,36] considered that short lag time has
a strong correlation with prediction results in both runoff modeling and rainfall-runoff
modeling, but setting short lag time cannot obtain the best prediction results. Therefore,
to effectively improve the prediction accuracy of the model, an attentive long and short
lag time (LSTM-ALSL) based on the LSTM model was proposed. In the short-term runoff
prediction, Gao et al. [37] believed that when the LSTM and GRU time lags are optimized to
a certain extent, longer time lags no longer significantly affect the prediction accuracy of the
model. However, mid- to long-term runoff prediction needs to deal with more enormous
data than short-term runoff predictions. The increase in the amount of data introduces
more redundant and noisy information in the prediction, which leads to a subsequent
increase in the prediction uncertainty [38,39]. Thus, studying the time-lag setting and the
lead-time choice for deep learning models is essential. In addition, the robustness of deep
learning models needs to be further explored [40].

This study conducted experiments based on daily runoff data from five major stations
in the upper Yangtze River basin. We divided the runoff series into daily, ten-day, and
monthly scales, using RNN, LSTM, and GRU models for mid- to long-term runoff predic-
tion. The development of this study had significant implications for the development of
water resources in the upper reaches of the Yangtze River basin [41]. This study aims to
solve the problem as following: (1) How will the variation of time lag at different time scales
affect the prediction accuracy of RNN, GRU, and LSTM models in mid- to long-term runoff
prediction? (2) How should we choose the best lead time for mid- to long-term runoff
prediction in RNN, LSTM, and RUN models at different time scales? (3) How effective
are the RNN, LSTM, and GRU models for runoff prediction under the optimal parameter
settings and lead-time selection at different time scales?

2. Study Area and Data
2.1. Study Area

The upper Yangtze River basin starts from the Kunlun Mountains at 4800 m in
the west and extends 4500 km to Yichang City, Hubei Province, controlling an area
of 1 million km2, which occupies over 60% of the Yangtze River (Figure 1). The elevation
is approximately 200~6500 m, and the mountains and plateaus area occupies over 90%
of the basin. The annual rainfall is about 1000~1400 mm, and the annual runoff is
about 4.35 × 1011 m3. Due to the influence of general circulation of atmosphere and terrain
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factors, the character of rainfall shows a decreasing trend from southeast to northwest in the
upper Yangtze River basin, which may arise mountain torrents and soil erosion during the
rainy season [42,43]. The major tributaries of the upper Yangtze River include Jinshajiang,
Jialingjiang, Wujiang, Minjiang, etc. The runoff of the Jinshajiang occupies over 40% of the
upper Yangtze River basin, which is the primary source of runoff of the Yangtze River.
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2.2. Data Preprocessing

In this study, the mid- to long-term runoff prediction in the upper Yangtze River is
conducted in five control gauges (Table 1), i.e., Pingshan, Beibei, Wulong, Gaochang, and
Cuntan in the Jinshajiang, Jialingjiang, Wujiang, Minjiang, and the main river of the Yangtze
River, respectively. The daily-observed discharge of hydrological stations from 1980 to 2018
were collected from the Changjiang Water Resources Commission of the Ministry of Water
Resources and the hydrological statistical yearbook. Mid- to long-term runoff prediction
requires preprocessing of the data at different time scales. Firstly, it is necessary to clarify
the criteria for dividing ten-day and monthly scales data [44,45]. In the ten-day runoff
prediction, the first ten days, the middle ten days, and the last part of each month as the
basis for dividing the ten days. On the other hand, in the monthly runoff prediction, the
data calculation is based on the actual number of days per month. Eventually, the daily
runoff data are accumulated and averaged to obtain ten-day and monthly runoff data.
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Table 1. The information of five control gauges.

Pingshan Beibei Wulong Gaochang

Longitude 104.16 106.42 107.75 104.42
Latitude 28.63 29.85 29.32 28.8

Catchment area (km2) 458,592 156,142 83,035 135,378

3. Methods

As an essential branch of machine learning, deep learning originates from compre-
hensive research on artificial neural networks. Deep learning discovers distributed feature
representations of data by combining low-level features to form more abstract high-level
representations. As a result, it builds end-to-end high-intelligence applications [46]. The
essence of runoff prediction is the problem of predicting time-series data. Deep learning
can effectively extract the changing relationship of massive historical runoff observation
data. Then, the inner links behind the runoff data are deeply excavated, which is conducive
to realizing long-period, high-accuracy runoff prediction. Recurrent neural network (RNN)
takes sequence data as input, recurses in the evolutionary direction of the sequence, and
connects all nodes (recurrent units) in a chain. It has a significant advantage in the nonlinear
characteristics of runoff sequences for learning [47]. Currently, recurrent neural networks
have been widely used in various time series prediction and natural language processing
fields [48]. Compared to traditional runoff prediction methods, RNN methods can use
multiple forms of time-series data and learn complex and intrinsic relationships in the time
series rather than just mechanically targeting certain fixed factors. This study selected RNN
and improved models based on RNN structure long–short-term memory (LSTM) and gated
recurrent units (GRU) for mid- to long-term runoff prediction analysis in the upper Yangtze
River.

3.1. Deep Learning Methodology for Mid- to Long-Term Runoff Prediction
3.1.1. Recurrent Neural Network (RNN)

Recurrent neural network is a model with a short-term memory function to solve the
problem of the continuity of training samples input sequence. In addition, the neurons
in RNN can process information from other neurons while processing information from
their neurons, thus forming a network structure with loop characteristics. The standard
structure of RNN includes input units, hidden units, and output units [23]. RNN is a neural
network with memory. When each hidden unit in the hidden layer produces output, it
will consider memory, and with the next input, this hidden unit will not only consider
the value of input but also consider the value in memory [49]. In general, RNN inputs
{xo, x1, · · · , xt, xt+1, · · ·} obtain hidden and output layers {ho, h1, · · · , ht, ht+1, · · ·}. The
structure of the GRU is as shown in Figure 2.
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Where A represents the hidden unit, U, V, and W are the parameters of each remote
unit; xt, ht, and st, respectively, represent the input, output, and the state of the remote
unit of the sample at the time. According to the network structure, it is well-known that
all hidden layers of the RNN share the parameters of U, V, and W. The state st is related
to the current input conditions and the state st−1 at the previous time. The relationship
between them is as follows:

st = tanh(U·xt + W·st−1) (1)

st needs to be multiplied by the coefficient matrix V before output, and to the back-
propagation of the error, the output result needs to be normalized and calculated to obtain
the final result ht through the g function operation. The process of calculation is as follows:

ht = g(V·st) (2)

g is the normalized exponential function softmax [50]. It is used as the activation
function to simulate the neural stimulus. To ensure that there will be no output when
the input is less than a certain value and that when the input is large enough, adding
more inputs will not bring more sensitive results. The softmax function ensures that the
probability of the predicted outcome is (0, 1), and the sum of probabilities is 1 [51]. The
presence of a directed feedback mechanism in the implicit layer of the RNN allows the
information from the last moment to act on the network state at the current moment. With
self-feedback neurons, RNNs can process sequence data of arbitrary length. With the
unknown parameters of U, V, and W, an update needs to be achieved by backpropagation.
Each time the output value ht is compared with the actual value, it will generate an error
value et. The total error E can be calculated in Equation (3).

E = ∑t
i=0 ei (3)

RNN is a backpropagation model incorporating temporality. The computation from
input to output can be achieved by resolving the values of parameters U, V and W according
to the chain rule of derivation.

3.1.2. Long–Short-Term Memory (LSTM)

RNN can retain the information of the previous neurons, thereby establishing the
dependency relationship between neurons. However, when the time lag is considerable,
RNNs tend to lose this memorability and cannot continue to maintain the ability to learn
information at a more extended time lag. Moreover, the RNN derivation process is prone to
the vanishing gradient or the exploding gradient problems [39]. Therefore, RNN can only
establish short-term dependencies, and it is difficult to establish long-term dependencies.
To solve the above problems, LSTM is constructed based on RNN. As an improvement of
RNN, LSTM introduces a gate mechanism in the circulation and loss of control features.
As a result, LSTM can better solve the long-term dependencies of RNN. The gating unit of
LSTM is mainly composed of three parts: input gate, forget gate, and output gate [52].

In LSTM, cells control memory content, the forgotten content, and how to use the gate
to update the memory. The LSTM network structure is shown in Figure 3. It can be seen
from the model structure that the transmission of data information between LSTM cells
mainly depends on the transmission of cell state. The LSTM cell receives the input xt at the
current moment, the cell state Ct−1, and the output data ht−1 at the last moment. Then, it
completes the update of the current cell state Ct and calculates the current output ht.
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The forget gate of LSTM mainly determines the choice of information value. It receives
the input xt at time t and output ht−1 at the last moment and outputs the forget gate result
ft through σ (sigmoid function). The information transfer process is as follows [53]:

ft = σ(W f ·[ht−1, xt] + b f ) (4)

where W f is the weight of the forget gate, and b f is the offset of the forget gate. At the same
time, remove the value approaching 0 in the output of the forget gate and keep the value
approaching 1.

The input gate of the LSTM consists of two parts, which are mainly responsible for
deciding the useful memory information. The first part is to receive the input xt at time t
and the output ht−1 at the previous time and input the gate result it after processing by σ.
The second part uses the tanh function to create a new candidate vector and add the vector
C̃t to the cell state. The forward propagation process of the input gate is as follows:

it = σ(Wi·[ht−1, xt] + bi) (5)

C̃t = tanh(Wc·[ht−1, xt] + bc) (6)

where Wi is the input gate weight, bi is the input gate offset, Wc is the candidate value
weight, and bc is the candidate value offset. LSTM can use the past state Ct−1 multiplied
by the output ft of the forget gate to discard the information that needs to forget. The
alternative value vector C̃t multiplied by the intermediate output it can store the information
that needs to be in memory. The process is as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)

The output gate of LSTM is responsible for determining the output value, and
Equation (8) can calculate the output gate calculation result vector ot at the output. Wo is
the weight of the output gate, and bo is the offset of the output gate.

ot = σ(Wo·[ht−1, xt] + bo) (8)

After activation of the cell state Ct by the tanh function, the result ht is obtained
according to Equation (9).

ht = ot ∗ tanh(Ct) (9)

3.1.3. Gated Recurrent Unit (GRU)

GRU is a lightweight structure of LSTM [54]. In the structure of the GRU cell as shown
in Figure 4.
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The update gate corresponds to the input and forgets gate in LSTM. It controls the
extent to which the state information from the previous moment is brought into the current
state, which helps to capture the long-term dependence in the time series. The larger the
update gate, the more state information is brought in at the last moment. The calculation
process of the update gate is as follows:

zt = σ(Wz·[ht−1,xt]) (10)

where Wz represents the weight, and zt represents the result of the update gate. The
reset gate controls the state information of the last moment to be written into the current
alternative hidden state h̃t to capture short-term dependencies in the time series. A smaller
reset gate indicates that less state information has been written at the last moment. Wr
represents the weight of the reset gate. The process of resetting the gate output rt is as
follows:

rt = σ(Wr·[ht−1, xt]) (11)

The calculation of the alternative hidden state h̃t at the current moment is as in
Equation (11), where Wh represents the weight of the candidate set.

h̃t = tanh(Wh·[rt ∗ ht−1, xt]) (12)

The output ht of the GRU unit is as follows:

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (13)

GRU uses a gating mechanism similar to LSTM to learn long-term dependencies.
In addition, GRU simplifies the network structure of LSTM by designing only update
and reset gates, reducing the number of connections and parameters, and optimizing the
computational effort.

3.2. Model Calculation Schemes

This study aimed to explore the influence of time lag on the performance of RNN,
LSTM, and GRU models at different time scales in mid- to long-term runoff prediction and
determine the optimal time lag and lead time. Table 2 presents a total of 290 schemas that
were developed for each RNN, LSTM, and GRU model. We used the sliding windows to
generate the predicted sample at daily, ten-day, and monthly scales [37]. In addition, this
study set 1980–2006 as the calibration period and 2007–2018 as the validation period.
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Table 2. The time-lags and lead-times setting of models at daily, ten-day, and monthly scales.

Scale Parameter

Daily Time lag 3 5 7 10 15 20 25 30 35 40
Lead time 3 4 5 6 7 8 9 10

Ten-day Time lag 3 6 9 12 15 18 21 24 27 30
Lead time 1 2 3 4 5 6 7 8 9

Monthly Time lag 3 6 9 12 15 18 21 24 27 30
Lead time 1 2 3 4 5 6 7 8 9 10 11 12

3.3. Formatting of Mathematical Components

The performance of RNN, LSTM, and GRU models was evaluated with the Nash–
Sutcliffe efficiency coefficient (NSE) and root mean square error (RMSE) [55] at multiple
time scale runoff predictions in this paper. Generally, NSE is a common metric to quantify
the prediction accuracy of hydrological simulations, and RMSE is used to compare the
prediction results between different deep learning models [56,57]. NSE greater than 0.6 is
an excellent prediction, between 0.4 and 0.6 is a reasonable prediction, and less than 0.4 is a
poor prediction. The NSE and RMSE can be calculated as follows:

NSE = 1−

n
∑

i=1
(Qc(i)−QO(i))

2

n
∑

i=1
(Qo(i)−QO(i))

2
(14)

RMSE =

√√√√√ n
∑

i=1
(Qc(i)−Qo(i))

2

n
(15)

where Qc and Qo are the predicted and observed discharge at the time i; Qc and Qo are the
average predicted and observed discharge; and n is the number of the datasets.

4. Results and Discussions
4.1. Daily Runoff Prediction
4.1.1. Performance Comparison among the RNN, LSTM, and GRU Models with Different
Time Lags in Daily Runoff Prediction

The impact of the different time lags used in RNN, LSTM, and GRU models on daily
runoff prediction results in Figure 5. The NSE of RNN, LSTM, and GRU models were
gradually increased in short time lags. However, the number of time lags reached a
particular value, which had a light effect. Therefore, choosing a specific value of time lags
in results as an optimal parameter had greatly significant for daily runoff prediction. The
optimal settings of the time lags at daily prediction were provided in Table 3. The optimal
time lags of the three models were both 7 days, and the mean NSE were 0.560, 0.572, and
0.574. Overall, the varying time lags affected three models at daily runoff prediction.

Table 3. The optimal time-lag settings at daily prediction.

Time-Lag (Day) Mean NSE

RNN 7 0.560
LSTM 7 0.572
GRU 7 0.574
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Figure 5. NSE value of (a) RNN, (b) LSTM, and (c) GRU with different time lags (3, 5, 7, 10, 15, 20, 25,
30, 35, and 40 days) at daily prediction.

4.1.2. Multi-Day-Ahead Runoff Prediction

This section compared the different performances of the RNN, LSTM, and GRU models
in multi-day ahead runoff prediction of optimal time-lags. Figure 6 shows the increase of
lead time from 3 to 10 days had different influences in three models on the results of the
runoff prediction. It can be seen that the accuracy of the three models gradually decreased
with the increase of lead time.
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As the lead time increased from 3 to 10 days, the predicted results for Pingshan
and Cuntan were excellent. Likewise, the RNN model had excellent prediction results at
Gaochang with lead time from 3 to 10 days, except for the performance of the RNN model,
whose lead time equaled to 10 days. The prediction result of Wulong was reasonable when
the lead time was less than or equal to 7 days. However, the prediction result was poor
when the lead time was 8 to 10 days in Wulong. The overall prediction result for Beibei
was poor. As a result, one day ahead was the best output in RNN, LSTM, and GRU at daily
runoff prediction.

4.1.3. Modeling Parameter Optimization in Daily Runoff Prediction

This section compares the observed runoff processes with the simulated runoff pro-
cesses in the RNN, LSTM, and GRU models when optimized time lag and lead time
equaled 3 days. According to Table 4, the RMSE of the three models revealed that the RNN
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model was less effective than the LSTM and GRU models, but the result was not significant.
Compared to the NSE of three models at each station, the best simulated Pingshan and
the worst simulated Beibei were selected as the representatives for daily runoff prediction.
Figure 7a,b, respectively, exhibits the Pingshan and Beibei predicted runoff processes in
optimal time lag and lead time by three models. It can be observed that the performance
of RNN, LSTM, and GRU were similar in daily runoff prediction when setting optimal
parameters. Deep learning models successfully captured the runoff process in Pingshan
and Beibei. However, it was hard to capture the high discharge in Beibei. Therefore, it could
be demonstrated that RNN, LSTM, and GRU, although they had the reasonable capability
in daily runoff prediction, still had significant shortcomings in predicting high discharge.
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Table 4. The performance of RNN, LSTM, and GRU models at daily runoff prediction with optimal
time lag and lead time.

Gaochang Beibei Wulong Pingshan Cuntan

NSE RMSE
(m3/s) NSE RMSE

(m3/s) NSE RMSE
(m3/s) NSE RMSE

(m3/s) NSE RMSE
(m3/s)

RNN 0.682 1277.144 0.374 2415.775 0.562 1153.855 0.888 1000.388 0.819 3468.217
LSTM 0.689 1256.343 0.366 2408.034 0.558 1150.255 0.887 968.240 0.827 3348.614
GRU 0.703 1238.188 0.378 2393.691 0.579 1126.187 0.888 967.555 0.839 3282.597

4.2. Ten-Day Runoff Prediction
4.2.1. Performance Comparison among the RNN, LSTM, and GRU Models with Different
Time Lags in Ten-Day Runoff Prediction

The performance of RNN, LSTM, and GRU for 10-day runoff prediction with different
time lags is shown in Figure 8. It can be observed that variable time lags affected the NSE
of the three models. NSE had a significant increase in the short time lags. In addition, there
was only a slight variation of NSE when the time lag reached a specific value. Figure 8a–c,
respectively, displays the slight NSE variation trend in the RNN, LSTM, and GRU models
when the time lag begins with 12, 15, and 12 ten days. Significantly, the RNN model was
different from other models. NSE had obvious change when time lag was equal to 30 ten
days. The result of the runoff prediction may be affected by the exploding gradient in
RNN [58]. The optimal time lags of the three models, and the mean NSE are shown in
Table 5. The time lags of RNN, LSTM, and GRU, respectively, set to 24, 27, and 24 ten days
would have the best results.
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Table 5. The optimal time-lag settings at ten-day prediction.

Time Lag (Ten-Day) Mean NSE

RNN 24 0.549
LSTM 27 0.573
GRU 24 0.576

4.2.2. Multi-Ten-Day-Ahead Runoff Prediction

This section set lead time from 1–9 ten days in Figure 9 to compare the multi-ten-day-
ahead runoff prediction in optimal time lags. The NSE of RNN, LSTM, and GRU models
were fluctuant with the increase of the time lags, but it was easy to find the linear relation
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between them. Nevertheless, as the lead time increased from 1 ten day to 9 ten days, the
prediction results for PingShan, Gaochang, and Cuntan were excellent. PingShan had
excellent prediction results at lead time equaling 1 ten day and poor prediction results at
the other lead time. The prediction results for Beibei were poor overall. In general, the
predicted performance of each station was optimal at lead time of 1 ten day. Therefore,
we could choose 1 ten days ahead as the best output in RNN, LSTM, and GRU at ten-day
runoff prediction.
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Figure 9. The performance of runoff prediction at the lead times of 1–9 ten days by (a) RNN,
(b) LSTM, and (c) GRU models with optimal time lags.

4.2.3. Modeling Parameter Optimization in Ten-Day Runoff Prediction

According to Table 6, the difference in RMSE of the three models was not significant,
but the RMSE of RNN was always inferior to LSTM and GRU. Compared to the NSE of
each station, the best simulated Pingshan and the worst simulated Beibei were selected
as the representatives for ten-day runoff prediction. We compared the observed runoff
processes with the RNN, LSTM, and GRU models when time lag and lead time were
optimal in Pingshan and Beibei, as shown in Figure 10a,b. Although three models were
well-simulated with observed discharge in Pingshan and Beibei, the result was similar to
daily runoff prediction. It was hard to capture the high discharge in different years. The
problem generally existed in the simulation of runoff prediction by deep learning models,
for which the primary reason was underfitting [59]. As a result, we also needed to carefully
consider the flood application at ten-day runoff prediction.

Table 6. The performance of RNN, LSTM, and GRU models at ten-day runoff prediction with optimal
time lag and lead time.

Gaochang Beibei Wulong Pingshan Cuntan

NSE RMSE
(m3/s) NSE RMSE

(m3/s) NSE RMSE
(m3/s) NSE RMSE

(m3/s) NSE RMSE
(m3/s)

RNN 0.814 871.792 0.393 1784.135 0.617 930.174 0.861 1353.233 0.821 3183.543
LSTM 0.809 819.733 0.417 1711.835 0.620 880.313 0.875 1306.992 0.834 3010.574
GRU 0.819 841.442 0.415 1749.562 0.629 902.709 0.864 1299.684 0.826 3096.534
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Figure 10. Observed and predicted discharge from RNN, LSTM, and GRU models at optimal time-lag
and lead time at ten-day scale in (a) Pingshan and (b) Beibei.

4.3. Monthly Runoff Prediction
4.3.1. Performance Comparison among the RNN, LSTM, and GRU Models with Different
Time Lags in Monthly Runoff Prediction

Figure 11 exhibits the performance of RNN, LSTM, and GRU at monthly runoff
prediction. Again, it can be found that the three models had terrible performance when
time-lag was equal to 3 months. In particular, the NSE of the GRU model was less than −0.2,
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which was the worst performance of the three models. According to Figure 11c, when
the time lag was equal to 3 months, the NSE of Gaochang, Beibei, Wulong, Pingshan, and
Cuntan were −3.5, −0.4, −1.8, −2.5, and −1.7, respectively. However, the variance of NSE
was no longer an evident trend of fluctuation after the time lag of 6 months. As shown in
Table 7, the optimal time lags of RNN, LSTM, and GRU were 24, 27, and 21 months, which
means NSE was 0.636, 0.652, and 0.646.
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Figure 11. NSE value of (a) RNN, (b) LSTM, and (c) GRU with different time lags (3, 6, 9, 12, 15, 18,
21, 24, 27, and 30 months) at monthly prediction.

Table 7. The optimal time-lag settings at monthly prediction.

Time-Lag (Month) Mean NSE

RNN 24 0.636
LSTM 27 0.652
GRU 21 0.646

4.3.2. Multi-Month-Ahead Runoff Prediction

Figure 12 shows the NSE of RNN, LSTM, and GRU models in the optimal monthly
time lags when setting the lead time from 1 to 12 months. Again, the predicted performance
of PingShan, Cuntan, and Gaochang was all excellent. Likewise, the predicted performance
of Beibei and Wulong was all reasonable. Moreover, it revealed that the NSE of the
three models had no significant change with the increase of lead times at monthly runoff
prediction. One month ahead was the best output for Pingshan, Cuntan, and Gaochang.
Except for the output of RNN for Wulong, the one-month output of LSTM and GRU were
the best. Except for the RNN prediction results, the results of LSTM and GRU were all
best in one-month-ahead prediction for Wulong. Although the best output of Beibei was
not one month ahead, the difference between the NSE of one month ahead and the best
NSE in RNN, LSTM, and GRU was 16.1%, 17.7%, and 18.8%, respectively, which was not
significant. Therefore, according to the above analysis, we suggest that one month ahead
can be the best output at monthly runoff prediction.
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Figure 12. The performance of runoff prediction at the lead times of 1–9 months by (a) RNN,
(b) LSTM, and (c) GRU models with optimal time lags.

4.3.3. Modeling Parameter Optimization in Monthly Runoff Prediction

According to Table 8, the RMSE of RNN was greater than LSTM and GRU at monthly
runoff prediction. Compared to the NSE of each station, the best simulated Pingshan
and the worst simulated Beibei were selected as the representatives for monthly runoff
prediction. We set the optimal time lag and lead time to compare the observed with the
predicted discharge from RNN, LSTM, and GRU models in Pingshan and Beibei. As shown
in Figure 13, the NSE of the three models was higher than 0.8 in Pingshan and was higher
than 0.4 in Beibei, for which the result of simulations can reach the requirement of runoff
prediction. However, the problem of monthly runoff prediction was similar to daily and ten-
day runoff prediction. For example, three models were hard to capture the high discharge
at monthly runoff prediction, and it was also hard to capture low discharge. In addition, the
underfitting effect of deep learning was prominent at monthly runoff prediction. Generally,
RNN, LSTM, and GRU models could predict the process of monthly runoff. However,
applying RNN, LSTM, and GRU in monthly runoff prediction was insufficient when faced
with extreme runoff events.

Table 8. The performance of RNN, LSTM, and GRU models at monthly runoff prediction with
optimal time lag and lead time.

Gaochang Beibei Wulong Pingshan Cuntan

NSE RMSE
(m3/s) NSE RMSE

(m3/s) NSE RMSE
(m3/s) NSE RMSE

(m3/s) NSE RMSE
(m3/s)

RNN 0.782 723.898 0.407 1442.719 0.493 766.991 0.831 1517.586 0.791 3194.933
LSTM 0.783 716.806 0.438 1368.982 0.538 734.883 0.855 1405.887 0.816 2998.444
GRU 0.789 699.183 0.437 1376.285 0.587 739.440 0.825 1377.416 0.794 3022.717

4.4. Comparison of the Runoff Prediction at Different Time Scales

To analyze the parameters of RNN, LSTM, and GRU models that affected the result of
runoff prediction, it was significant to divide into the time series of runoff by daily, ten-day,
and monthly scales. The essence of deep learning model runoff prediction was a time-series
prediction problem that took a series of past runoff data as input and a fixed-length runoff
data series as output; therefore, time lags and lead times as important parameters had
different effects at multiple time scales of runoff prediction [60]. Based on the previous
analysis, we found that the increase of time lag would reduce the effect on NSE after time
lag reached a specific value at different time scales. The above results corresponded with
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Gao et al. [37] finding the regularity of the short-term runoff prediction by GRU and LSTM.
Besides, increased lead time was linearly related to decreased NSE at daily and ten-day
runoff prediction. The increased lead time was poorly correlated with the input time lag in
runoff prediction on daily and ten day, which may result in the loss of prediction accuracy,
and this research result was consistent with the results of flood prediction by Hu et al. [61].
There was no significant linear relationship between NSE and lead time at monthly runoff
predictions, but the lead-time length also had a slight effect on the final prediction results.
Therefore, the lead-time length also played an influential role in different time scales: daily,
ten day, and monthly. Overall, the setting of time lag and the output of lead time in the
deep learning model is very important to the accuracy of runoff prediction results. As a
result, the runoff’s time-series scale should be considered when we estimate the influence
of time lags. In addition, we chose the exact lead times to obtain the best results at different
time scales of runoff prediction [62].
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Comparing Figures 6, 9 and 12, we found that the effect of lead time on the pre-
diction results would decrease as the time scale increased. The possible reason for this
phenomenon was the upscaling of the daily runoff data through our preprocessing, which
had generalized the noise information in the data, resulting in less information for the deep
learning model to learn, thus reducing the impact on the output results [63,64]. Moreover,
Figures 7, 10 and 13 indicate that it is necessary to improve the simulation accuracy of
extreme hydrological events in daily, ten-day, and monthly runoff prediction [65]. As a
result, RNN, LSTM, and GRU are generally applicable for runoff prediction at different
time scales at most stations.

This study presented that the simulation accuracy differed between stations. The
deep learning model more greatly outperformed runoff predictions in PingShan, Cuntan,
and Gaochang than in Beibei and Wulong. A possible cause of this phenomenon was the
influence of human activity on runoff processes. The key to runoff prediction deep learning
models was finding the data’s regulation [66]. However, the Jialingjiang basin controlled
by Beibei Station and the Wujiang basin controlled by Wulong Station were the main areas
of human activity in the upper Yangtze River basin [67]. The cascaded reservoirs interfered
with the runoff process in the basin [68,69]. As a result, the deep learning model was
affected to some extent in the learning process, making it challenging to find regulation
between the data.

In addition, the simulation of runoff processes at different stations was affected by
multiple factors, such as climate and human activity [70]. However, this paper focused
on the effects of time lag and lead time on the prediction results of RNN, LSTM, and
GRU models at multiple time scales. The increased influence factors would improve the
uncertainty of results. Therefore, we only considered the observed and simulated discharge
of stations. In the subsequent study, we will try to introduce upstream station discharge
and atmospheric circulation factors to evaluate the influence of different factors on runoff
prediction [71].

5. Conclusions

This paper divided the runoff time series by daily, ten-day, and monthly scales to
explore the performance of RNN, LSTM, and GRU models by various time lag and lead time.
The three models were applied to the upper Yangtze River. Some important conclusions
can be summarized as:

(1) In daily runoff prediction, the optimal time lag was 7 days, and the optimal lead
time was 3 days in RNN, LSTM, and RNN models. The prediction process of runoff
achieved a good relationship with observation in optimal parameters settings. How-
ever, the models still had significant shortcomings in predicting high discharge.

(2) In ten-day runoff prediction, the time lags of RNN, LSTM, and GRU models, respec-
tively, were set to 24, 27, and 24 ten-days, and we set the lead time of 1 ten day as that
which would have the best results. However, the three models proved hard to capture
the high discharge at the process of ten-day runoff.

(3) In monthly runoff prediction, the optimal time-lags were 24, 27, and 21 months, and
optimal lead time was 1 month of RNN, LSTM, and GRU models. Although the three
models were well-simulated with observed discharge at monthly runoff prediction, it
was hard to accurately capture the low and high discharge.

(4) The length of time lag and the lead time greatly impacted the results of RNN, LSTM,
and GRU models at daily, ten-day, monthly runoff prediction. With the increase of
time lags, the simulation accuracy stabilized after a specific time lag at multiple time
scales of runoff prediction. Increased lead time was linearly related to decreased
NSE at daily and ten-day runoff prediction. However, there was no significant linear
relationship between NSE and lead time at monthly runoff prediction. The RMSE
of the three models revealed that RNN was inferior to LSTM and GRU in runoff
prediction. In addition, RNN, LSTM, and GRU models could not accurately predict
extreme runoff events at different time scales.
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