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Abstract: Detailed spatial distribution of soil organic matter (SOM) in arable land is essential for 

agricultural management and decision making. Based on digital soil mapping (DSM) theory, much 

attention has been focused on the selection of environmental covariates. However, the importance 

of human activity factors in SOM prediction has not received enough attention, especially in arable 

soil. Moreover, due to the insufficient amount of soil sampling data used to train and validate the 

DSM model, the prediction results may be questionable, and some even contradictory. This paper 

explores the effectiveness of the human footprint, amount of fertilizer application, agronomic 

management level, crop planting type, and irrigation guarantee degree in SOM mapping of arable 

land in Heilongjiang Province. The results show that the model only including environmental 

covariates accounts for 41% of the variation in SOM distribution. The model combining the five 

human activity factors increases the SOM spatial prediction by 39% in terms of R2 (coefficient of 

determination), 12% in terms of RMSE (root mean square error), 15% in terms of MAE (mean 

absolute error), and 11% in terms of LCCC (Lin’s concordance correlation coefficient), showing 

better prediction accuracy and performance. This indicates that human activity factors play a crucial 

role in determining SOM distribution in arable land. In the SOM prediction, soil moisture is the 

most important environmental covariate, and the amount of fertilizer application with a relative 

importance of 11.36% (ranking 3rd) is the most important human activity factor, higher than the 

annual average precipitation and elevation. From a spatial point of view, the Sanjiang Plain is a 

difficult area for prediction. 
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1. Introduction 

Soil organic matter (SOM) is an important soil property [1,2]. Carbon contained in 

soil is the largest pool in terrestrial ecosystems, containing three times as much carbon as 

in the atmosphere [3,4], whose small dynamic changes could affect the overall emissions 

of greenhouse gases [5,6]. Furthermore, SOM, providing nutrients to plants, is a crucial 

soil property that affects soil quality and soil fertility [7]. SOM of arable land is particularly 

important because agricultural soil provides most of the food needed for human survival. 

Unfortunately, due to intensive human activities, the depletion of SOM has been observed 

in arable land around the world [8–10]. The change will inevitably influence the normal 

global climate and agricultural production. Thus, adequate information on the spatial 

distribution of SOM in arable land is essential for quantifying the carbon budget, 
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modeling the ecosystem and climate change, and evaluating soil quality to improve 

agricultural management and policymaking. 

The well-known state factor equation of soil, referred to as CLORPT, was proposed 

by Jenny to estimate SOM spatial information [11]. Subsequently, McBratney proposed 

SCORPAN, which considers the soil to be a product of the interaction of environmental 

covariates [12]. In addition, “Digital Soil Mapping (DSM)” was described. As an 

inexpensive and efficient method, DSM technologies have received increasing attention. 

Numerous studies have been conducted to obtain the spatial distribution of soil 

information over the last few decades, including at the regional scale, national scale, and 

global scale [13–15]. 

Based on the DSM theory, much attention has been focused on the selection of 

covariates for predicting SOM. At early times, most variables used in DSM are natural 

environmental conditions. With the development of the human cognition level, the 

importance of anthropogenic factors in soil prediction has been gradually recognized, 

especially in arable soils with strong human activities. An enhanced conceptual soil 

equation, STEP-AWBH, has been proposed to add human activity elements as explicit soil 

forming factors [16]. Recently, many studies have been conducted to investigate the 

importance of human activities to SOM modeling, which are receiving increasing 

attention. In Anhui Province (China), Yang built four pools of different variables, 

containing environmental or agricultural management indicators, to test the effect of 

agricultural parameters in SOM mapping [6]. In the same area, crop rotation information 

generated using a Fourier transform was used to explore the effectiveness of such 

information in SOM prediction based on four pools of variables with different categories 

[4]. Another study in northeastern China used the same method to quantify the influence 

of cultivation history with only two prediction models with different variables [7]. 

Although related studies have been carried out gradually, research on the impact of 

human activities on SOM is insufficient. Through various productive and living activities, 

humans have a profound impact on soil formation, especially in arable land with strong 

human influence. Unfortunately, information or data related to human activities are 

difficult to acquire compared to environmental conditions. Much of the information can 

only be acquired through field surveys and personnel interviews, which often consume 

considerable manpower, resources and time. This further limits related research on the 

effects of human activities on SOM. 

The relationship between soil and environment can only be obtained by collecting 

many known soil points and their covariates. Because it is difficult to obtain a sufficient 

amount of SOM sampling data on a wide scale, most DSM studies were based on a certain 

amount of sampling point data that were collected through specific sampling design, field 

sampling, and laboratory analysis. Data splitting and cross-validation were used to 

analyze the accuracy of the DSM [1,4,6,7,17–19]. The amount of soil point data used in 

DSM studies is obviously different, ranging from dozens [4,6] to thousands [20–22]. 

Unfortunately, due to the small amount of soil sampling data (compared to the amount 

of prediction in the study area) used to train the DSM model, many similar studies may 

draw controversial conclusions [22–26]. The contradictory conclusions may be attributed 

to the insufficient amount of sampling data. In other words, the sampling density may be 

too low to capture the actual spatial distribution of SOM [22]. What is worse is that less 

data were used for model validation, and the accuracy was used to represent the 

prediction accuracy over the whole area. However, one notable question is how 

representative the sampled data are and whether the accuracy using sample data can be 

used to reflect the prediction results of the whole study area. Although this framework 

has been widely used as a consequence of the time consumption of large-scale soil 

sampling, the problem associated with the method still requires the attention of 

researchers. However, this issue can be easily avoided if a large range of soil survey data 

is available for prediction and accuracy verification. 
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The Ministry of Natural Resources of the People’s Republic of China launched the 

“the national field-scale evaluation of arable land quality project”, which is an important 

task to realize the trinity protection of the quantity, quality, and ecology of arable land. 

The project will acquire information on soil properties and soil management, including 

agronomic management level, irrigation water quality, SOM, etc., in each patch of arable 

land across the whole nation. To date, soil surveys in some regions have been completed. 

The project provides sufficient data to solve problems related to DSM, which are 

mentioned earlier. On the one hand, the large amount of soil survey data can be used to 

verify the credibility of DSM technologies and theory, which provides a reference for 

future related DSM research in other specific fields. On the other hand, survey data related 

to soil management can be employed to explore the impact of human activities on SOM. 

In this study, five human activity factors, including the human footprint, amount of 

fertilizer application, agronomic management level, crop planting type, and irrigation 

guarantee degree, were used to improve the prediction of SOM of arable land in 

Heilongjiang Province. To our knowledge, few studies using these variables with 

sufficient SOM sampling data and field survey data for SOM mapping have been 

conducted. Little is known about the effectiveness of these factors in SOM mapping. The 

purpose of this study is: (1) to test the hypothesis that the inclusion of these factors could 

improve the accuracy of SOM mapping; (2) to identify important environmental and 

human activity factors on SOM; and (3) to provide credible conclusions for the above 

research purposes using the soil survey data of entire research areas. 

2. Materials and Methods 

2.1. Study Area 

The research was conducted in Heilongjiang Province, located in northeast China 

(46°23′~53°24′ N latitude, 121°13′~135°05′ E longitude), covering approximately 4,730,000 

km2 (Figure 1). 

 

Figure 1. Location of the study area and distribution of observational SOM. 

Heilongjiang Province mainly has a continental monsoon climate. In summer, the 

precipitation is sufficient, and the temperature is high. In winter, the weather is dry and 

cold for a long time. The annual temperature ranges from −4 to 4 °C. Annual precipitation 
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ranges from 500~600 mm and is mainly concentrated in summer. Mountain areas account 

for 59% of the province and are concentrated mostly in the northwest, north, and 

southeast. The Greater Khingan and Lesser Khingan are the two most important 

mountains in the province. The province has large tracts of land with relatively flat terrain 

and low elevation, and 80% of the arable land consists of four soil types, Haplic Phaeozem, 

Haplic Chernozem, Luvic Phaeozem, and Albic Luvisol. The solar resources are relatively 

abundant, approximately 2300~2800 sunshine hours per year. 

The black soil region located in Northeast China is one of the “three major black soil 

regions” in the world and is mainly concentrated in central and western Heilongjiang 

Province. The arable land area in the province accounts for 11.75% of the total country’s 

[27], and 83% of the area of the Black Soil region is used as arable land [28]. As a result, 

Heilongjiang Province is an important commodity grain production base in China, and it 

became “No.1 Grain Production” in 2016. Total production accounts for 10% of China’s 

total production. Moreover, the province has achieved “12 consecutive increases” in grain 

production from 2003–2015. 

However, the soil resources in the province are facing an over-reclamation problem 

resulting from the development of the economy and population. Two main factors 

limiting the utilization of arable land are the thinning of black soil thickness and soil 

erosion. 

2.2. SOM Data 

The “Specification of Arable Land Survey, Monitoring and Evaluation” was 

formulated by the Ministry of Natural Resources of the People’s Republic of China to 

acquire information on soil properties and soil management at each patch of arable land. 

The SOM data used in this research came from the project that was implemented after 

2015. 

The project surveyed all arable land in 131 counties in Heilongjiang Province and 

obtained SOM data for approximately 1.16 million soil patches (Figure 1). Topsoil SOM 

(g/kg) in each soil patch was determined based on the Method for Determination of Soil 

Organic Matter in the Agricultural Industry Standard of the People’s Republic of China 

[29] after air-drying, sieving, heating, and titration. 

Meanwhile, the project also obtained information on soil management, including the 

agronomic management level and irrigation water quality. 

2.3. Covariates 

Fourteen environmental variables for SOM modeling were selected to represent 

topography, climate, parent materials, vegetation, soil, and others. They are elevation, 

aspect, slope, landform class, average precipitation, average temperature, lithological 

unit, average NDVI, sedimentary deposit thickness, average soil moisture, soil type, water 

table depth, solar radiation, and surface water occurrence (Table 1). 

Table 1. Covariates used in the study and their sources. 

Forming 

Factors 
Variables Data Sources Time Span 

Topograp

hy 

Elevation GMTED 2010 [30] - 

Aspect Processed from Elevation data - 

Slope Processed from Elevation data - 

Landform class Global Ecological Land Units [31] 2008–2013 

Climate 

Annual average 

precipitation 

Resource and Environment Data Cloud 

Platform 
2006–2015 

Annual average 

Temperature 

Resource and Environment Data Cloud 

Platform 
2006–2015 



Water 2022, 14, 1668 5 of 23 
 

 

Parent 

material 
Lithological unit Global Ecological Land Units [31] 2008–2013 

Vegetation 
Annual average 

NDVI 

Resource and Environment Data Cloud 

Platform 
2006–2015 

Soil 

Sedimentary 

deposit thickness 
ORNL DAAC [32,33] - 

Average soil 

moisture 
TerraClimate [34] 2009–2017 

Soil type 
Resource and Environment Data Cloud 

Platform 
1995 

Water Table Depth [35] - 

Other 

Solar radiation 
Global Change Research Data Publishing 

and Repository 
2015 

Surface Water 

occurrence 
[36] 1984–2015 

Human  

activities 

Human footprint 
Socioeconomic Data and Applications Center 

[37] 
2009 

Amount of 

fertilizer 

application 

 - 

Agronomic 

management level 
 - 

Crop planting type  - 

Irrigation 

guarantee degree 
 - 

- means the data will not change for a long time and is a fixed value. 

For the topography, a 7.5 arc-second resolution digital elevation model (DEM) was 

freely downloaded from the U.S. Geological Survey (USGS) [30]. Three terrain variates 

(elevation, aspect, and slope) were derived from the DEM. The landform classes were 

derived based on the USGS’s Map of Global Ecological Land Units [31]. The sources and 

resolutions of the data are shown in Table 1 and Figure 2a–d. 



Water 2022, 14, 1668 6 of 23 
 

 

 

Figure 2. Distribution of covariates used in our study, including environmental covariates and 

human activities covariates. ((a): Elevation; (b): aspect; (c): slope; (d): landform class; (e): mean 

annual precipitation; (f): mean annual temperature; (g): lithological unit; (h): mean annual NDVI; 

(i): soil and sedimentary deposit thickness; (j): soil moisture; (k): soil type; (l): water table depth; 

(m): solar radiation; (n): surface water occurrence; (o): human footprint; (p): the amount of fertilizer 

application; (q): agronomic management level. 

For climate, two covariates, annual average precipitation and annual average 

temperature, were selected. Precipitation and temperature data from 2006–2015 were 

derived from the “Resource and Environment Data Cloud Platform 

(https://www.resdc.cn/ accessed on 12 April 2022)”, which were used to calculate the 

annual average precipitation and annual average temperature. The source and resolution 

of the data are shown in Table 1 and Figure 2e,f. 
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For the parent material, one variate, the lithological unit, was selected. The data were 

collected from the U.S. Government’s open data website. Eleven lithology types exist in 

the study area, including acidic plutonic, acidic volcanic, carbonate sedimentary rock, 

metamorphic rock, mixed sedimentary rock, nonacidic plutonic, nonacidic volcanic, 

noncarbonate sedimentary rock, non-defined, pyroclastic, and unconsolidated sediment 

[31]. The source and resolution of the data are shown in Table 1 and Figure 2g. 

For the vegetation, the annual average NDVI was selected, which exhibits a good 

correlation with green-leaf density and can be used to estimate aboveground biomass [38]. 

Mahmoudabadi found that NDVI derived from remote sensing is a very effective 

parameter for predicting SOC [39,40], although it does not show satisfactory performance 

compared to other indices, e.g., EVI, at high altitudes [41]. In addition, historical pattern 

can explain a much larger part of the spatial variability in SOM in comparison to current 

data [40]. Then, NDVI data of 2007–2016 were obtained from the “Resource and 

Environment Data Cloud Platform”. Then, the annual average NDVI was calculated using 

these data. The source and resolution of the data are shown in Table 1 and Figure 2h. 

For the soil, fore variates, including sedimentary deposit thickness, average soil 

moisture, soil type, and water table depth, were acquired. Sedimentary deposit thickness 

was captured from the “Distributed Active Archive Center for Biogeochemical Dynamics” 

[32,33]. Mean monthly soil moisture data from 2009–2017 were derived from the 

“Climatology Lab” [34], and the average soil moisture was calculated. Soil type, including 

41 types, was obtained from the “Resource and Environment Data Cloud Platform”. The 

water table depth was obtained from the article [35]. The sources and resolutions of the 

data are shown in Table 1 and Figure 2i–l. 

For the others, solar radiation and surface water occurrence were used. Solar 

radiation was acquired from the “Global Change Research Data Publishing and 

Repository”. The surface water occurrence was derived from the “Global surface Water 

Explorer”[36]. The sources and resolutions of the data are shown in Table 1 and Figure 

2m,n. 

For human activity, five factors were used: human footprint, amount of fertilizer 

application, agronomic management level, crop planting type, and irrigation guarantee 

degree. Human footprint data were derived from the “Socioeconomic Data and 

Applications Center (SECAC)” [37]. For the amount of fertilizer application, we reviewed 

the official statistical yearbooks of cities in 2015 to collect the total amount of fertilizer 

application and cultivated area in Heilongjiang Province. Then, the total fertilizer 

application was divided by the cultivated area to obtain the amount of fertilizer 

application per unit area. The crop planting type in Heilongjiang Province was obtained 

from the article [42]. In the past decade, the national field-scale evaluation of arable land 

quality project was implemented to conduct mainland-wide surveys on arable land 

quality, which invested CNY 0.43 (equivalent to USD 0.067) billion and 1.3 CNY 

(equivalent to USD 0.2) million by the Ministry of Natural Resources of China [43–45]. The 

agronomic management level and irrigation guarantee degree were derived from the 

project, which consists of approximately 1.16 million soil patches over all of Heilongjiang 

Province. Due to the comprehensive nature, the agronomic management level is mainly 

graded by local statistical data and the questionnaire. The questionnaire mainly included 

the selection of good varieties, the planting structure, the popularization of fertilization 

by soil testing, the cultivation of weeds, water-saving irrigation, and pest control. Level I 

represents a high level of comprehensive agronomic management. Level III represents a 

low level of comprehensive agronomic management. The irrigation guarantee degree was 

obtained by combining field surveys with water map information. Level I indicates that 

the irrigation requirements for agricultural production are fully met. Level II indicates 

that the irrigation requirements are met. Level III indicates the general situation, but it is 

difficult to meet the requirements during a dry year. Level IV indicates no irrigation 

conditions. 
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All numeric covariates with a resolution coarser than 250 m were resampled to 250 

m using the cubic method. All type covariates with a resolution coarser than 250 m were 

resampled to 250 m using the nearest method. 

2.4. Data Pre-Processing 

The original SOM dataset, which is in vector format, was converted into raster format 

with a resolution of 250 m. The grid dataset was superimposed with 19 covariates, 

including environmental and human activity covariates after projection transformation 

and resampling. For type covariates, such as landform class, lithological unit, soil type, 

agronomic management level, crop planting type, and irrigation guarantee degree, the 

mean SOM of one type was weighted as the variable value of the type [46]. 

Collinearity and multicollinearity might exist between series of variables. To avoid 

this, partial correlation analysis was conducted between different variables to measure 

the correlation between two variables, removing the effects of other variables [47–49]. 

The descriptive statistics for SOM and 19 covariates are calculated to show the basic 

characteristics of the data. Additionally, the box plot method (Tukey’s test) was employed 

to remove outliers of the SOM dataset. Finally, a 2,017,044 grid point dataset with SOM 

and 19 covariates was derived. A 2-D matrix is created, which is of the size of n × c, where 

n = 2,017,044 is the number of sampling locations, and c = 20 is the SOM value and 

covariates values. 

Then, n = 100,000 dataset was randomly selected as the training set and performed 

ten times. All grid points were used as the validation set. 

2.5. Modeling and Evaluation 

A series of DSM models have been developed to predict SOM spatial distribution, 

including geostatistical methods, neural networks, and cubists. Random forest (RF) has 

been widely used in DSM studies. It is an ensemble of regression trees, and each that is 

built benefits from a random subset of original training data sampling. Only a randomly 

selected prediction subset is used to generate the best segmentation. RF has a series of 

advantages compared to other DSM methods, including better error measurement, 

flexibility with input variable types, and less susceptibility to overfitting [50–52]. In 

addition, RF has been demonstrated to perform better than other DSM methods in many 

studies [51,53–56]. 

To investigate whether adding human activity factors would improve SOM 

prediction, seven pools of covariates with different categories were derived to investigate 

whether adding human activity factors would improve SOM spatial prediction (Table 2). 

Pool 1 only contains the 14 environmental variables, including elevation, aspect, slope, 

landform class, average precipitation, average temperature, lithological unit, average 

NDVI, sedimentary deposit thickness, average soil moisture, soil type, water table depth, 

solar radiation, and surface water occurrence. Pool 2 to Pool 6 were composed of the 14 

environmental covariates with the addition of the human footprint, amount of fertilizer 

application, agronomic management level, crop planting type, and irrigation guarantee 

degree, respectively. Pool 7 consisted of the 14 environmental covariates and 5 human 

activity covariates together. For these seven covariate pools, seven prediction models are 

established, which are Models 1–7. 

Table 2. Pools with different covariates. (Environmental covariates consisted of elevation, aspect, 

slope, landform class, average precipitation, average temperature, lithological unit, average NDVI, 

sedimentary deposit thickness, average soil moisture, soil type, water table depth, solar radiation, 

and surface water occurrence). 

Pools Covariates 

Pool 1 environmental variates 

Pool 2 environmental variates + human footprint 
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Pool 3 environmental variates + amount of fertilizer application 

Pool 4 environmental variates + agronomic management level 

Pool 5 environmental variates + crop planting type 

Pool 6 environmental variates + irrigation guarantee degree 

Pool 7 

environmental variates + human footprint, amount of fertilizer application, 

agronomic management level, crop planting type, irrigation guarantee 

degree 

For evaluation indicators, the mean absolute error (MAE) (Equation (1)), root mean 

square error (RMSE) (Equation (2)), coefficient of determination (R2) (Equation (3)), and 

Lin’s concordance correlation coefficient (LCCC) (Equation (4)) were calculated. They are 

defined as follows: 

MAE =  
1

ℎ
∑ |(𝑃h − 𝑄h)|

ℎ

𝑗=1

 (1) 

RMSE =  [
1

ℎ
∑(𝑃h − 𝑄h)2

ℎ

𝑗=1

]

0.5

 (2) 

R2 = 1 −
∑ (𝑄h − 𝑃h)2ℎ

𝑗=1

∑ (𝑄h − 𝑄h)ℎ
𝑗=1

2
 (3) 

LCCC =  
2 • 𝑟 • 𝜕P•𝜕Q

𝜕P
2 + 𝜕Q

2 + (𝑃 + 𝑄)2
 (4) 

where h is the number of predictions, Ph is the observed SOM value at point h, Qh is the 

predicted SOM value at point h, Qh
_____

 is the mean of Qh, and ∂P and ∂Q are variances of Ph 

and Qh. 

Variable importance was calculated to indicate the predicting power of difference 

covariates for SOM; it was estimated based on the mean decrease in prediction accuracy 

of each variable by replacing each covariate in turn by random noise and observing the 

average increase in the prediction accuracy for all trees [6,19,57–60]. 

For the RF model, one important parameter, the number of trees, should be set 

manually before simulation. Here, the GridSearchCV method in the Sklearn package was 

used to tune the hyperparameters of RF. The tuning result shows that 350 was the best 

number of trees, which was used in the RF model of the study. 

The “RandomForestRegressor” of the sklearn package [61] in Python was used to 

conduct random forest modeling and calculate variable importance. 

3. Results 

3.1. Feature Selection 

As a result of collinearity examination, Figure 3 shows the partial correlation 

coefficient between the 19 covariates ranging from −0.48 to 0.56, which are not significant, 

indicating that there is no collinearity between the covariates. Then, all covariates were 

used for subsequent modeling and analysis. 
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Figure 3. Partial correlation analysis between 19 covariates (the partial correlation coefficients range 

from −0.48 with blue to 0.56 with red). 

3.2. Descriptive Statistics 

Table 3 shows the descriptive statistics for SOM and 19 covariates. The SOM content 

ranged from 2.93 g/kg to 80.13 g/kg, with a mean value of 39.46 g/kg. The SD of SOM was 

above the mean value, which indicates a high variability in its distribution. The annual 

average NDVI has the smallest variation, while the aspect and solar radiation have the 

largest variation. 

Table 3. Summary statistics of SOM and quantitative covariates of all datasets. 

Covariates Max Mean Min SD Covariates Max Mean Min SD 

SOM (g/kg) 80.13 39.46 2.93 192.75 
Annual average 

soil moisture 
56.11 18.39 6.90 59.31 

Aspect (°) 
359.8

4 
173.08 −1.00 

10,414.2

0 
Soil type 111.55 45.63 18.39 205.70 

Elevation (m) 
799.0

0 
172.88 35.00 7917.64 

Solar radiation 

(MJ/m2) 

5151.9

2 
4668.69 4391.01 

12,035.6

0 

Slope (°) 25.64 1.01 0.00 2.25 

Annual average 

temperature 

(℃) 

5.60 3.43 −4.87 2.16 

Landform class 62.95 46.66 32.91 6.19 
Water table 

depth (m) 
159.03 2.01 −16.37 27.53 

Human footprint 47.00 12.29 1.00 37.40 
Surface Water 

occurrence 
96.42 0.31 0.00 6.55 

Lithological unit 53.38 46.66 40.67 5.06 
Amount of 

fertilizer 
37.82 17.50 4.31 51.49 

0.04

0.17 0.04

-0.15 -0.05 0.00

0.02 -0.08 0.15 0.02

-0.04 0.07 0.02 0.07 -0.01

0.01 -0.19 0.04 -0.03 0.05 0.01

0.28 -0.01 0.06 -0.09 0.09 -0.38 -0.01

-0.21 0.00 -0.14 0.03 -0.08 -0.32 -0.43 0.02

-0.08 0.56 -0.17 0.00 -0.22 -0.07 -0.07 0.13 0.01

0.12 0.03 0.07 -0.03 0.02 -0.14 0.00 0.03 -0.07 -0.01

-0.04 0.13 -0.02 -0.48 -0.11 0.06 -0.14 -0.04 0.06 -0.31 -0.02

0.22 -0.07 -0.30 -0.01 0.09 -0.04 -0.08 0.02 -0.25 0.00 0.02 0.01

0.03 0.06 0.03 -0.02 -0.01 0.04 -0.02 -0.01 -0.04 -0.03 0.46 0.15 -0.04

-0.01 0.01 -0.02 -0.01 0.01 0.00 -0.01 -0.14 0.00 -0.02 -0.04 0.00 -0.03 0.01

0.02 0.02 0.20 -0.24 -0.02 0.00 0.03 -0.13 0.10 -0.01 0.15 -0.01 0.03 -0.25 0.00

-0.22 0.02 -0.04 0.07 0.03 0.00 -0.21 -0.06 0.20 0.13 -0.02 0.08 0.08 -0.04 0.07 0.02

0.05 0.00 0.04 0.01 -0.24 0.00 0.12 0.06 0.11 0.05 0.00 0.05 -0.08 0.03 -0.01 0.11 0.00

0.21 0.07 -0.01 0.00 0.01 0.09 0.11 0.09 0.07 0.15 0.19 0.06 -0.01 -0.03 -0.02 -0.03 -0.13 -0.01

Agronomic

management level

Crop planting

type

Irrigation
guarantee

degree

Solar radiation

Annual average temperature

Water table depth

Surface water occurrence

Amount of

fertilizer application

Annual average NDVI

Annual average precipitation

Sedimentary

deposit thickness

Soil type

 Annual average soil moisture
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application 

(t/km2) 

Annual average 

NDVI 
0.95 0.86 0.18 0.00 

Agronomic 

management 

level 

47.28 46.78 45.36 0.71 

Annual average 

precipitation 

(mm) 

690.7

3 
560.67 

430.2

0 
1836.79 

Crop planting 

type 
80.99 45.92 35.31 116.10 

Sedimentary 

deposit thickness 

(m) 

60.00 32.06 −7.00 399.85 

Irrigation 

guarantee 

degree 

59.98 46.63 39.89 67.59 

Max, maximum; Min, Minimum; SD, standard deviation. 

As mentioned, ten n = 100,000 samples were randomly selected from all n = 2,017,044 

data as the training set. Figure 4 summarizes the comparison of statistical descriptions of 

SOM between all datasets and ten training sets. This shows that the distribution and 

concentration of SOM in the ten training sets is consistent with the SOM in the original 

dataset. The training set selected can well represent the SOM distribution of the entire 

Heilongjiang Province, which provides an important basis for subsequent analysis. 

 

Figure 4. Boxplot of SOM of all datasets and 10 training sets with n = 100,000 samples. 

3.3. Covariate Importance 

The relative importance of each variable for the seven pools is illustrated in Figure 5. 

Slight differences are shown among the rankings of the same covariates of the seven pools 

in the figures. This results from the fact that the relative importance of a given variable in 

a certain model depends on its correlation with other variables [4,59]. For all covariates, 

soil moisture, with a relative importance of 26.67%, was the most important factor in the 

prediction of SOM (Figure 5g). It is followed by the annual average temperature. In 

general, soil moisture, annual average temperature, annual average precipitation, and 

elevation are among the most important variables of all seven pools. Each of the four 

variables in the seven pools has a relative importance higher than 11%, which together 

accounts for more than 70% of the SOM variation. For human activities, the relative 

importance of the human footprint ranks 8th in Model 2, with a relative importance of 
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2.66% (Figure 5b). The amount of fertilizer application ranks 3rd in Model 3, with a 

relative importance of 12.33% (Figure 5c). The agronomic management level, with a 

relative importance of 3.10%, ranks 7th in Model 4 (Figure 5d). The crop planting type 

ranks 8th (2.93%) in Model 5 (Figure 5e). The irrigation guarantee degree ranks 10th 

(2.00%) in Model 6 (Figure 5f). In Model 7 with all 19 covariates (Figure 5g), the amount 

of fertilizer application was the 3rd most important variable, with a relative importance 

11.36% higher than the annual average precipitation and elevation. The human footprint, 

agronomic management level, crop planting type, and irrigation guarantee degree rank 

9th, 11th, 14th, and 16th, with a relative importance of 1.92%, 1.77%, 1.37%, and 1.15%, 

respectively. The results indicate the important prediction power of the five human 

activity factors. Remarkably, fertilizer application is the most important factor for SOM 

prediction. In contrast, surface water occurrence, lithological unit, and landform class are 

the last three important variables, and each has a relative importance lower than 1% in 

Model 7. 
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Figure 5. Relative importance of each variable for the seven models calculated by RF (SWC: surface 

water occurrence; SDT: sedimentary deposit thickness; AAP: annual average precipitation; AAT: 

annual average temperature; AFP: the amount of fertilizer application; AML: agronomic 

management level; IGD: irrigation guarantee degree; AASM: annual average soil moisture. (a), (b), 

(c), (d), (e), (f), (g) indicate relative importance of each variable for Model 1, 2, 3, 4, 5, 6, 7, 

respectively). 

3.4. Model Performance and Spatial Difference 

The prediction accuracy of SOM with seven combinations of covariates is listed in 

Table 4. The modeling and validation were performed ten times, and the average value 

was calculated as the final accuracy value. 

Table 4. Prediction performances of SOM for seven models. 

No. Covariates MAE RMSE LCCC R2 

1 environmental variates 5.87 8.37 0.63 0.41 

2 environmental variates + human footprint 5.79 8.27 0.64 0.42 

3 
environmental variates + amount of fertilizer 

application 
5.29 7.72 0.68 0.53 

4 
environmental variates + agronomic 

management level 
5.66 8.13 0.65 0.44 

5 environmental variates + crop planting type 5.74 8.18 0.65 0.44 

6 
environmental variates + irrigation guarantee 

degree 
5.73 8.20 0.64 0.43 

7 

environmental variates + human footprint, 

amount of fertilizer application, agronomic 

management level, crop planting type, 

irrigation guarantee degree 

5.02 7.37 0.70 0.57 

R2, coefficient of determination. 

The results show that adding the amount of fertilizer application would increase the 

prediction accuracy by 12% in terms of R2 compared with when only environmental 

variables are used. The accuracy is higher than adding the human footprint, agronomic 

management level, crop planting type, and irrigation guarantee degree only, increasing 
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the prediction accuracy by 1%, 3%, 3%, and 2%, respectively. The MAE and RMSE of the 

five models show a decreasing trend when only environmental covariates are used. 

Comparing Model 7 and Model 1, the validation results show that adding the five human 

activity factors increased the prediction accuracy by 39% in terms of R2, 12% in terms of 

RMSE, and 15% in terms of MAE compared to when only environmental covariates were 

used. Combining the five human activity factors shows more promising prediction power 

for SOM mapping in arable land. R2 revealed that the model including the five human 

activity factors and environmental covariates could explain 57% of the variation in the 

SOM distribution, whereas including environmental covariates only explained 41% of the 

variation in the SOM distribution. Additionally, a similar conclusion could be drawn from 

the higher LCCC of SOM prediction in model 7. 

The results prove that the predicted value of Model 7 is closer to the observed value, 

but the proximity may vary in different SOM intervals. Therefore, this section uses the 

kernel density method to show the proximity between the predicted and observed values 

of Model 1 and Model 7. The density distribution of SOM is shown in Figure 6. 

  

Figure 6. Density distribution of SOM predicted with Model 1 (a) and Model 7 (b). 

A similar conclusion could be drawn from the density distribution. Overall, the 

prediction of Model 7 is closer to the observed value than Model 1 and better follows the 

real density distribution. However, the proximity has different performances in different 

SOM intervals. In the interval of high SOM (>60 g/kg) and low SOM (<30 g/kg), the density 

distributions of Model 1 and Model 7 were both lower than the observed value, and the 

difference was more obvious in the former. However, the predictions of the two models 

have no significant difference and are almost identical. In the middle SOM interval (30 

g/kg~60 g/kg), the density distributions of the two models are higher than the observed 

values. At the same time, there are obvious differences between the two models. In the 

SOM interval, the density distribution of Model 1 is higher than that of Model 7, and the 

difference from the observed value is more obvious. Only in a small interval 

(approximately 30 g/kg and 60 g/kg), the density of Model 7 is higher than that of Model 

1. Moreover, one can find that the peak density of the observation is 35 g/kg, and the peak 

value of Model 1 and Model 7 are 37 g/kg and 35 g/kg, respectively. This suggested that 

human activity factors have a profound influence on SOM distribution in arable areas, 

and the prediction is more consistent with the observation. 

The addition of human activity factors can improve the proximity between 

observations and predictions. To show the spatial distribution of the proximity, this 

section calculates the difference between the observed value and predicted and of Model 

1 and Model 7 and spatializes it to characterize the spatial differences. 

Figure 7 shows the spatial distribution of the SOM difference between the 

observations and predictions of Model 1 (Figure 7a) and Model 7 (Figure 7b). Overall, 

there is an obvious difference between Model 1′s result and the real value. The difference 

in many areas exceeds 10 g/kg, mainly located in the middle of the Songnen Plain and the 
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northeastern part of the Sanjiang Plain, accounting for 16.4% of the total area. There is no 

obvious difference (−3~3 g/kg) in most areas (approximately 40.0% of the total area), 

mainly distributed in the Songnen Plain. Compared with Model 1, the difference between 

the predictions of Model 7 and the observations is obviously reduced. The area with a 

difference exceeding 10 g/kg only exists sporadically in the northeastern part of the 

Sanjiang Plain, accounting for 12.6% of the total area, far less than the 16.4% of Model 1. 

However, the area with no obvious difference (−3~3 g/kg) increased dramatically, 

accounting for 47.4% of the region. The area has an increase of 18.5% compared with 

Model 1, and most areas of Songnen Plain belong to this category. 

  

Figure 7. Spatial difference between observation and prediction with Model 1 (a) and Model 7 (b). 

4. Discussion 

4.1. Relative Importance of Environmental Covariates 

Studies have shown that the importance of explanatory covariates varies with 

different regions and scales. Generally, due to their high relative importance, topography, 

climate, and vegetation covariates have been widely used in SOM mapping. A similar 

conclusion was drawn in this study. The annual average temperature, elevation, annual 

average precipitation, and annual average NDVI rank 2, 4, 5, and 7, respectively, in Model 

7 (Figure 5g). 

Topography covariates have been widely employed in SOM prediction [62,63]. 

Among the series topography covariates, elevation is the most important covariate in this 

study, followed by slope and aspect. Similarly, previous studies for SOM prediction 

suggested that elevation is the most effective topographic covariate [19,64]. 

Mechanistically, topography could control precipitation, temperature, water flow paths, 

and discharge and significantly influence erosional processes. Therefore, it plays a crucial 

role for SOM. Sites with high elevations and gentle slopes favor water accumulation, 

which controls the SOM input. Furthermore, soil erosion and redistribution determined 

by water flow paths and local microclimate influenced by topography have profound 

effects on SOM variation in highly variable terrain, as in our study area [7,65]. In addition 

to our study area, topographic covariates would also significantly affect SOM in 

northeastern Iran [39], the Mediterranean region [66], Barro Colorado Island [58], eastern 

China [67], etc. 

Climatic influences the spatial variation of SOM [40,65], which is the “C” factor of 

soil formation. Precipitation and temperature are two key climatic covariates affecting the 

spatial variation of SOM, and similar results have been reported in similar regions [1,7,68]. 

In Model 7, AAT was the second most important covariate, whereas AAP ranked fifth 

(Figure 5g), indicating that temperature played a greater role in SOM prediction than 

precipitation, which is consistent with previous studies [4,7,19]. Mechanically, the two 
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covariates could affect both C input and SOM decomposition. Precipitation plays a crucial 

role in net primary productivity and then the input of C into the soil. A higher humidity 

favors the weathering of parent material and the formation of a soil carbon stabilizing 

mineral surface [69,70], which reduces the decomposition of SOM [71]. Temperature plays 

a crucial role in the microbial decomposition rate of SOM by affecting its complex 

molecular attributes [72–74]. 

Vegetation is another important covariate that is frequently used to predict SOM 

[75,76]. Among many vegetation covariates, the annual average NDVI is frequently 

employed for SOM mapping [6]. In Model 7, the annual average NDVI ranks 7 of all 19 

covariates (Figure 5g). Previous studies also reported a very important effect of NDVI on 

SOM distribution [1,19,77]. As the main source of SOM, it can enrich SOM by adding 

organic material, conserving soil moisture, and protecting soil erosion [78,79]. Moreover, 

vegetation will also affect the decomposition of C [65]. In addition to our study area, 

vegetation has been confirmed to primarily affect SOM in northern America [80], eastern 

Australia [81], and northwest Iran [13]. 

Compared to topography, climate, and vegetation covariates, soil moisture is less 

used in SOM prediction and mapping. In Model 7, annual average soil moisture has the 

highest relative importance compared to the other 18 covariates, which indicates that soil 

moisture could significantly affect the spatial variation of SOM and play the most 

important role in SOM development (Figure 5g). Soil moisture controls net primary 

productivity; therefore, SOM input plays a crucial role in soil microbial activity and SOM 

output. High and low soil moisture could reduce the soil aeration rate, substrate 

mobility/oxygen availability, and microbial activity and therefore favor SOM 

accumulation [65]. In addition to our study, soil moisture would also significantly affect 

SOM variation in an alluvial-diluvial plain in northeastern Ningxia Province [82], 

Flanders (Belgium) [83], Ohio State of the USA [84], and the Santa Fe River watershed in 

north-central Florida [85]. 

4.2. Relative Importance of Human Activity Factors 

Human activity factors could also affect soil properties to a certain extent, especially 

in arable land. In the last decade, many studies have been conducted to investigate the 

importance of human activities to SOM prediction, which are receiving increasing 

attention [16]. Yang used phenological parameters extracted from NDVI time-series data 

to improve the prediction of soil organic carbon (SOC) content and found that the spatial 

SOC is significantly affected by agricultural management in arable land [6]. Crop rotation 

can also significantly improve the prediction of SOC information in arable land [4]. 

Cultivation history is another important human activity factor that can influence the 

spatial distribution of SOM [7]. In this study, five human activity factors are employed to 

quantify the importance of SOM prediction in arable land in Heilongjiang Province. The 

results find that the amount of fertilizer application is the most important human activity 

factor, ranking 3rd in our model, which is higher than elevation, precipitation, NDVI, etc. 

The human footprint, agronomic management level, crop planting type, and irrigation 

guarantee degree rank 9th, 11th, 14th, and 16th, respectively. 

Actually, the amount of fertilizer application is rarely used in SOM prediction. 

However, the predictive model is considered to be extended using fertilizer application 

information to improve performance and accuracy [7]. Based on long-term field 

experiments, many studies have suggested that nitrogen fertilizer application could lead 

to significant soil acidification worldwide [86–88]. Mechanistically, the chemical could 

release hydrogen ions (H+) through nitrification of NH4+ and leaching of NO3−. The H+ and 

base cations leaching with gully erosion runoff may lead to soil acidification [22,89]. 

Furthermore, the use of chemical fertilizer could increase crop yields by accelerating SOM 

accumulation [89] and therefore reduce the use of traditional manure application or straw 

return in similar areas [90–92]. However, some studies have illustrated that massive 

fertilizer application could increase crop yield over a short period but could not sustain 
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the level of SOM in the long term [93]. Moreover, unreasonable fertilizer input can lead to 

a decrease in SOM by accelerating soil carbon decomposition in arable land and therefore 

cannot guarantee sustainable development in the northeastern black soil region in China 

[22]. Although different studies have controversial conclusions regarding the effect of 

fertilizer on SOM, our study suggests that adding the amount of fertilizer application 

could greatly improve the performance and accuracy of SOM prediction. This finding may 

result from the high acid buffering capacity of black soil. In highly intensive agriculture, 

biomass production increased with fertilization, leading to enhanced root growth and 

exudation of organic molecules, increased microorganism biomass and activity, and 

higher plant residue accumulation. Thus, fertilization up to a certain level may enhance 

SOM in soil. Additionally, the cumulative number of fertilizers did not reach the threshold 

that significantly affected SOM in this region. In addition to our study area, the use of 

fertilizer would also significantly affect SOM in Mediterranean cropping systems [94], 

northeast China [90,92], south China [88], and Alabama in southeastern USA [95]. 

The human footprint, agronomic management level, and crop planting type will 

affect the spatial variation of SOM to varying degrees. The human footprint is measured 

using eight variables, including built-up environments, population density, electric power 

infrastructure, crop lands, pasture lands, roads, railways, and navigable waterways, 

determining human pressure on the soil. Our finding is consistent with previous research 

[96]. Dong considered that the distance to the river is the most important variable of SOM 

prediction in alluvial-diluvial plains in China [82,97]. Yang used phenological parameters 

extracted from NDVI time-series data to improve the prediction of SOC content, and she 

found that the spatial variation of SOC is significantly affected by agricultural 

management in arable land [6]. Crop rotation can also significantly affect the amount and 

spatial variation of SOC in arable land [4]. The use of the irrigation guarantee degree will 

increase the accuracy of SOM mapping. It can not only meet crop water requirements but 

also improve soil quality by leaching salts to deep soil horizons [98]. The study indicated 

that SOM in arable land decreased with the reduction in the degree of irrigation guarantee 

(Table 5). The average SOM for different irrigation guarantee degrees ranged from 44.82 

g/kg to 35.04 g/kg, and the highest mean value was observed in Level I and the lowest in 

Level III; however, the mean SOM with no irrigation conditions (Level IV) was higher 

than that in Level III. This may be a result of the low utilization of arable land with no 

irrigation conditions. 

Table 5. Changes in SOM under different irrigation guarantee degrees. 

 Number of Samples Min (g/kg) Mean (g/kg) Max (g/kg) Variance 

Level I 536753 2.93 44.82 80.12 203.93 

Level Ⅱ 517441 5.90 39.94 80.13 189.80 

Level Ⅲ 609342 3.30 35.04 80.12 170.48 

Level Ⅳ 353508 9.00 38.26 80.13 139.31 

Meanwhile, lots of studies have investigated the influence of other human 

management on SOM in various regions based on field experiments. In Zhejiang Province 

(China), Wissing analyzed the management-induced organic carbon accumulation in 

paddy soils and found that the organic carbon concentrations in paddy soils increased 

from 18 mg/g to 30 mg/g, resulting from the iron oxides strongly interacting with organic 

matter and playing an important role in the stabilization of SOM [99]. In the same 

province, Mi reported the effect of four organic materials mulching on the variance of 

organic soil and found that cattle manure showed the most profound influence, which, 

combined with NPK fertilizer, resulted in the highest level of SOM [100]. In contrast to the 

impact of other indicators, such as spent mushroom compost and rice straw residues. 
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4.3. Model Performance 

As mentioned, DSM is conducted based on the relationship between soil and 

environment. The relationship can only be acquired by collecting soil sampling data and 

covariate data. Unfortunately, due to the small amount of soil sampling data (compared 

to the amount of prediction in the study area) used to train the DSM model, many similar 

studies may draw controversial conclusions [22–26]. Some studies have found that SOM 

in the black soil region of northeast China has declined rapidly over the past 30 years due 

to serious soil erosion [23,24]. Other research similarly found that SOM decomposition 

has exceeded sequestration as a result of the use of chemical fertilization [25]. However, 

research [26] has found that the SOM in three counties located in the same region did not 

show a significant difference between 1980 and 2010. The contradictory conclusions may 

be attributed to the insufficient amount of sampling data [22]. Another notable question 

is whether the accuracy using a small part of the soil sampling data can be used to reflect 

the prediction results of the whole study area. The “Specification of Arable Land Survey, 

Monitoring and Evaluation” project developed by the Ministry of Natural Resources has 

obtained information on soil properties and soil management at each patch of arable land 

in Heilongjiang Province. The large amount of soil survey data provided by the project 

can be used to solve problems related to DSM, which are mentioned earlier, and provide 

us with more accurate and credible evaluation results. 

Table 4 shows that Model 7 has a lower MAE (5.02) and RMSE (7.37) compared to the 

MAE (5.87) and RMSE (8.37) in Model 1. Additionally, due to the higher R2 and LCCC, 

Model 7 exhibited better performance. R2 indicates that Model 1 with environmental 

covariates could explain 41% of the variation in SOM distribution. However, Model 7 with 

environmental covariates and the five human activity factors could explain 57% of the 

SOM variation. 

Previous studies have predicted SOM spatial distribution, and the R2 from many 

studies was smaller than 0.5 [63,101–105] (Table 6). In arable land with relatively flat 

terrain, many widely used environmental variates, such as vegetables and topography, 

may be too homogenous to represent SOM variation effectively [106,107]. Similarly, in the 

flat arable land in Heilongjiang Province, Model 1 with only environmental covariates 

explains 41% of the variation in SOM distribution, which is lower than 0.5. However, 

Model 7, containing the five human activity factors, finally obtains a higher explanatory 

power for SOM. This further illustrates the importance of human activity factors as a 

predictor for SOM distribution. 

For SOM prediction in similar areas, our accuracy result (R2 = 0.57) is lower than those 

of some other studies. Qi used ten covariates to predict SOC in Liaoning Province with 

the help of the random forest method, obtaining an accuracy result of R2 = 0.58 [1]. Wang 

combined the cultivation history and environmental variates to predict the SOC of arable 

land, obtaining an accuracy result of R2 = 0.76, whereas it was 0.65 when considering only 

environmental variates [7]. This illustrates that if only a small part of the data is used as 

the validation set, the evaluation result will be overestimated. 

Table 6. Comparison of the results of this study with published achievements. 

Areas R2 (SOM) Predictive Models Reference 

Brazil 0.33 RF [104] 

Eastern Himalayas 0.36 RF [102] 

Denmark 0.42 Cubist [63] 

Australia  0.25 SVR [101] 

Jiangsu, China 0.53 RK-REML [103] 

China 0.35 XGBoost [105] 

Liaoning, China 0.63 RF [1] 

Northeastern China 0.76 BRT [7] 
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SVR: support vector regression; RK-REML: regression kriging with a mixed linear model fitted by 

residual maximum likelihood; XGBoost: scalable and efficient tree boosting system, eXtreme 

gradient boost; BRT: boosted regression trees. 

4.4. Limitations and Outlook 

In relatively flat arable land, many widely used environmental variates may be too 

homogenous to represent SOM variation effectively. Some environmental variates, such 

as topography parameters, are not important in predicting SOM. In contrast, due to the 

excellent production and living conditions in these areas, strong human activity and 

urbanization could lead to rapid land use change, which will have a significant impact on 

SOM variation. However, information about human activities with fine spatiotemporal 

resolution was not available to us. The data obtained from the city statistical yearbook are 

too coarse for further research. Obtaining data about human activity with fine 

spatiotemporal resolution is a great challenge. 

 Due to the unavailability of human activity information, many studies obtained 

relative data by field surveys and personnel interviews, which is time-consuming and 

expensive. Therefore, data sharing is a very important choice to promote scientific 

research. However, the formulation of related policies is still a major challenge. 

5. Conclusions 

In the study, five human activity factors, including the amount of fertilizer 

application, human footprint, agronomic management level, crop planting type, and 

irrigation guarantee degree, were used to explore their effectiveness in predicting SOM in 

arable land in Heilongjiang Province, China. As a result of the analysis, answers can be 

drawn about the initial motivation of the study in the Introduction; (1) The model, by 

combining the five activity factors, increases the SOM spatial prediction by 39% in terms 

of R2, 12% in terms of RMSE, 15% in terms of MAE, and 11% in terms of LCCC, showing 

better prediction accuracy and performance, whereas only environmental covariates 

account for 41% of the variation in SOM distribution. (2) In the SOM prediction model, 

soil moisture was the most important environmental covariate, followed by annual 

average temperature. The amount of fertilizer application, ranking 3rd, is the most 

important human activity factor. (3) Sufficient SOM sampling data and field survey data 

were employed for prediction and accuracy verification, finding that the evaluation result 

will be overestimated when only a small part of the sampling data is used. 

However, the relative importance of environmental conditions and human activity 

covariates may vary in other regions, which requires more analysis and discussion. 

During the research process, the data about human activity with fine spatiotemporal 

resolution are still a great challenge in SOM prediction in arable land. 
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