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Abstract: The simulation-optimization method, integrating the numerical model and the evolutionary
algorithm, is increasingly popular for identifying the release history of groundwater contaminant
sources. However, due to the usage of computationally intensive evolutionary algorithms, tradi-
tional simulation-optimization methods always require thousands of simulations to find appropriate
solutions. Such methods yield a prohibitive computational burden if the simulation involved is time-
consuming. To reduce general computation, this study proposes a novel simulation-optimization
method for solving the inverse contaminant source identification problems, which uses surrogate
models to approximate the numerical model. Unlike many existing surrogate-assisted methods using
the pre-determined surrogate model, this paper presents an adaptive surrogate technique to construct
the most appropriate surrogate model for the current numerical model. Two representative cases
about identifying the release history of contaminant sources are used to investigate the accuracy
and robustness of the proposed method. The results indicate that the proposed adaptive surrogate-
assisted method effectively identifies the release history of groundwater contaminant sources with a
higher degree of accuracy and shorter computation time than traditional methods.

Keywords: simulation-optimization method; surrogate modeling; inverse contaminant source identi-
fication problems

1. Introduction

Unlike surface water contaminant, groundwater contamination occurs underground
invisibly, and it is hard to speculate complete information on contaminant sources with
limited observable data [1]. To control groundwater contamination, design remediation
strategies, and assess contaminant risk, the problem of the identification of the release
history of groundwater contaminant sources is critical to solve [2]. Among many solution
methods, simulation-optimization, which integrates the numerical model and the evolu-
tionary algorithm, is one of the most popular methods [3,4]. Because of the development of
technology and deep insight into the groundwater system, universal simulation platforms
such as the MODFLOW-2005 [5], MT3DMS [6], MODFLOW 6 [7], and some special ana-
lytical models [8,9] have been able to describe the groundwater flow and solute transport
processes accurately. Evolutionary algorithms, such as the genetic algorithm (GA), particle
swarm optimization (PSO), or differential evolution algorithm (DE), can automatically
find the most reasonable locations or the release history of potential contaminant sources
by minimizing the difference between the simulation values and observed values [10].
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Although the above simulation-optimization method is convenient, universal, and robust,
its application still suffers from a severe problem [11–13].

The solving process based on evolutionary optimization must repetitively invoke the
numerical model, thereby yielding a prohibitive computational burden [14]. To handle
this issue, using surrogate modeling to approximate numerical models has attracted much
attention [15]. Surrogate modeling as a data-driven approach can accurately approximate
the numerical models with a few history data from true simulations. Significantly, with the
comparison of numerical models, the run time of surrogate models is generally considered
to be negligible [16]. Therefore, the surrogate-assisted simulation-optimization method
can effectively and efficiently find the optimal solution for solving the inverse contaminant
source identification problems [17,18].

Commonly used surrogate models such as Kriging [19], support vector machines
(SVM) [20], response surface model [21], artificial neural network (ANN) [22], and radial
basis function (RBF) [23] have broad applications in the simulation-optimization problems
of the groundwater field [24–27]. For instance, Fen [28] presented a response on surface-
based optimization for soil vapor extraction system design. Guo [29] integrated Kriging
and mixed-integer nonlinear programming to identify the groundwater pollution source.
The study on [30] constructed ANN for uncertainty estimation. Zhang [31] combined ANN
and SVM to approximate the SWAT model. Zhao [32] evaluated the effect of using KELM
surrogates and four heuristic-optimization algorithms to calibrate necessary information
on groundwater contaminant sources. There are also some proposed methods using an
ensemble of surrogates to solve inversion problems [33–36].

Although many previous studies successfully applied the specific surrogate model
or their aggregation to solving groundwater simulation-optimization problems, each sur-
rogate model had its limitations under some particular situations. The above researchers
previously determined the type of surrogate model used before carrying out their opti-
mization. By the “no free lunch” theorem [37], it seems impossible that the pre-determined
surrogate model could perform consistently well on problems without any prior knowl-
edge. In addition, some studies indicated that the performance of the surrogate model
was also related to provided history data from true simulations [15,38,39]. One natural
idea is to apply an adaptive surrogate technique to adapt to potential situations during
the optimization process. To our best knowledge, few efforts have been made to develop
an adaptive method and apply it to solve the inverse contaminant source identification
problems. A challenging task may be evaluating the effect of surrogate models on various
situations and accurately switching the most promising one.

Inspired by the above idea, this study proposed a novel surrogate-assisted simulation-
optimization method based on an adaptive surrogate technique. The adaptive surrogate
technique was developed based on RBF since RBF has many selectable basis functions
which influence its performance. Compared with other surrogates, RBF also shows better
performance on medium-dimension optimization problems. Two representative cases
about identifying the release history of contaminant sources were used to investigate the
accuracy and robustness of the proposed method. Empirical experiments showed that the
proposed method could effectively and efficiently handle the inversion of contaminant
sources under most complex situations.

The main contributions of the study are summarized as follows:

• Unlike most surrogate-assisted simulation-optimization methods using pre-determined
surrogates, an adaptive surrogate technique was proposed to construct the most ap-
propriate surrogate model. The high performance and reliability of the technique were
confirmed in this study.

• Detailed comparisons of the proposed and traditional methods were conducted on two
representative cases about the inversion of contaminant sources. The results clearly
indicated that the proposed method had higher accuracy and shorter computation
time than the traditional method.
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• A solving framework that is able to apply any evolutionary algorithm and numerical
model was presented. The flexibility and feasibility of the framework were verified in
our study.

2. Methodology
2.1. Mathematical Description of the Inverse Contaminant Source Identification Problems

With the help of numerical simulation, the inverse contaminant source identification
problems can be converted into the optimization model:

minimize : f (x) =
T
∑

t=1

N
∑

n=1
(cnt − c̃nt)

2

subject to : x ∈ [LB, UB]
(1)

where unknown parameters x denotes the release fluxes to be identified; f is the response
value which represents the fitting degree of calibrating value x to its true value; cnt denotes
the observed value of contaminant concentration at well n in stress period t; c̃nt denotes
the simulated value of contaminant concentration observed by well n in stress period t,
obtained from simulation. Therefore, f is not an explicit function, which relates to the
numerical simulation using x. Generally, the value of f approach to 0 means the high
quality of x. LB and UB are the upper boundary and lower boundary of x.

2.2. Proposed Surrogate-Assisted Simulation-Optimization Method

As Figure 1 shows, the traditional simulation-optimization method directly couples
the numerical model and the evolutionary algorithm at the “function evaluation” (red
points in Figure 1). The “function evaluation” aims to provide each individual’s response
value during the optimization process. As we know, evolutionary algorithms must invoke
the numerical model thousands of times to complete the “function evaluation,” which
yields a prohibitive computational burden due to the time-consuming simulation.
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Figure 1. The flow chart of the traditional simulation-optimization method.

To handle the above issue, this study proposed a novel simulation-optimization
method that implemented an adaptive surrogate technique to construct an appropriate
surrogate model for reducing most of the computation. Figure 2 visualizes the flow chart of
the proposed surrogate-assisted simulation-optimization method. Compared with Figure 1,
the “history data” node was added to save all output results given from the expensive
simulation. The “black line” denotes the flow path of history data. The history data
come from the expensive simulation and were used for constructing RBF. Significantly, the
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“expensive evaluation” and “cheap evaluation” of Figure 2 were used to distinguish the
two types of “function evaluation” between expensive simulation and cheap prediction,
respectively. In Figure 2, the “cheap evaluation” is contained in the evolutionary cycle
(denoted as “pink line”), which was computationally intensive. The “Expensive evaluation”
was only needed to provide the true simulation value for high-quality solutions. This is the
key to the surrogate-assisted method.
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The primary process of the proposed method can be summarized as follows in Figure 2,
shown as the “blue line.” First, Latin hypercube sampling is used in the initialization epoch
to generate the initial population. Second, the individuals of the population are evaluated
exactly by true simulation and then stored in “history data” node. Next, the procedure
enables the outside loop. At the beginning of this loop, the surrogate model is constructed
with the assistance of the adaptive surrogate technique (AST), and the initialization of the
evolutionary loop should be completed. The procedure then enters the inner loop, also
called the evolutionary loop (“pink line”). Via the inner loop, high-quality solutions can be
found with the cooperation of the evolutionary algorithm and the surrogate model. Once
the procedure jumps out of the inner loop, the solutions that rank top, known as Ntop
(user-defined parameter), based on the surrogate model will be evaluated by the numerical
model. The data from the expensive evaluation are stored as the “history data,” used for
the following construction of the surrogate model. The outer loop of the procedure will
be continually iterative until the times of expensive evaluation meet the pre-determined
parameter by the user denoted as FEmax.

Further details about each component of the proposed method are provided in the
following sections.

2.3. Simulation Model

This paper applied MODFLOW 6 as the simulation model to present the groundwater
flow and pollutant transport process, which provided an integrated platform for multiple
models, including hydrodynamic and transport models. The partial-differential equation
can describe the general governing equation about groundwater flow and state variables
transport process [40]:

∂

∂xi

(
K f i

∂h
∂xi

)
+ W = Ss

∂h
∂t

(2)
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where Kfi is the principal component of the potentiometric head hydraulic conductivity
(LT−1); h denotes the potentiometric head (L); W is the sink/source term; Ss is the specific
storage of the porous material (L−1); t denotes the time (T).

The Groundwater Transport Model of MODFLOW 6 solves the following advection-
dispersion-reaction equation under known hydrogeological conditions to obtain the pollu-
tant transport process [41]:

∂

∂xi

(
θDij

∂Ck

∂xj

)
− ∂

∂xi

(
θviCk

)
+ qsCs

k + ∑ Rn =
∂
(

θCk
)

∂t
(3)

where θ is effective porosity; Ck is the dissolved concentration of species k (ML−3); Dij is
the dispersion coefficient tensor (L2T−1); vi is the linear pore water velocity (LT−1); qs is the
volumetric flow rate per unit volume, representing sources or sinks (T); Cs

k is the source or
sink concentration of species k (ML−3); Rn is the chemical reaction term (ML−3T−1).

Notice that any other efficient groundwater model could replace the used simulation
model MODFLOW 6 in this paper.

2.4. Radial Basis Function

Radial basis function (RBF) has been widely used in data regression, data mining, and
function approximation for the past 30 years. The key to RBF modeling is to use a weighted
sum of some basis function to approximate the potential relationship between the input
and output [42]. The chosen type of basis function mainly determines the characteristic of
RBF. Some comparative studies on surrogate models indicate that RBF has the ability to
approximate various landscapes due to its multiple basis functions. This section briefly
introduces the modeling approach of RBF.

If given a data set consisting of the values of the decision variables and corresponding
value at Nt tanning points, the true function f (x) can be approximated as:

f (x) : f̃ (x) =
N

∑
i=1

λi ϕ
(
‖⇀x −⇀

c i‖
)
+ p

(
⇀
x
)

(4)

where λ denotes the weights of radial basis functions; ci is the center of radial basis function;
ϕ(·) is the basis function; p(·) is the polynomial model, constant value, or none, depending
on the type of basis function.

There are some commonly used types of basis functions and their corresponding p(x):

Cubic : r3 p(x) : hT ·
(

x
1

)
Linear : r p(x) : hT ·

⇀
1

Multiquadric :
√

r2 + γ2 p(x) : hT ·
⇀
1

Thin plate spline : r2·log(r) p(x) : hT ·
(

x
1

)
Gaussian : e−γ·r2

p(x) : None

(5)

where r = ||x − c||; hT denotes the weight coefficients.
The coefficients λ and h can be obtained by solving the following linear system:(

Φ P
PT 0

)(
λ
h

)
=

(
F
0

)
(6)

where the size of Φ is Nt × Nt; Φij = ϕ (||x − c||); P was mentioned in Equation (6).



Water 2022, 14, 1659 6 of 18

2.5. Adaptive Surrogate Technique

Using a pre-determined surrogate model may cause loss of prediction reliability on
some special problems, perhaps even missing the optimization orientation. This study
proposes an adaptive surrogate technique (AST). Before constructing a surrogate for the pro-
cedure, the adaptive surrogate model will assess the prediction accuracy for all candidate
surrogates and choose a reasonable one. As we know, RBFs have some basis functions that
determine the performance of the built RBF. This study uses an RBF with multiple selectable
basis functions as an example to investigate the ability of the adaptive surrogate technique.

As mentioned, a challenge of developing an adaptive method may be how to evaluate
the effect of surrogate models to approximate various landscapes and accurately switch
to the most promising one. In our study, k-fold cross-validation was used to assess the
prediction accuracy of all candidate surrogates.

If given a set A (A: {(x1, y1), (x2, y2) . . . (xn, yn), ||A|| = n}), xi denotes the ith
individuals and yi denotes the exact response values by simulation. At the beginning of the
k-fold cross-validation, the set A should be randomly divided into k subsets, denoted as Ai,
i = 1, 2 . . . k.

Next, k times cross-validation will be executed. For the ith times of cross-validation,
all subsets except Ai were integrated as the training set T, and the set Ai was regarded as
the test set. With the training set T, we constructed the RBF using one basis function ϕ. We
then used the following equation with the test set Ai to compute the performance metric Ei
for the constructed RBF:

Ei =
||Ai ||

∑
j=1

(
f j − f̃ j

)2
(7)

where f j denotes the true values of individual xi; f̃ j denotes the prediction values by the
constructed RBF.

After completing k times cross-validation, we computed the mean value of all Ei,
i = 1, 2 . . . k, denoted as E. The E represents the prediction accuracy of the RBF using the
basis function ϕ. In this study, the adaptive surrogate technique contained five candidate
basis functions. Therefore, five performance metrics were obtained. The basis function
corresponding to the minimum metric value could be adopted eventually.

Notice that the solving problem and generated history data all influence the results of
using the adaptive surrogate technique. To some extent, it also reflected the flexibility and
reliability of the proposed technique.

2.6. Procedure Framework of the Proposed Method

The proposed surrogate-assisted simulation-optimization method was implemented
by Python, as Figure 3 visualizes.
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The proposed method contains three important modules:
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• Surrogate-assisted optimization module. This module aims to provide high-quality
solutions to be precisely evaluated by simulation. In this paper, differential evolution
(DE) is used as the evolutionary algorithm.

• Coupling module, used as an auxiliary module. The function of this module is to link
the other two modules, such as invoking a parallel simulation, converting simulation
results into response values, representing the performance metric of one solution, and
storing history data.

• Groundwater simulation module. This module aims to automatically run the simulation
and extract necessary data, including the water table and contaminant concentration.

It should be noted that the proposed solving framework can conveniently couple any
other simulation model into the groundwater simulation module if the model provides
the parameter input and results output interface. In addition, any evolutionary algorithm
can be applied in the surrogate-assisted optimization module, which is easy to create a fair
environment for comparison.

3. Empirical Study

In order to thoroughly investigate the performance of the proposed method, we
designed two hypothesis cases, inspired by [17,32,33,43]. Additionally, four traditional
algorithms were prepared, comparing with our proposed method. Two of the compared
methods only use the evolutionary algorithm (genetic algorithm [44] and particle swarm
optimization [45]). The other two use pre-determined surrogates (cubic RBF and lin-
ear RBF) with evolutionary algorithms. Table 1 provides the basic information of all
compared algorithms. For simplicity, “AST-SOM” denotes the proposed method; “Cubic-
SOM” denotes the simulation-optimization method using cubic RBF and the differential
evolution algorithm.

Table 1. The basic information of all compared algorithms.

Abbreviation of Methods Usage of Surrogate Usage of Evolutionary Algorithm

AST-SOM All RBFs + AST Differential Evolution Algorithm
Cubic-SOM Cubic RBF Differential Evolution Algorithm
Linear-SOM Linear RBF Differential Evolution Algorithm

GA-SOM / Genetic Algorithm
PSO-SOM / Particle Swarm Optimization

All methods were run on the same computer equipped with Intel(R) CoreTM i7-7700
CPU, 3.60 GHz(processor), and 16 GB(RAM). All the experiments ran ten times for each
case and each method.

3.1. Experimental Setup

The common parameters of the five methods are listed below:

• The size of the initial population in the evolutionary loop was set to 50.
• The maximum number of expensive evaluation FEmax was set to 200 for case 1 and

1000 for case 2.
• For the simulated binary crossover, the pc and ηc were set to 1 and 20, respectively;

For the polynomial mutation, the pm and ηm were set to 1/D and 20, respectively.
• For PSO, based on the previous literature, the inertia weight w was set to 0.4.

Moreover, the specific parameters for the proposed method are listed below:

• The value of k for cross-validation was set to 30.
• The value of Ntop was set to 10, which meant that the rank top 10 of the population

based on the surrogate model would be precisely evaluated by the numerical model
at the end of the evolutionary loop.



Water 2022, 14, 1659 8 of 18

3.2. Case 1: Identification of Release History of a Single Contaminant Source

The first case was about identifying the release history of a single contaminant source.
Figure 4 shows a heterogeneous confined aquifer with an irregular boundary (250 × 150 m).
The aquifer domain was discretized by using 375 grids. There were 221 active grids among
375 grids, and the size of each grid was 10 × 10 m. The saturated thickness of the aquifer
was 10 m. The aquifer had the specified head on the left (hl = 20 m) and right (hr = 15 m)
boundaries and had no-flow boundaries on the other sides. Other hydrogeological parame-
ters of the aquifer are shown in Table 2. According to the different geological conditions
in the study area, the aquifer domain could be divided into five zones with different
conductivities, as Table 3 lists.
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Table 2. Hydrogeological parameters of case 1.

Parameters Values

Effective porosity, θ 0.25
Longitudinal dispersity, αL (m) 40
Transverse dispersity, αT (m) 5

Saturated thickness, b (m) 10
Storage coefficient, Ss 0.0001

Table 3. The hydraulic conductivities of the aquifer.

Locations Region 1 Region 2 Region 3 Region 4 Region 5

Values
(m/day) 18 24 26 12 20

There was a contaminant source in the study area at location (35, 115), as Figure 4
shows. The contaminant source continuously leaked contaminant to groundwater during
the first five stress periods (SPs) of the simulation periods (12 SPs). Each stress period
was 30 days. The true release fluxes of the source are listed in Table 4, and there were
nine monitor wells to observe the water table and contaminant concentration.
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Table 4. The true release fluxes of the contaminant source.

Release fluxes
(kg/day)

SP1 SP2 SP3 SP4 SP5

5.00 1.10 1.50 2.60 7.30

We constructed the groundwater model for this case. Forward simulation with
the true release fluxes of Table 4 was conducted to obtain the simulation values of the
nine monitor wells as the observed value. Figure 5 shows the observed data of contam-
inant concentration at each monitor well. We can observe from Figure 5 that different
monitors observed completely different processes (peak, amplitude, and phase) of contami-
nant concentration. It seemed impossible to accurately pick up the appropriate solution
fitting the observed data by a manual trial-and-error method; therefore, we turned to
optimization methods.
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Before applying optimization methods, the optimization model should be established:

minimize : f (x) =
12
∑

t=1

7
∑

n=1
(cnt − c̃nt)

2

subject to : x ∈ [0, 10]5
(8)

where x denotes the release fluxes of the contaminant source to be identified in the first
five stress periods; f denotes the response value to x; cnt denotes the observed value of
contaminant concentration at well n in stress period t; c̃nt denotes the simulated value of
contaminant concentration observed by well n in stress period t, obtained from simulation.

All comparative methods were used to solve Equation (8) under FEmax = 200. The
run time of a single simulation was about 8 s. Table 5 lists the statistical results of all
comparative methods with ten independent runs. The results clearly show that AST-SOM
obtained the best results with limited expensive evaluations (FEmax = 200), followed by
Cubic-SOM, Linear-SOM, GA-SOM, and PSO-SOM. Generally, surrogate-assisted methods
outperform traditional simulation-optimization methods. The reason may be the use of
the surrogate technique. The technique effectively reduces the unnecessary expensive
simulation and guides the optimization in the right way. Significantly, the AST-SOM found
the optimal release fluxes of the contaminant source, while the results of others were far
away from the optimum. It convincingly proved that the adaptive surrogate technique
could further improve the degree of solving accuracy more than pre-determined surrogate
methods (Cubic-SOM and Linear-SOM) could.
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Table 5. The statistical results of all comparative methods with ten independent runs.

Algorithm Mean Value Best Value Median Value Deviation

AST-SOM 0.000 0.000 0.000 0.000
Cubic-SOM 49.762 36.725 49.105 12.225
Linear-SOM 36.092 23.271 34.274 14.745

GA-SOM 593.499 360.631 562.468 325.479
PSO-SOM 632.572 486.199 654.167 286.619

Table 6 shows the specific solutions of all used methods corresponding to the median
value in Table 5. The percentage of Table 6 denotes the error rate between identified value
and true value, as in the following equation:

P =
|xI − xT |

xT
(9)

where xI denotes the identified value; xT denotes the true value.

Table 6. The specific solutions of all used methods corresponding to the median value of Table 2.

Methods
Optimization Result (Unit: kg/day)

Objective
ValueSP1

(5.00)
SP2

(1.10)
SP3

(1.50)
SP4

(2.60)
SP5

(7.30)

AST-SOM 5.00
(0.0%)

1.10
(0.0%)

1.50
(0.0%)

2.60
(0.0%)

7.30
(0.0%) 0.000

Cubic-SOM 5.406
(8.1%)

0.500
(54.5%)

2.052
(36.9%)

1.809
(30.4%)

7.733
(5.9%) 49.105

Linear-SOM 4.773
(4.5%)

1.137
(3.4%)

1.778
(18.5%)

2.965
(14.1%)

6.869
(5.9%) 34.274

GA-SOM 3.878
(22.4%)

2.611
(137.4%)

2.525
(68.3%)

3.425
(31.7%)

5.395
(26.1%) 562.468

PSO-SOM 3.733
(25.3%)

1.015
(7.7%)

1.030
(33.2%)

6.700
(157.7%)

5.225
(28.4%) 654.167

From Table 6, we can see that all methods except AST-SOM obtained low-quality
solutions. In particular, the release fluxes in SP2, SP3 and SP4 were far away from the
true values. For example, the error rate of SP2 in Cubic-SOM was 54.5%, while the ratio
of SP4 in PSO-SOM was 157.7%. We speculated that these release fluxes contained strong
correlation with each other and therefore were difficult to be accurately calibrated. For
methods using pre-determined methods (Cubic-SOM and Linear-SOM), the built surrogate
did not approximate the numerical model well. Figure 6 shows the usage of RBF of AST-
SOM during optimization process in the solutions obtaining median value. From Figure 6,
every prepared RBF had been switched during the loops. The results clearly indicated that
the adaptive surrogate technique could intelligently select the most appropriate RBF for the
optimization, although the problem hadn’t provided any prior knowledge at the beginning.
Above all, we can draw the conclusion that the adaptive surrogate technique (AST) could
make the optimization converge better.
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To sum up, the proposed method has the ability to handle the release history of a
single contaminant source under a complex aquifer situation.

3.3. Case 2: Identification of Release History of Multiple Contaminant Sources

Case 2, involving the identification of the release history of multiple contaminant
sources, was more complex than case 1. Case 2 aimed to mainly simulate the identification
of the aquifer contaminant’s source information encountered in plain areas in real life. The
purpose of this case study was to invert the contaminant transport process and identify the
true release fluxes of four sources in the first five stress periods, with existing hydrogeo-
logical information and monitoring data, so as to provide strong support for subsequent
contaminant treatment and responsibility assessment. As shown in Figure 7, the study area
was about a confined homogenous aquifer (800 × 1200 m) with a rectangular shape and
a thickness of 30 m. The aquifer domain was discretized using 600 grids, and each gird
was 20 × 20 m. It is known that the north and south boundaries were no-flow boundaries,
the east and west boundaries were specified head boundaries, the water table in the east
boundary was 100 m, and the water table in the west boundary was 90 m. Since the soil
in the plain area was composed of medium sand with good conductivity, the hydraulic
conductivity was set to 18 m/day. Other hydrogeological parameters of the aquifer are
shown in Table 7.
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Table 7. Hydrogeological parameters of case 2.

Parameters Values

Effective porosity, θ 0.25
Longitudinal dispersity, αL (m) 40
Transverse dispersity, αT (m) 15

Saturated thickness, b (m) 30
Storage coefficient, Ss 0.0001

As shown in Figure 7, there were four contaminant sources upstream of the study
area and seven observation wells that monitored the real-time contaminant concentration
downstream. The stress periods of this case were set to 20 stress periods (SPs), and each
period was three months, a total of 60 months. It is assumed that each contaminant source
continuously leaked contaminant in the first four stress periods. Table 8 lists the specified
release fluxes of all contaminant sources.

Table 8. The true release fluxes of the contaminant sources.

Sources
Release Fluxes (kg/day)

SP1 SP2 SP3 SP4 SP5

S1 67.00 0.00 22.00 51.00 14.00
S2 21.00 82.00 0.00 50.00 32.00
S3 14.00 0.00 100.00 33.00 25.00
S4 62.00 25.00 0.00 13.00 24.00

According to true release fluxes provided in Table 8, the observed data of contaminant
concentration from each monitor well were obtained by the forward modeling. Figure 8
shows the contaminant plume distributions at SP6, SP9, SP12, SP15, SP18, and SP20.
Figure 9 presents the observed data of contaminant concentration at each monitor well. We
can conclude that the generated contaminant plume consisting of four sources was irregular,
and the release fluxes of each source were too difficult to identify by manual work.

Based on the above-mentioned information, the optimization model can be established
as:

minimize : f (x) =
20
∑

t=1

7
∑

n=1
(cnt − c̃nt)

2

subject to : x ∈ [0, 100]20
(10)

where x denotes the release fluxes of the four sources to be identified in the first five stress
periods; f denotes the response value to x; cnt denotes the observed value of contaminant
concentration at well n in stress period t; c̃nt denotes the simulated value of contaminant
concentration observed by well n in stress period t, obtained from simulation. Therefore, the
optimization denoted by Equation (10) was a problem containing 20-unknown decisions.

All comparative methods were used to solve Equation (10) under FEmax = 1000. The
run time of a single simulation was about 13 s.

Table 9 lists the results of all comparative methods with ten independent runs. The
results show that the proposed method, AST-SOM, still obtained best performance in
case 2 significantly, followed by Cubic-SOM, Linear-SOM, GA-SOM, and PSO-SOM. For
the standard deviation of the three methods, AST-SOM showed its superiority in acquiring
reliable solutions.
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Table 9. The results of all comparative methods with ten independent runs.

Algorithm Mean Value Best Value Median Value Deviation

AST-SOM 9.741 7.381 10.730 5.842
Cubic-SOM 67.594 56.049 65.308 17.732
Linear-SOM 150.949 133.084 137.311 15.407

GA-SOM 8707.862 4457.061 8136.775 4339.845
PSO-SOM 10,657.852 6658.126 9955.026 4892.449

Table 10 provides the average CPU time of all comparative methods under ten inde-
pendent runs. With the analysis of computational efficiency, the CPU time of AST-SOM,
Cubic-SOM, and Linear-SOM was about 50% lower than the other two methods. We
speculate that the extra time (about 90–160 min) was used to construct the surrogate model
and execute some evolutionary loops. As the introduction of Section 2, the extra time was
only related to the size of the training set. Simply put, the runtime of the simulation didn’t
influence the extra time. Therefore, if the runtime of simulation was more than 1 min, the
extra time was generally considered to be negligible.

Table 10. The average CPU time of all comparative methods under ten independent runs.

Algorithm AST-SOM Cubic-SOM Linear-SOM GA-SOM PSO-SOM

CPU time
(minutes) 392.77 324.96 320.85 231.52 225.68

However, it should be noted that the accuracy of AST-SOM was much better than
others. In order to clearly show the advantages of AST-SOM, Table 11 provides the times
of expensive evaluation and the CPU time of the traditional methods to obtain the best
response value (7.381 in Table 9) with the same precision as AST-SOM. Table 11 shows that
the traditional methods needed at least 7 or 8 times more time to obtain a similar solution
accuracy as AST-SOM. The runtime of the traditional methods was unacceptable to us.

Table 11. The times of expensive evaluation and the CPU time of the traditional methods to obtain a
response value with the same precision as AST-SOM.

Algorithm Response Value Times of Expensive Evaluation CPU Time

GA 8.074 13,250 2891.47 min (48.19 h)
PSO 7.988 14,650 3198.67 min (53.31 h)

To study the feasibility of the proposed solution by AST-SOM, Figure 10 compares
identified source fluxes that obtained the best response value (7.381 in Table 9) with actual
fluxes under ten independent runs. We can conclude from Figure 10 that AST-SOM could
better identify the release history of each source in different periods with the assistance of
the adaptive surrogate technique. The error rate of release fluxes was limited within 1%.
However, there were some deficiencies in identifying the release fluxes in some periods. For
example, there was an inevitable error between the true value and the identified value of
the release history of Source 2 in SP2, Source 3 in SP3, and Source 4 in SP2. The reason may
be that the “curse of dimensionality” phenomenon affected the optimization of the optimal
solution of AST-SOM. Figure 11 shows the errors between observed and simulated values
corresponding to the best optimization results of five methods. Although the solutions
obtained by AST-SOM are not exact, the simulated values fit to the observed values.
Generally speaking, the identified errors were within an acceptable range, which did not
affect the subsequent contamination remediation and responsibility assessment plans.
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To sum up, the proposed method has the ability to handle the release history of
multiple contaminant sources under the complex aquifer situation.

3.4. Additional Discussion

This section conducts two representative cases to show the superiority of the proposed
method to traditional methods using GA and PSO. The use cases contained the identifica-
tion of a single source and multiple sources. With consideration of the detailed results of
the two cases, we can draw the following conclusions:

• Under the limited expensive evaluations, the proposed method could significantly im-
prove the accuracy of solving the inverse contaminant source identification problems.

• Under the same solving precision, the proposed method could save about 80% to 90%
of the computation.

• All experiments were successfully run on our proposed simulation-optimization framework.
• The feasibility and flexibility of our simulation-optimization framework are confirmed.

4. Conclusions

To efficiently identify the release history of groundwater contaminant sources, this
study proposed an adaptive surrogate-assisted simulation-optimization method. Unlike the
existing surrogate-assisted method using the pre-determined surrogate model, an adaptive
surrogate technique was presented to construct the most appropriate surrogate model for
the current numerical model. This study conducted two representative cases to compare
it with two traditional simulation-optimization methods (genetic algorithm and particle
swarm optimization). The results indicate that the proposed method could effectively and
efficiently handle most complex cases about the inverse contaminant source identification
problems. There also existed some disadvantages. For example, the performance of the
proposed method was disturbed by the increasing dimensions of the problem. We will try
to study more efficient approaches to avoid these for future work.
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