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Abstract: To improve the precision of water quality forecasting, the variational mode decomposition
(VMD) method was used to denoise the total nitrogen (TN) and total phosphorus (TP) time series
and obtained several high- and low-frequency components at four online surface water quality
monitoring stations in Poyang Lake. For each of the aforementioned high-frequency components,
a long short-term memory (LSTM) network was introduced to achieve excellent prediction results.
Meanwhile, a novel metaheuristic optimization algorithm, called the chaos sparrow search algorithm
(CSSA), was implemented to compute the optimal hyperparameters for the LSTM model. For each
low-frequency component with periodic changes, the multiple linear regression model (MLR) was
adopted for rapid and effective prediction. Finally, a novel combined water quality prediction model
based on VMD-CSSA-LSTM-MLR (VCLM) was proposed and compared with nine prediction models.
Results indicated that (1), for the three standalone models, LSTM performed best in terms of mean
absolute error (MAE), mean absolute percentage error (MAPE), and the root mean square error
(RMSE), as well as the Nash–Sutcliffe efficiency coefficient (NSE) and Kling–Gupta efficiency (KGE).
(2) Compared with the standalone model, the decomposition and prediction of TN and TP into
relatively stable sub-sequences can evidently improve the performance of the model. (3) Compared
with CEEMDAN, VMD can extract the multiscale period and nonlinear information of the time series
better. The experimental results proved that the averages of MAE, MAPE, RMSE, NSE, and KGE
predicted by the VCLM model for TN are 0.1272, 8.09%, 0.1541, 0.9194, and 0.8862, respectively; those
predicted by the VCLM model for TP are 0.0048, 10.83%, 0.0062, 0.9238, and 0.8914, respectively.
The comprehensive performance of the model shows that the proposed hybrid VCLM model can be
recommended as a promising model for online water quality prediction and comprehensive water
environment management in lake systems.

Keywords: variational mode decomposition; chaos sparrow search algorithm; long short-term
memory network; multiple linear regression; total nitrogen; total phosphorus

1. Introduction

The main sources of fresh water supply for domestic water, industrial water, and
agricultural water use are rivers, lakes, and groundwater, respectively. However, in many
areas, fresh water resources are often limited, and the optimal management of water
resources should consider quality and quantity [1]. Among them, water quality monitoring
is of great importance for the quality of water resource optimization management. Water
quality monitoring refers to the process of collecting, measuring, and analyzing water
samples to understand the physical, chemical, and biological conditions of the water
body. The complexity of the detection methods and procedures for different water quality
parameters depends on the characteristics of the water body, such as total nitrogen (TN)

Water 2022, 14, 1643. https://doi.org/10.3390/w14101643 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14101643
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-3530-8083
https://orcid.org/0000-0002-7724-6012
https://doi.org/10.3390/w14101643
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14101643?type=check_update&version=1


Water 2022, 14, 1643 2 of 30

and total phosphorus (TP), which usually require intensive testing processes of sampling,
laboratory processing, and result analysis. However, some other parameters, such as the
potential of hydrogen (PH), turbidity (TUB), electrical conductivity (EC), and dissolved
oxygen (DO), can be easily measured onsite using sensors [2].

TN and TP are the main nutrients that lead to the eutrophication of water bodies [3–6]. To
assess the trophic level of lakes, TN and TP should be tested routinely. Common measurement
methods include colorimetry, manual distillation, and ion chromatography. However, the
complexity of the biophysical and chemical processes in lake water renders the detection of
TN and TP difficult [7–9]. One common challenge is that nutrient tests should be performed
as soon as the sample is collected because as the sample sits longer, the organisms that live in
the water will consume nutrients and the nutrient concentrations in the water sample will be
modified. Another challenge is that the determination of TN and TP requires the measurement
of various forms of nitrogen and phosphorus separately, and the results of all the different
forms under each group must be combined to determine TN and TP. These procedures and
steps are difficult and time consuming [10].

To save time, materials, and labor costs in monitoring water quality, many scholars
have attempted to use predictive models to replace monitoring water quality and have
achieved satisfactory results. Currently, the models that have been proposed for water
quality prediction are mainly divided into deterministic and uncertain water quality mod-
els [11]. Among them, the deterministic water quality model is a process-based numerical
simulation model, and the soil and water assessment tool (SWAT) [12] and storm water
management model [13] have been widely used to predict surface water quality. For exam-
ple, Lin et al. [14] applied the SWAT model to the Xiekengxi River watershed in Lin’an City,
Zhejiang Province, China. The runoff, sediment, TN, and TP of the basin were predicted,
and the sensitivities of SWAT to digital elevation models of different resolutions were
analyzed. Baek et al. [15] improved the low-impact development module of the SWMM
model and accurately simulated the total suspended solids, chemical oxygen demand, TN,
and TP in Korean urban watersheds.

Although these traditional process-based deterministic models can accurately simulate
water quality, they usually require a large amount of input data, such as hydrological and
water quality parameters, which greatly increases the computational cost. In addition, in
some complex watersheds, the input data and parameters of some of these processes are
not available [1,10]. These problems greatly limit the scope of application of deterministic
water quality models. Therefore, the use of uncertainty mathematical models for water
quality prediction has gradually become the focus of research [16–19]. Moreover, with
the rapid development of machine learning and neural networks in recent years, data-
driven uncertainty water quality prediction models based on machine learning and neural
networks, such as random forest [20,21], support vector regression (SVR) [22,23], least
squares support vector regression [24,25], extreme learning machine (ELM) [26,27], adaptive
neurofuzzy inference system [28,29], backpropagation (BP) neural network [30,31], and
neural network radial basis function [32,33], have been widely used.

However, these water quality prediction models based on machine learning and neural
networks face problems. Due to the “shallow” learning mechanism of these models, their
ability to address input features and capture the long-term correlation of time series is
very limited [34]. As a result, they have poor performance in predicting time series with
nonlinear and non-stationary characteristics, especially the time series of water quality
parameters affected by different natural and human factors. In response to this problem,
many researchers have turned their attention to LSTMs [35] that have nonlinear predictive
capabilities, faster convergence speed, and the ability to capture the long-term correlation
of time series [34]. Compared with other models mentioned above, LSTM shows better
stability and higher accuracy [36–38], thereby providing ideas for further research on water
quality prediction. However, it remains challenging to accurately forecast non-linear and
non-stationary features together only using standalone AI-based models.
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The hybrid model is receiving increasing attention from researchers. The hybrid model
maintains the advantages of multiple models through an effective combination. Commonly
used combination methods include data preprocessing and parameter selection and op-
timization [39]. For highly nonlinear and nonstationary time series, the decomposition
method is an effective data-preprocessing method. For example, some common decom-
position methods include wavelet decomposition [11,40], empirical mode decomposition
(EMD) [41], ensemble empirical mode decomposition (EEMD) [42], complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) [11,37], and VMD) [43].
At the same time, some hybrid models based on decomposition methods and intelligent
optimization algorithms can also be used. For instance, Song et al. [44] used VMD to decom-
pose the original DO time series into multiple sub-sequences and then utilized the LSSVM
model optimized by the sparrow search algorithm (SSA) to predict the sub-sequences
and proposed a VMD-SSA-LSSVM hybrid water quality prediction model that is applied
to the Yangtze River Basin in China. Here, VMD-SSA-LSSVM was demonstrated as an
effective method for predicting non-stationary and non-linear water quality parameter
series. Huang et al. [45] proposed an interval prediction method of deep auto-regression
recurrent neural network based on VMD and SSA using actual water quality data to simu-
late and verify the effectiveness of the model. The results show that VMD-DeepAR-SSA is
significant compared with existing methods, and it improved the quality and performance
of interval predictions.

Notably, some researchers opted to use different machine learning methods for predic-
tive modeling according to the different fluctuation trends of subsequences. For example,
Li et al. [18] used EEMD to decompose DO into multiple components and reconstruct them
into four terms, namely, high-frequency term, intermediate-frequency term, low-frequency
term, and trend term. Among them, high- and intermediate-frequency terms are predicted
by LSSVM, the low-frequency term is predicted by the BP neural network with an optimal
mind evolutionary computation, and the trend term is predicted by the grey model. This
research demonstrated that the use of appropriate machine learning and neural network
methods for the components of different fluctuation trends can improve the performance
of the hybrid model more effectively. In addition, some researchers have proposed the
two-layer decomposition hybrid prediction model. Fijani et al. [46] used the CEEMDAN
method to decompose the chlorophyll-a and DO time series into multiple sub-sequences.
The VMD method is used to further decompose the intrinsic mode function (IMF) with the
highest frequency. The subsequences of each stage are modeled by ELM, and the hybrid
model has remarkable performance and robustness on relatively complex real-time data
sets. Dong and Zhang [47] applied the standalone model, single-layer decomposition hy-
brid model, and two-layer decomposition hybrid model to predict the polycyclic aromatic
hydrocarbons in water, and the CEEMDAN-VMD-LSTM hybrid prediction model had the
best performance.

Although the above hybrid forecasting models show excellent results, the decomposition
-based forecasting models suffer from some common shortcomings. In these studies, the
entire time series was decomposed into multiple IMFs, and then each IMF was divided
into calibration set and validation set, the models were built separately, and finally, the
prediction results of each IMF were summed and reconstructed into prediction results. In
this situation, some future information that is unknown at the present moment is used in
the modeling system, which thus does not represent the actual conditions.

This study aims to explore the optimal combined prediction model by comparing and
investigating different decomposition methods, as well as different traditional machine
learning algorithms. It also proposes improvements for the problem of SSA, which is used
to calibrate the hyperparameters of machine learning models. Moreover, a new method
for dividing data is proposed to solve the problem that future information is used in the
modeling process. Finally, this paper developed a new hybrid water quality prediction
model called VMD-CSSA-LSTM-MLR (VCLM) for highly nonlinear and non-stationary
water quality parameter time series.
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2. Study Area and Data

Poyang Lake is the largest fresh-water lake in China. It is located in the northern
part of Jiangxi Province and on the south bank of the Yangtze River (115◦49′–116◦46′ E,
28◦24′–29◦46′ N). With Songmen Mountain as the boundary, the lake area is divided into
north and south. The main lake area in the south is wide, and the waterway into the river
in the north is relatively long and narrow. The total area of the river basin is 162,000 km2,
which represents 9% of the total area of the Yangtze River basin. The average annual runoff
is 149.1 billion cubic meters, and it flows into the Yangtze River at the mouth of the lake.
The average annual water that enters the Yangtze River represents approximately 15.6%
of the total water volume of the Yangtze River. The annual variation of the average water
level in the lake area is 9.59–15.36 m.

Since the 1970s–1980s, China has carried out water quality monitoring for water
resources. Poyang Lake is the largest freshwater lake in China. According to the estimation
of Li et al. [48], the TN load of Poyang Lake is 92,111 t/a, and the TP load is 13,599 t/a. The
nutrient load of the five tributaries of the lake is the main source, accounting for more than
65% of the total load. According to Tang et al. [49], the construction land in Poyang Lake
area has also been expanding year by year since 1995, which will directly or indirectly lead
to more nutrient load in Poyang Lake. Wantzen et al. [50] also pointed out that hydrological
characteristics also play an important role in the transport and transfer of pollutants in
the lake. In recent years, with the influence of global climate change and human activities,
especially with the establishment of Three Gorges Dam, the hydrological characteristics of
Poyang Lake area have changed significantly. The change of flow of Yangtze River caused
by the storage of Three Gorges Reservoir leads to the weakening of the river force on the
lake, which makes more water from the lake flow into Yangtze River from July to March.
Under this series of effects, it is crucial to establish a water quality prediction model that
meets current needs in response to the current trend of new hydrological characteristics.

The water level changes drastically during the year. It is a typical seasonal lake.
Figure 1 shows the study area. In this study, several typical sites in Poyang Lake, such as
Duchang (DC) Station, Hamashi (HMS) Station, Ganjiang Wucheng (GJWC) Station, and
Xiuhe Wucheng (XHWC) Station of the Poyang Lake, were selected as cases to implement
the proposed model.
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The data studied in this paper are derived from the daily monitoring data of the four
online surface water quality monitoring stations mentioned above from 1 January 2017 to
1 January 2020 (1096 observations in total). The TN and TP data of the four online surface
water quality monitoring stations of DC, HMS, GJWC, and XHWC are shown in Figure 2.
In addition to TN and TP data, dissolved oxygen (DO), electric conductivity (EC), turbidity
(TUB), total ammonia nitrogen (TAN), potential of hydrogen (PH), water temperature
(WTMP), precipitation (PRCP), and water level (WL) data were also included.
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3. Methodology
3.1. VMD
3.1.1. Theory of VMD

The VMD algorithm is a novel decomposition method, which is based on a variational
problem constructed by Wiener filtering and Hilbert transform [51]. The original signal
is decomposed into finite bandwidth intrinsic mode functions (IMFs), and the center
frequency of each IMF is extracted to ensure that the mode fluctuates with the center
frequency. VMD is composed of two parts: constructing the variational problem and
solving the variational problem, where the variational problem can be written as follows:

min
{uk}{ωk}

{
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f

(1)

where uk denotes the k-th IMF, ωk denotes the center frequency of the k-th IMF, and f
denotes the original signal. The introduction of penalty factor α and Lagrange multipliers
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λ(t) allows the conversion of the constrained variational problem into an unconstrained
variational problem, which is denoted as follows.

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥ f (t)−
K
∑

k=1
uk(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉 (2)

The alternating multiplication method is used to solve the non-constrained variational
problem, namely, the minimum point of the extended Lagrange expression can be obtained
by alternating and updating uk, ωk, and λ. uk, ωk, and λ are expressed as follows.

ûn+1
k (ω) =

f̂ (ω)−
K
∑

i<k
ûn+1

i (ω)−
K
∑

i>k
ûn

i (ω)+
λ̂(ω)

2

1+2α(ω−ωn
k )

2

ω̂n+1
k =

∫ ∞
0 ω|ûn+1

k (ω)|2dω∫ ∞
0 |ûn+1

k (ω)|2dω

λ̂n+1(ω) = λ̂n(ω) + τ( f̂ (ω)−
K
∑

k=1
ûn+1

k (ω))

(3)

VMD divides the frequency band based on the characteristics of the original signal,
and continuously updates the IMF and its center frequency using the above formula,
and the update stops when the constraints are satisfied, finally realizing the adaptive
decomposition of the original signal.

3.1.2. Determination of the Level of Decomposition

To determine the value of K adaptively, this paper adopts permutation entropy (PE)
optimization algorithm [52,53]. The principle of the algorithm is to calculate the PE of each
IMF layer obtained from the decomposition of the original signal. Due to the randomness
of the abnormal component, the PE value is much larger than the normal component.
Therefore, after setting the threshold Hp of PE, we determine whether the PE of each layer
of IMF in the decomposition result is larger than threshold Hp and further determineed
whether abnormal components are present in the decomposition result. The threshold Hp
of the PE is set to 0.6.

The specific steps of the algorithm are detailed as follows.
Step 1: Set the initial value of K as 2 and the threshold of PE as the empirical value of

0.6 [34].
Step 2: The original signal is decomposed by the VMD algorithm and K intrinsic

modal functions IMFi(t) (i = 1 ∼ K) are obtained.
Step 3: Calculate the PEi (i = 1 ∼ K) of the IMFi(t).
Step 4: Judge whether PEi is larger than the threshold of 0.6. If so, then this indi-

cates that the decomposition result has been overly decomposed, resulting in abnormal
components. Subsequently, stop the cycle and execute Step 5. If not, then it means that
no decomposition has occurred, and the number of decomposition layers of the original
signal needs to be increased. Next, let K = K + 1, return to Step 2, and continue VMD
decomposition of the original signal according to the updated K value.

Step 5: Let K = K− 1, output the optimal K, and finally, decompose the sequence by
using the VMD algorithm to obtain K IMFs.

3.2. Long Short-Term Memory

Traditional neural networks cannot connect previous information with the current time
step when dealing with long-term dependencies. However, as a special type of recurrent
neural network, Long Short-Term Memory (LSTM) has a memory structure for learning
long-term information [35]. The LSTM network realizes temporal memory function through
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the switch of the gate and can solve the problem of gradient vanishing and explosion in
recurrent neural network effectively. The key to LSTM is the introduction of a gating unit
system that stores historical information through the internal to allow the network to learn
dynamically: that is, forgetting historical information or updating the cell state with new
information.

The basic structure of an LSTM cell is illustrated in Figure 3, in which xt is the input
vector, ht (ht−1) is the hidden state of the LSTM cell in time step t (t− 1), and ct (ct−1) is
the cell state of the LSTM cell in time step t (t− 1). The structure of the LSTM cell shows
that its cell state (ct) and hidden state (ht) are transferred to the next time step.
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The LSTM cell has three gates (e.g., a forget gate ( ft), an input gate (it), and an output
gate (ot)) that maintain and adjust its cell (ct) and hidden states (ht). The forget gate ( ft)
determines what information will be moved away from the cell state (ct). The input gate
(it) determines what new information will be stored in the cell state (ct). The output gate
(ot) specifies what information from the cell state is used as output (ot). In Figure 3, the cell
state (ct) and hidden state (ht) of the LSTM cell are calculated as follows [54]:

ft = σ(Wx f xt + Wh f ht−1 + b f ) (4)

it = σ(Wxixt + Whiht−1 + bi) (5)

ĉt = tanh(Wxcxt + Whcht−1 + bc) (6)

ct = ft ⊗ ct−1 + it ⊗ ĉt (7)

ot = σ(Wxoxt + Whoht−1 + bo) (8)

ht = ot ⊗ tanh(ct) (9)

where σ is the logistic sigmoidal function; ⊗ is the element-wise multiplication of two
vectors; and Wxi, Whi, Wx f , Wh f , Wxo, Who, Wxc, and Whc are the network weights matrices.
Similarly, bi, b f , bo, and bc are bias vectors. ft, it, and ot are the vectors for the activation
values of the forget gate, the input gate, and the output gate, respectively.

3.3. Chaos Sparrow Search Algorithm
3.3.1. Basic Sparrow Search Algorithm

The sparrow search algorithm is a new type of swarm intelligence optimization
algorithm inspired by sparrow foraging behavior and anti-predation behavior [55]. It
abstracts the sparrow foraging process into a discoverer–adder model and adds a re-
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connaissance and early warning mechanism. Assuming that N sparrows are found in a
D-dimensional search space, the position of the i-th sparrow in the D-dimensional search
space is Xi = [xi,1, · · · xi,d, · · · xi,D], where i = 1, 2, · · ·N, and xi,d represents the position of
the i-th sparrow in the d-dimension.

The location of producers is updated as follows:

xt+1
i,d =

{
xt

i,d exp
(
− i

αT

)
, R2 < ST

xt
i,d + Q·L, R2 ≥ ST

(10)

where t represents the current iteration number, T represents the maximum number of
iteration, α is a random number in the range of (0, 1), Q is a random number and obeys
[0, 1] normal distribution, L is a row of multidimensional matrix where all elements are 1,
R2 ∈ (0, 1] represents the warning value, and ST ∈ [0.5, 1] represents the safety value. If
R2 < ST, then no natural enemies are observed nearby, the search environment is safe, and
the discoverer implements an extensive search mode. If R2 ≥ ST, then the sparrows detect
natural enemies, and the entire population adjusts its search strategy and quickly moves to
a safe area.

The scroungers’ locations is calculated according to formula (11):

xt+1
i,d =

 Q · exp
(

xt
w,d−xt

i,d
i2

)
, i > n

2

xt+1
b,d +

∣∣∣xt
i,d − xt+1

b,d

∣∣∣ · A+ · L, i ≤ n
2

(11)

where xt
w,d represents the worst position of the sparrow in the d-th dimension at the t-th

iteration, xt+1
b,d represents the best position of the sparrow in the d-th dimension at the t + 1

iteration, and A is a 1× d matrix with randomly assigned values of 1 or−1 for each element.
If i > n/2, then the i-th follower did not receive food and has low adaptability and needs
to fly to other areas to find food to obtain energy. If i ≤ n/2, then the i-th follower will
randomly select a location nearby xt+1

b,d for foraging.
The position update formula of scouters is expressed as follows:

xt+1
i,d =


xt

b,d + β ·
∣∣∣xt

i,d − xt
b,d

∣∣∣, fi 6= fg

xt
i,d + K ·

(
|xt

i,d−xt
w,d|

| fi− fw |+ε

)
, fi = fg

(12)

where xt
b,d represents the optimal position of the sparrow in the d-th dimension at the t-th

iteration, β is the step size control parameter, K is a random number within [−1, 1], fi is
the fitness value of the current sparrow, fg represents the current global optimal fitness
value, fw represents the current global worst fitness value, and ε is a very small constant to
avoid the state where the denominator becomes 0.

3.3.2. Improved Sparrow Algorithm

The population initialization of the sparrow search algorithm is a random generation
method that causes the sparrow population to be unevenly distributed and easily falling
into a local optimum [56]. However, chaotic mapping has the characteristics of randomness,
ergodicity, and regularity [57]. Therefore, the chaotic map used in this article is the Tent
map, and its formula is expressed as follows.

xi+1 =

{
2xi, 0 ≤ x ≤ 1

2
2(1− xi), 1

2 < x ≤ 1
(13)

By analyzing the Tent chaotic iterative sequence, we can find small periods and
unstable period points. To prevent the Tent chaotic sequence from falling into small and
unstable period points during iteration; the random variable rand(0, 1)× 1

N is introduced
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into the original Tent chaotic mapping formula. Hence, the improved Tent chaotic map
expression is presented as follows:

xi+1 =

{
2xi + rand(0, 1)× 1

N , 0 ≤ x ≤ 1
2

2(1− xi) + rand(0, 1)× 1
N , 1

2 < x ≤ 1
(14)

where N is the number of particles in the sequence, and rand(0, 1) is a random number
in the range [0, 1]. The introduction of random variable rand(0, 1) × 1

N not only still
maintains the randomness, ergodicity, and regularity of the Tent chaotic map but it also can
avoid having the iteration falling into small and unstable period points effectively.

When the fitness of an individual is greater than the average fitness of the population,
a divergence trend will be observed. Therefore, chaotic disturbance is introduced to prevent
the algorithm from falling into the local optimum and to improve the global search ability
and optimization accuracy. The steps of chaotic disturbance are described as follows:

Step 1: Apply formula (14) to produce chaotic variable xd.
Step 2: Carry chaotic variables to the solution space of the problem to be solved:

Xd
new = dmin + (dmax − dmin) · xd (15)

where dmin is the minimum value of the d-th dimension variable Xd
new, and dmax is the

maximum value of the d-th dimension variable Xd
new.

Step 3: Perform chaotic disturbance on the individual according to Formula (16):

X′new =
(X′ + Xnew)

2
(16)

where X′ is the individual who needs chaotic disturbance, Xnew is the amount of chaotic
disturbance generated, and X′new is the individual after chaotic disturbance.

When the fitness of an individual is less than the average fitness of the population,
it indicates that a clustering phenomenon occurs. The Gaussian distribution has strong
local search ability. For optimization problems with a large number of local minima, it is
conducive for the algorithm to find the global minima efficiently and accurately and to
improve the robustness of the algorithm [58]. Therefore, this paper introduces Gaussian
mutation, which is derived from the Gaussian distribution. Specifically, when performing
mutation operation, we replace the original parameter value with a random number
conforming to the normal distribution with mean µ and variance σ2. The formula is
expressed as follows:

mutation(x) = x[1 + N(0, 1)] (17)

where x is the original parameter value, N(0, 1) represents a normally distributed random
number with µ = 0, and σ2 = 1. mutation(x) is the value after the Gaussian mutation.

3.4. Multiple Linear Regression

Multiple linear regression is a traditional prediction method. Compared with algo-
rithms, such as BP and SVR, Multiple Linear Regression (MLR) has obvious advantages
in the speed of the training process. At the same time, for the cyclical and smooth curve,
compared with neural network and SVR, MLR can obtain accurate prediction values more
easily. Its effect is similar to that of a neural network that uses a linear function as an activa-
tion function but does not require a cumbersome iterative training process and parameter
adjustment. Therefore, for smooth low-frequency signals, MLR is a more suitable choice
than other methods [59]. Its mathematical model can be represented as follows:

Y = X× β + µ (18)
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y1
y2
...

yn

 =


1 x11 · · · x1n
1 x21 · · · x2n
...

...
. . .

...
1 xn1 · · · xnn

×


β0
β1
...

βn

+


µ1
µ2
...

µn

 (19)

where yi is the value of low-frequency signals, xij represents the factors that affect the
low-frequency signals, β0 is a constant, βi(i = 1, 2, · · · , n) is the regression coefficient, and
µi is the random variable. The solution of (18) can be easily obtained by using least-squares
method, thereby yielding the following.

β̂ = (XTX)
−1

XTY (20)

3.5. Water Quality Prediction Based on Hybrid Models

Due to many factors such as climate change and human activities, TN and TP in lakes
and rivers are usually nonlinear and non-stationary time series. However, one problem
with neural networks and other linear and nonlinear predictive models is that they cannot
handle nonstationary data. Therefore, a VMD-based hybrid model (VMD-CSSA-LSTM-
MLR or VCLM) is established in this paper. VMD is used to decompose the time series into
multiple sub-sequences, and each sub-sequence is modeled separately. The sub-sequences
obtained by VMD is relatively stable and can provide information about the time series
data structure and its periodicity. Therefore, the performance of the prediction models is
expected to be improved by providing useful information on various resolution levels.

However, it is worth noting that many literature used decomposition-based forecasting
models to directly decompose the original time series and then divided the calibration set
and the validation set. This process applies time series preprocessing techniques directly to
a complete time series, thus transferring some information from the validation period to the
training process of the data-driven model, resulting in “hindcasting experiments”, and the
time series prediction results at a specific moment are calculated using future information
that would not be available at that specific moment in a practical real practical application
of time series forecasting known as “forecasting experiments” [60,61]. Obviously, this
method is unreasonable, so this paper chooses to divide the calibration set and validation
set first, and then it decomposes them to avoid using future information. The specific
implementation steps are detailed as follows.

Step 1: Divide the entire data Q (TN or TP) into the calibration period Qcali and the
validation period Qvali (with 70% and 30% of the overall data, respectively, in the work),
and initialize the data number in the validation period i = 1.

Step 2: Decompose Qcali into K IMFs using an improved adaptive VMD algorithm
(Section 3.1.2).

Step 3: According to Formula (21), the zero-crossing rate of each IMFs is calculated and
divided into high-frequency and low-frequency parts with 10% as the limit. The calculation
equation is detailed as follows:

Z =
nzero

N
× 100% (21)

where Z represents the zero-crossing rate, nzero represents the number of zero crossings
(that is, if the adjacent signal values have different signs, then it means one zero crossing),
and N represents the signal length.

Step 4: The low-frequency components are predicted by MLR, and the input variables
of the model are determined according to the correlation coefficient (CC) and the partial
autocorrelation function (PACF).

Step 5: The high-frequency components are predicted by LSTM. The hyperparameters
of the LSTM model are optimized using CSSA.

Step 6: Obtain Q f
cali by summing the outputs of all selected LSTM and MLR models.

Step 7: Save the selected LSTM and MLR models to forecast each subsequence for
1-period ahead, and Q f

vali,i is obtained by summing the forecasted sub-sequences.
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Step 8: If i = m, stop and output Q f
vali. Otherwise, let i = i + 1 and append Qvali,i into

the calibration data, and then repeat Steps 2 to 7.
The implementation of the hybrid prediction model is shown in Figure 4.
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3.6. Model Performance Evaluation

To objectively evaluate the prediction accuracy of the model, five statistical indicators
are used: mean absolute error (MAE), mean absolute percentage error (MAPE), root mean
square error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE), and Kling–Gupta efficiency
(KGE). NSE is a normalized statistic that determines the relative magnitude of the residual
variance compared to the measured data variance. The KGE, which has been introduced
as an improvement of the widely used NSE, considers different types of model errors,
namely, the error in the mean, the variability, and the dynamics [62]. The definitions of
these statistics are given as follows:

MAE =
1
N

N

∑
i=0
|Oi − Pi| (22)

MAPE =
1
N

N

∑
i=0

|Oi − Pi|
Pi

× 100% (23)

RMSE =

√√√√ 1
N

N

∑
i=0

(Oi − Pi)
2 (24)

NSE = 1−

N
∑

i=0
(Oi − Pi)

2

N
∑

i=0

(
Oi −O

)2
(25)



Water 2022, 14, 1643 12 of 30

KGE = 1−

√√√√[1− r(Oi, Pi)]
2 +

[
1− O

P

]2

+

[
1− σ(Oi)

σ(Pi)

]2
(26)

where Oi is the measured value, Pi is the simulated value, O is the measured average, P is
the average of the simulated value, N is the number of measured values, r(·) is the Pearson
correlation coefficient, and σ(·) is the standard deviation.

4. Results
4.1. Decomposition Results Using VMD

According to Figure 2, it can be seen intuitively that TN and TP time series of the
four stations have nonlinear and non-stationary characteristics. To solve this problem, the
improved VMD method described in Section 3.1 is used to decompose the daily TN and
TP sequences of the four aforementioned stations. The parameters of the VMD decom-
position include modal number K, penalty factor α, fidelity τ, and convergence criterion
ε. The K value can be determined adaptively according to the calculated PE, τ and ε
select default values, and α is determined to be 1000 after repeated trials. The result of
decomposition and center frequency of TN data at DC station are shown in Figure 5. VMD
technology is used to decompose the calibration set time series into nine IMF components
with different frequencies (Figure 5), which show the nonlinearity, trend, periodicity, and
other characteristics of the original sequence. The VMD method can effectively eliminate
non-stationary characteristics in the original sequence, which contributes to improve the
prediction accuracy of the model significantly [63].
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4.2. Model Building and Inputs

According to formula (21), the zero-crossing rate of each IMF component obtained by
the VMD decomposition is calculated according to the principle that the part exceeding 10%
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is high-frequency component, and the part less than 10% is a low-frequency component.
Finally, IFM1 and IFM2 are determined to be low-frequency components, and other IMFs
are high-frequency components. MLR is used to predict the low-frequency components,
the correlation coefficients between the low-frequency components and eight features (DO,
EC, TUB, TAN, PH, WTMP, PRCP, and WL) with a time lag of 15 days at DC Station are
shown in Figure 6, and the features with an absolute value of the correlation coefficient
greater than 0.3 are selected as regression factors. In addition, for time series forecasting, its
time lag usually needs to be considered. To determine the impact of an appropriate time
lag on the current t time interval, the partial autocorrelation function (PACF) is used as
a potential indicator to identify the appropriate input variables. Generally, the following
criteria are often used in practice: Assuming that the input variable is xi, (1) when the PACF
value of the variable xi−k at the lag k is out of the 95% confidence interval, it is selected as
the input variable, and (2) the previous value xi−1 will be regarded as an input when all
PACF values fall inside the 95% confidence interval [63–65]. Figure 7 shows the PACF of
low-frequency components, and Table 1 shows the input variables of the MLR model.
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The LSTM model is used for modeling high-frequency components. By analyzing the
correlation coefficients between the eight features and each high-frequency component,
it is found that the correlation between them is very low. This result indicates that VMD
can decompose some potential features of the time series, which may require more data
of relevant influencing factors to further verify their relationship with high frequency
components. Wang et al. [66] used ensemble empirical mode decomposition to decompose
the runoff into different frequency components, comprehensively considered 130 climatic
phenomenon indices, and conducted teleconnection analysis of each frequency component
according to the correlation coefficient. The results show that each component has practical
physical significance. The eight features used in this paper have good correlation with low-
frequency components and low correlation with high-frequency components. Therefore,
the input of high-frequency components only uses its lag data as the inputs of the LSTM
model. The critical parameters of LSTM, such as the length of the sliding time window,
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the number of hidden layer neurons, dropout ratio, learning rate, and batch size, are
the prerequisites for the prediction performance of the LSTM model. Therefore, CSSA is
used to automatically calibrate the parameters of the LSTM model. CSSA-LSTM not only
inherits the advantages of LSTM but also utilizes the advantages of the CSSA for solving
optimization problems, where the foraging process of the sparrow population can interact
with the training process of the LSTM and optimize the hyperparameters of the LSTM
model. The number of nodes in the input layer of the LSTM model is equal to the number
of input variables, the number of nodes in the output layer is fixed at 1, and the number
of hidden layers is generally set to two. The hyperparameters of the LSTM model to be
optimized include the length of the sliding time window (LW), the number of hidden layer
neurons (NN), dropout ratio (DR), learning rate (LR), and batch size (BS), and their specified
search ranges are (1, 30), (10, 150), (0, 1), (0.001, 1), and (1, 150), respectively. Furthermore,
LW, NN, and BS are discrete variables, and DR and LR are continuous variables.

Water 2022, 14, x FOR PEER REVIEW 15 of 31 
 

 

 
Figure 7. PACF analysis of low-frequency (IMF1 and IMF2) components. 

Table 1. Input variables of MLR model for each station. 

Station Decomposed IMFs 
No. of 
Inputs 

Input Variables Output 

DC(TN) 
IMF1 9 1 1 1( 1),  ( 2),  ( 3),  ( 1),  ( 2),

( 4),  ( 5),  ( 1),  ( 4)
x t x t x t PRCP t PRCP t
PRCP t PRCP t WL t WL t

− − − − −
− − − −

 
1( )x t  

IMF2 7 2 2 2 2 2

2 2

( 1),  ( 2),  ( 4),  ( 5),  ( 11),
( 12),  ( 13)

x t x t x t x t x t
x t x t

− − − − −
− −

 2 ( )x t  

DC(TP) 
IMF1 8 1 1 1( 1),  ( 2),  ( 3),  ( 1),  ( 2),

( 4),  ( 1),  ( 4)
x t x t x t TUB t TUB t
TUB t PRCP t PRCP t

− − − − −
− − −

 
1( )x t  

IMF2 6 2 2 2 2 2

2

( 1),  ( 2),  ( 3),  ( 4),  ( 5),
( 6)

x t x t x t x t x t
x t

− − − − −
−

 2 ( )x t  

HMS(TN) 
IMF1 9 1 1 1 1( 1),  ( 2),  ( 3),  ( 4),  ( 1),

( 1),  ( 1),  ( 1),  ( 2)
x t x t x t x t DO t
EC t TUB t WL t WL t

− − − − −
− − − −

 
1( )x t  

IMF2 7 2 2 2 2 2( 1),  ( 2),  ( 3),  ( 4),  ( 5),
( 1),  ( 3)

x t x t x t x t x t
EC t EC t

− − − − −
− −

 
2 ( )x t  

HMS(TP) IMF1 7 1 1 1 1( 1),  ( 2),  ( 3),  ( 4),  ( 1),
( 1),  ( 1)

x t x t x t x t DO t
WTMP t WL t

− − − − −
− −

 1( )x t  

Figure 7. PACF analysis of low-frequency (IMF1 and IMF2) components.
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Table 1. Input variables of MLR model for each station.

Station Decomposed
IMFs

No. of
Inputs Input Variables Output

DC(TN)
IMF1 9

x1(t− 1), x1(t− 2), x1(t− 3), PRCP(t− 1), PRCP(t− 2),
PRCP(t− 4), PRCP(t− 5), WL(t− 1), WL(t− 4) x1(t)

IMF2 7
x2(t− 1), x2(t− 2), x2(t− 4), x2(t− 5), x2(t− 11),

x2(t− 12), x2(t− 13) x2(t)

DC(TP)
IMF1 8

x1(t− 1), x1(t− 2), x1(t− 3), TUB(t− 1), TUB(t− 2),
TUB(t− 4), PRCP(t− 1), PRCP(t− 4) x1(t)

IMF2 6
x2(t− 1), x2(t− 2), x2(t− 3), x2(t− 4), x2(t− 5),

x2(t− 6) x2(t)

HMS(TN)
IMF1 9

x1(t− 1), x1(t− 2), x1(t− 3), x1(t− 4), DO(t− 1),
EC(t− 1), TUB(t− 1), WL(t− 1), WL(t− 2) x1(t)

IMF2 7
x2(t− 1), x2(t− 2), x2(t− 3), x2(t− 4), x2(t− 5),

EC(t− 1), EC(t− 3) x2(t)

HMS(TP)
IMF1 7

x1(t− 1), x1(t− 2), x1(t− 3), x1(t− 4), DO(t− 1),
WTMP(t− 1), WL(t− 1) x1(t)

IMF2 7
x2(t− 1), x2(t− 2), x2(t− 3), x2(t− 4), PRCP(t− 1),

PRCP(t− 2), PRCP(t− 3) x2(t)

GJWC(TN)
IMF1 9

x1(t− 1), x1(t− 2), x1(t− 3), x1(t− 4), x1(t− 5),
DO(t− 1), TUB(t− 1), TAN(t− 1), WTMP(t− 1) x1(t)

IMF2 9
x2(t− 1), x2(t− 2), x2(t− 3), x2(t− 4), x2(t− 5),

x2(t− 6), x2(t− 9), x2(t− 10), x2(t− 11) x2(t)

GJWC(TP)
IMF1 8

x1(t− 1), x1(t− 2), x1(t− 3), x1(t− 4), DO(t),
TUB(t− 1), TUB(t− 2), PH(t− 1) x1(t)

IMF2 5 x2(t− 1), x2(t− 2), x2(t− 3), x2(t− 4), x2(t− 5) x2(t)

XHWC(TN)
IMF1 7

x1(t− 1), TUB(t− 1), TUB(t− 3), TAN(t− 1),
WTMP(t− 1), WL(t− 1), WL(t− 2)

x1(t)

IMF2 7
x2(t− 1), x2(t− 2), x2(t− 3), x2(t− 4), x2(t− 5),

TAN(t− 1), TAN(t− 2) x2(t)

XHWC(TP)
IMF1 6

x1(t− 1), TUB(t− 1), TAN(t− 1), WTMP(t− 1),
WTMP(t− 2), WL(t− 1) x1(t)

IMF2 4 x2(t− 1), x2(t− 2), x2(t− 4), x2(t− 5) x2(t)

4.3. Comparison of Different Metaheuristic Optimization Algorithms

To verify the effectiveness and superiority of the CSSA algorithm, the performance
of the proposed CSSA in identifying the optimal LSTM configuration is compared with
five classical search methods, i.e., SSA, GWO [67], PSO [68], GSA [69], and FPA [70]. The
parameter settings of the baseline models are provided in Table 2. The following settings
are used for each experiment to ensure a fair comparison, i.e., the maximum number of
function evaluations = population size (30) × the maximum number of iterations (100). We
conduct our experiments using a Tesla K80 GPU with 12 GB RAM. Moreover, we conduct
10 independent runs for each experiment to mitigate the impact of random factors on
the evaluation.
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Table 2. Parameter settings of search methods.

Methods Parameter Settings

CSSA The proportion of producers is 20%, and the proportion of scouters is 20%
SSA The proportion of producers is 20%, and the proportion of scouters is 20%

GWO Step size A = (2× rand− 1)× a, where α linearly decreases from 2 to 0, rand ∈ (0, 1), search parameter C = 2× rand

PSO Cognitive component c1 = 1.4962, social component c2 = 1.4962, inertia weight α = 20
GSA Initial gravitational constant G0 = 100, search parameter α = 20

FPA Switch probability = 0.8, step size L for global pollination drawn from a Levy flight distribution, step size ε for local
pollination drawn from a uniform distribution within [0, 1]

4.3.1. Experimental Settings

A total of 1096 TN data in DC Station were selected, with the first 70% as calibration set
and the last 30% as validation set. The correlation coefficients between TN and 8 features
were calculated, and the features with absolute correlation coefficients greater than 0.3 were
selected as the input variable of LSTM. Different intelligent optimization algorithms are
used to optimize the hyperparameters of LSTM, and their specific hyperparameter search
range is shown in Section 4.2. In addition, considering the running speed and prediction
accuracy of the LSTM model, a two-layer LSTM was selected for modeling, and the Adam
optimizer was applied in the training process while the RMSE was adopted as the fitness
score to evaluate the performance of LSTM.

4.3.2. Comparison of Results

Three performance indicators were used to evaluate the effectiveness of the CSSA-
LSTM model, i.e., MAE, RMSE and MAPE. The respective results over ten independent
runs are presented in Tables 3–5, where CSSA-SVR shows better optimization performance
than the other five optimization algorithms. Compared with SSA-LSTM, CSSA-LSTM
decreased by 5.13%, 10.67%, and 4.61% in terms of the average MAE, RMSE, and MAPE,
respectively. The results show that the improved SSA algorithm is effective and can improve
the optimization performance of the algorithm significantly. Meanwhile, compared with
GWO-LSTM, PSO-LSTM, GSA-LSTM, and FPA-LSTM, the average MAE, RMSE, and MAPE
of CSSA-LSTM decreased by 5.13~8.91%, 7.37~17.87%, and 3.82~13.06%, respectively.

Table 3. The MAE results over 10 independent runs.

Run CSSA SSA GWO PSO GSA FPA

1 0.1116 0.1516 0.1616 0.1624 0.1191 0.1086
2 0.1024 0.1530 0.1438 0.1052 0.1158 0.1393
3 0.1339 0.1139 0.1601 0.1566 0.1087 0.1453
4 0.1203 0.1229 0.1463 0.1309 0.1508 0.1419
5 0.1464 0.1592 0.1197 0.1240 0.1412 0.1255
6 0.1056 0.1520 0.1625 0.1322 0.1459 0.1623
7 0.1387 0.1231 0.1044 0.1608 0.1430 0.1153
8 0.1428 0.1185 0.1485 0.1527 0.1454 0.1451
9 0.1381 0.1219 0.1231 0.1208 0.1207 0.1297

10 0.1174 0.1089 0.1097 0.1317 0.1318 0.1409
Avg. 0.1257 0.1325 0.1380 0.1377 0.1354 0.1325
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Table 4. The MAPE results over 10 independent runs.

Run CSSA SSA GWO PSO GSA FPA

1 0.1210 0.1203 0.1458 0.1300 0.1399 0.1426
2 0.1055 0.1488 0.1085 0.1480 0.1245 0.1263
3 0.1128 0.1451 0.1463 0.1208 0.1040 0.1415
4 0.1167 0.1080 0.1219 0.1072 0.1255 0.1678
5 0.1403 0.1341 0.1633 0.1258 0.1481 0.1108
6 0.0988 0.1323 0.1447 0.1253 0.1297 0.1710
7 0.1238 0.1482 0.1482 0.1554 0.1392 0.1342
8 0.1371 0.1103 0.1502 0.1525 0.1203 0.1405
9 0.1230 0.1484 0.1618 0.1403 0.1304 0.1196

10 0.1019 0.1267 0.1474 0.1334 0.1135 0.1004
Avg. 0.1181 0.1322 0.1438 0.1339 0.1275 0.1355

Table 5. The RMSE results over 10 independent runs.

Run CSSA SSA GWO PSO GSA FPA

1 0.1612 0.1714 0.1900 0.1504 0.1860 0.1882
2 0.1789 0.1718 0.1781 0.1738 0.1825 0.1809
3 0.1608 0.1793 0.1650 0.2042 0.1710 0.1607
4 0.1659 0.1635 0.1918 0.1619 0.1836 0.1692
5 0.1845 0.1662 0.1908 0.1876 0.1744 0.1959
6 0.1610 0.1714 0.1765 0.1658 0.1635 0.1647
7 0.1472 0.1953 0.1829 0.1843 0.1607 0.1664
8 0.1622 0.1426 0.2187 0.1782 0.1473 0.1577
9 0.1580 0.1830 0.1931 0.1763 0.1825 0.1591

10 0.1567 0.1718 0.1963 0.1959 0.1488 0.1724
Avg. 0.1637 0.1716 0.1883 0.1778 0.1702 0.1724

4.4. Comparison of the Results of Various Prediction Models
4.4.1. Water Quality Prediction Performance with Standalone Model

Three standalone prediction models, namely, SVR, BP, and LSTM, are compared. For a
reasonable comparison, the hyperparameters of the three models are optimized by CSSA.
Table 6 shows the prediction performance of TN and TP using three standalone models for
four stations, and the specific values are shown in Table 6.

For the prediction of TN, the overall effect of LSTM (average MAE, MAPE, RMSE,
NSE, and KGE were 0.2382, 14.42%, 0.4025, 0.5891, and 0.5297, respectively) is significantly
better than BP (average MAE, MAPE, RMSE, NSE, and KGE were 0.2598, 16.01%, 0.4601,
0.5202, and 0.4748, respectively) and SVR (average MAE, MAPE, RMSE, NSE, and KGE
were 0.2579, 16.04%, 0.4568, 0.4984, and 0.4513, respectively). Similarly, in terms of TP
prediction, the overall effect of LSTM (average MAE, MAPE, RMSE, NSE, and KGE were
0.0104, 19.84%, 0.0158, 0.5611, and 0.5467, respectively) is still better than those of BP
(average MAE, MAPE, RMSE, NSE, and KGE were 0.0110, 21.49%, 0.0174, 0.5173, and
0.4555, respectively) and SVR (average MAE, MAPE, RMSE, NSE, and KGE were 0.0112,
22.73%, 0.0194, 0.4887, and 0.4563, respectively). The predicted performances of BP and
SVR are relatively close. The results show that compared with traditional BP and SVR,
LSTM has higher prediction accuracy, wider applicability, and stronger stability for non-
stationary and nonlinear time series. Figures 8a and 9b show the prediction curves of TN
and TP by three standalone models at DC station. Figures 8a and 9b show that the three
models can roughly predict the trend. However, the prediction effect of some points with
large fluctuations is very poor. An obvious “lag” phenomenon can also be observed in the
prediction result of the model; that is, the prediction result of the model is closer to the
prediction result of the previous day. This finding indicates that the internal law of water
quality parameter time series with strong randomness and instability cannot be learned
well by a standalone model.
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Table 6. Performance comparison of each model.

Station Item VCLM VCL VCBM VCSM CCLM CCBM CCSM LSTM BP SVR

DC
(TN)

MAE 0.0493 0.0523 0.0637 0.0678 0.0887 0.0909 0.0926 0.1080 0.1120 0.1254
MAPE 5.34% 6.15% 7.46% 7.73% 9.16% 9.77% 10.29% 11.46% 11.67% 14.14%
RMSE 0.0640 0.0795 0.0871 0.0922 0.1136 0.1174 0.1227 0.1489 0.1568 0.1766
NSE 0.9346 0.9015 0.8790 0.8452 0.7910 0.7614 0.7459 0.5483 0.5106 0.4052
KGE 0.8909 0.8509 0.8001 0.8127 0.7653 0.7448 0.7352 0.5046 0.4694 0.3899

DC
(TP)

MAE 0.0025 0.0031 0.0033 0.0039 0.0041 0.0043 0.0043 0.0049 0.0051 0.0049
MAPE 6.84% 7.68% 8.23% 9.06% 9.94% 10.12% 10.05% 12.68% 13.79% 13.46%
RMSE 0.0030 0.0037 0.0046 0.0051 0.0056 0.0059 0.0061 0.0078 0.0081 0.0115
NSE 0.9247 0.8829 0.8402 0.8034 0.7520 0.7214 0.7015 0.4873 0.4418 0.4219
KGE 0.8994 0.8673 0.8257 0.8124 0.6881 0.6497 0.6649 0.3986 0.3327 0.3488

HMS
(TN)

MAE 0.1175 0.1215 0.1435 0.1507 0.1482 0.1681 0.1571 0.1875 0.2179 0.2008
MAPE 6.05% 6.83% 7.23% 7.67% 7.47% 8.21% 8.04% 10.49% 12.38% 11.67%
RMSE 0.1584 0.1797 0.1979 0.2012 0.2429 0.2376 0.2828 0.3232 0.3457 0.3891
NSE 0.9058 0.8747 0.8427 0.7995 0.8078 0.7714 0.7864 0.5288 0.4050 0.4331
KGE 0.9086 0.8994 0.8758 0.8359 0.8140 0.7349 0.7752 0.4230 0.3628 0.3472

HMS
(TP)

MAE 0.0054 0.0064 0.0081 0.0083 0.0092 0.0098 0.0104 0.0117 0.0119 0.0126
MAPE 8.50% 9.21% 10.57% 10.33% 13.76% 14.44% 14.29% 19.40% 21.95% 22.62%
RMSE 0.0079 0.0083 0.0086 0.0108 0.0112 0.0121 0.0134 0.0186 0.0191 0.0195
NSE 0.9185 0.9058 0.8953 0.8943 0.8026 0.7694 0.7768 0.5944 0.5144 0.4843
KGE 0.9275 0.8901 0.8605 0.8677 0.7844 0.7814 0.7294 0.6012 0.5135 0.5029

GJWC
(TN)

MAE 0.1774 0.1828 0.2093 0.2576 0.2640 0.2694 0.2748 0.3018 0.3409 0.3267
MAPE 15.82% 16.72% 18.65% 19.81% 24.31% 23.64% 24.49% 26.79% 30.79% 28.94%
RMSE 0.1785 0.2406 0.2253 0.2891 0.3696 0.4180 0.4462 0.4798 0.4991 0.4945
NSE 0.8864 0.8621 0.8545 0.8367 0.7222 0.7068 0.6972 0.4819 0.4131 0.4324
KGE 0.8266 0.8205 0.7958 0.7864 0.6893 0.6449 0.6257 0.4246 0.3826 0.4091

GJWC
(TP)

MAE 0.0078 0.0085 0.0095 0.0092 0.0121 0.0131 0.0134 0.0185 0.0199 0.0201
MAPE 17.47% 18.69% 20.34% 20.49% 22.84% 23.35% 23.61% 27.63% 29.83% 32.47%
RMSE 0.0096 0.0106 0.0118 0.0134 0.0147 0.0165 0.0195 0.0265 0.0305 0.0312
NSE 0.9058 0.8932 0.8895 0.8823 0.7853 0.7442 0.7322 0.4334 0.4266 0.4057
KGE 0.8849 0.8511 0.8301 0.8349 0.7501 0.6981 0.7246 0.4291 0.3537 0.3139

XHWC
(TN)

MAE 0.1647 0.1688 0.2019 0.2278 0.2886 0.3066 0.3115 0.3554 0.3682 0.3788
MAPE 5.16% 5.42% 6.37% 6.44% 7.64% 7.82% 7.78% 8.94% 9.21% 9.42%
RMSE 0.2155 0.2519 0.2898 0.4875 0.4390 0.4738 0.5090 0.6581 0.8389 0.7670
NSE 0.9510 0.9252 0.9034 0.8826 0.8337 0.8249 0.7977 0.5975 0.5521 0.5228
KGE 0.9187 0.9081 0.8973 0.8671 0.8218 0.8114 0.8161 0.5664 0.4843 0.4590

XHWC
(TP)

MAE 0.0033 0.0036 0.0041 0.0044 0.0052 0.0054 0.0054 0.0065 0.0069 0.0072
MAPE 10.50% 11.81% 12.29% 12.38% 15.38% 15.63% 15.82% 19.63% 20.37% 22.38%
RMSE 0.0043 0.0052 0.0049 0.0056 0.0063 0.0065 0.0081 0.0102 0.0118 0.0155
NSE 0.9463 0.9227 0.9192 0.9088 0.8647 0.8497 0.8324 0.5294 0.4864 0.4429
KGE 0.8536 0.8314 0.8065 0.8143 0.8518 0.7932 0.8146 0.5577 0.4219 0.4597
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4.4.2. Water Quality Prediction Performance with CEEMDAN Decomposition

Aiming at the problem that standalone prediction model cannot learn the hidden infor-
mation of the time series of water quality parameters. CEEMDAN is used to decompose the
original TN and TP time series, and each subsequence is modeled separately for prediction.
The final models that participate in the comparison include CEEMDAN-CSSA-LSTM-MLR
(CCLM), CEEMDAN-CSSA-BP-MLR (CCBM), and CEEMDAN-CSSA-SVR-MLR (CCSM).
The prediction performance is shown in Figure 10, and the specific values are in Table 6.

In general, the five CCLM evaluation indicators of CCLM are better than those of
CCBM and CCSM. This finding further verifies the strong applicability of LSTM, whether it
is direct prediction or decomposition prediction; that is, LSTM can show strong predictive
ability. Compared with the single model, the performance of the CEEMDAN-based hybrid
model is significantly improved, the average MAE, average MAPE, and average RMSE
are reduced by 17.13–26.44%, 15.78–29.87%, and 25.53–41.01%, and the average NSE and
average KGE increased by 36.84–55.66% and 47.76–64.65%, respectively. Furthermore,
the TN and TP prediction results of the three hybrid prediction models based on the
decomposition of CEEMDAN at DC Station are shown in Figures 8b and 9b. Intuitively,
compared to the standalone prediction model, the CEEMDAN-based model can fit the
results better and eliminates the “lag” phenomenon. This result shows that decomposing
the original sequence can extract the hidden information better, which helps improve the
performance and accuracy of the model.
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4.4.3. Water Quality Prediction Performance with VMD Decomposition

Compared with CEEMDAN, VMD has a more complete theoretical basis, which can
eliminate modal aliasing and improve the signal-to-noise ratio. Therefore, four models
based on VMD decomposition, namely, VMD-CSSA-LSTM-MLR (VCLM), VMD-CSSA-
LSTM (VCL), VMD-CSSA-BP-MLR (VCBM), and VMD-CSSA-SVR-MLR (VCSM), are
further used for comparison. The meaning of the VCL model is that the subsequences
obtained by VMD decomposition are all predicted by the CSSA-LSTM model instead of
dividing the high and low frequencies and using different models for prediction. The
specific values of the model prediction performance are in Table 6.

According to the prediction curve shown in Figures 8c and 9c, the prediction results
in VCLM, VCBM, and VCSM can fit the actual data very well. However, by comparing
the specific performance, the results show that the comprehensive performance of VCLM
is better than those of VCBM and VCSM. Notably, according to the results in Table 6, the
performance of VCL is better than those of VCBM and VCSM but slightly worse than that
of VCLM.

This fact shows that MLR has a better predictive effect for curves with small and
smooth fluctuations, and the selection of appropriate prediction models for the characteris-
tics of different frequency components has a certain impact on the prediction results. This
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conclusion is the same as that in the literature [59]. In addition, VCLM is compared with
CCLM, VCBM is compared with CCBM, and VCSM is compared with CCSM. The average
MAE, average MAPE, and average RMSE are reduced by 15.80–37.91%, 17.69–33.37%, and
21.36–47.09%, respectively. The average NSE and average KGE increased by 10.91~16.25%
and 11.10~15.97%, respectively. The results show that compared with CEEMDAN, the
hybrid forecasting model based on VMD decomposition can extract the multi-scale period
and nonlinearity of TN and TP time series better and achieve high-precision forecasting.

4.4.4. Water Quality Prediction Performance in Different Stations

To determine the influence of TN and TP characteristics of different stations on the
prediction model, the prediction performance of the proposed VCLM model at different
stations was compared further.

In terms of TN, the VCLM model achieved relatively good prediction performance at
XHWC station (NSE = 0.9510 and KGE = 0.9187) and relatively poor prediction performance
at GJWC station (NSE = 0.8864 and KGE = 0.8266). In terms of TP, the VCLM model
achieved a relatively good prediction performance at the HMS station (NSE = 0.9485
and a KGE = 0.9275) and relatively poor prediction performance at the GJWC station
(NSE = 0.9058 and KGE = 0.8536). The prediction performance of the same model on
different data shows relatively large differences. This reflects that the TN and TP data
fluctuations of HMS and XHWC are the most regular and easiest to predict. Intuitively,
Figure 2 shows that the TN and TP data of HMS and XHWC have relatively similar volatility,
and most of them show relatively stable volatility. However, whether it is TN or TP, the
prediction effect in GJWC is relatively poor, indicating that the TN and TP data of GJWC
are more complicated and have more uncertain factors. Figure 2 also shows that the TN
and TP data of the GJWC station have large volatility and many mutation points, and these
factors affect the prediction performance of the model. However, the NSE and KGE of the
VCLM model on all data are greater than or equal to 0.8864 and 0.8266, respectively, thus
achieving acceptable predictions.

5. Discussion
5.1. Rationality of Hindcasting and Forecasting Experiments

We further designed hindcasting and forecasting experiments using three decom-
position methods, CEEMDAN, and VMD. Among them, the decomposed IMFs of each
decomposition method are directly predicted and reconstructed using LSTM to obtain the
final prediction results, and the hyperparameters of LSTM are calibrated using CSSA. In
the hindcasting experiments, the original time series are directly decomposed into multiple
IMFs before dividing the calibration and test sets, while the forecasting experiments are
performed in the way proposed in Section 3.6. Finally, the experimental results obtained by
applying the TN data from the DC station are presented in Table 7.

Table 7. Hindcasting and forecasting experiments based on TN data from the DC station.

Item
Hindcast Forecast

CEEMDAN-LSTM VMD-LSTM CEEMDAN-LSTM VMD-LSTM

MAE 0.0327 0.0285 0.0895 0.0523
MAPE 3.64% 3.16% 9.24% 6.15%
RMSE 0.0289 0.0157 0.1012 0.0795
NSE 0.9844 0.9987 0.7841 0.9015
KGE 0.9745 0.9824 0.7529 0.8509

As observed from Table 7, the results of both CEEMDAN and VMD show better
performance for the hindcasting experiments compared to the forecasting experiments. In
particular, the NSE and KGE of the model in the hindcasting experiment have reached more
than 0.97, indicating that the predicted results of the model are essentially coincident with
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the actual results. This result is ideal, but it has to be noted that a prerequisite to be satisfied
by the hindcasting experiment is that future data are known, which can be satisfied when we
use historical data to perform simulations. This assumption is impractical from a practical
application point of view, as we cannot decompose all data before dividing the calibration
and test sets. In contrast, the method used by us is consistent with practical applications.
By prioritizing the calibration and test sets and then decomposing them, the models are
trained without using future information. Each model in the forecasting experiment does
not perform as well as the hindcasting experiment, but it provides a solution to the problem
of using future information and can be used for practical prediction.

5.2. Adaptive VMD Decomposition Enhances the Model Performance

Water quality parameter data can be regarded as a nonlinear and non-stationary signal
sequence mixed with noise. In direct prediction, the noise part will affect the training of the
model. Therefore, the data preprocessing method based on the decomposition method can
separate the noise and decompose multiple more stable sub-sequences better. Forecasting
for stationary subsequences can improve the accuracy of the model significantly. In many
signal decomposition methods, wavelet decomposition has a wide range of applications,
but the choice of wavelet base has a significant impact on the decomposition result. Thus,
selecting a suitable wavelet base is necessary to achieve a better denoising effect.

To improve the wavelet decomposition technology, Huang et al. [71] developed a new
adaptive signal decomposition method EMD. This method can adaptively decompose the
original signal, but it has some problems, such as modal aliasing and endpoint effect. Wu
and Huang [72] developed a new method EEMD, which is a substantial improvement of
EMD. This method introduces Gaussian white noise to suppress modal aliasing to a certain
extent, but the white noise amplitude and the number of iterations depend on human
experience settings. The problem of mode aliasing cannot be overcome when the value is
not properly set. Although increasing the number of ensemble averaging can reduce the
reconstruction error, it also increases the computational cost, and the ensemble averaging
of limited times cannot completely eliminate white noise.

To solve the problems of EEMD, Torres et al. [73] proposed CEEMDAN. This method
adds positive and negative paired auxiliary white noises to the original signal, which can
cancel each other during ensemble averaging, thereby overcoming the problems of large
reconstruction errors and poor decomposition completeness of EEMD. At the same time, the
calculation cost is greatly reduced. Recently, Dragomiretskiy and Zosso [51] proposed a new
adaptive and non-recursive signal decomposition method VMD, which aimed to transfer
the acquisition of the signal components to a variational framework. The decomposition
of the original signal is then realized by constructing and solving constrained variational
problems. However, the number of decomposed subsequences of this method needs to be
determined manually. To adaptively determine the number of decompositions, this paper
uses a threshold based on PE to set the number of decompositions.

This paper compares the prediction performance of the three standalone models, three
hybrid models based on CEEMDAN decomposition, and three hybrid models based on
VMD decomposition. The prediction performance of these models utilizes Taylor diagrams
(Table 6; Figure 11). The Taylor diagram is mainly used to check the accuracy of the
experimental model. It uses different points in the polar coordinates to study the difference
between the observed and estimated values [74]. Figure 11 shows that the prediction result
of the VCLM model has the highest correlation coefficient with the observed value and has
the lowest RMSE. At the same time, combining the results of each station, VCLM, VCBM,
and VCSM have higher correlation coefficients and smaller RMSE than CCLM, CCBM, and
CCSM. Compared to the direct prediction model, the decomposition prediction model has
a higher correlation coefficient and a smaller RMSE. The results show that the method of
decomposing the original time series and predicting the sub-sequences can indeed improve
the performance of the model effectively. Compared with CEEMDAN, VMD has a better
decomposition effect and can extract sequence information more effectively.
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5.3. LSTM Guarantees the Hybrid Model Performance

With the help of decomposition technology, LSTM-based models are better than BP-
based and SVR-based models. The concentrations of TN and TP are affected by historical
concentrations and reflected on various time scales. The modal components obtained by
decomposition preprocessing have strong dynamic regularity and obvious time charac-
teristics. Compared with other machine learning and neural network models, LSTM can
save and retrieve input values and gradients as needed. Therefore, LSTM can extract the
dynamic characteristics of TN and TP sequences.

Sarkar and De Bruyn [75] introduced LSTM to mine and predict raw data, beating
269 manual models that used other features and modeling methods. As a deep learning
technology, LSTM has a multilevel representation generated by a nonlinear transformation
at each level, which can be adjusted and readjusted to the characteristics represented in
the computing layer based on the previous representation [76]. The algorithm used by
LSTM allows it to learn and extract related advanced complex abstractions from complex
datasets automatically [77]. Therefore, by using LSTM as a predictor, the capture of the
linear and complex nonlinear relationship of time series is optimized to produce better
prediction results.

5.4. Spatial Difference of VCLM Model Performance

The VCLM model used in this study has different prediction results for the TN and TP
data of each station. VCLM has a better prediction effect on the TN data of XHWC and TP
data of HMS but has a poor prediction effect on TN and TP data of GJWC. This finding
may be due to extreme changes in the environment near the station during the monitoring
period, resulting in a sharp increase in the concentrations of both nitrogen and phosphorus.
These phenomena are manifested in the data because of sudden changes that result in
uneven data distribution, which in turn makes it difficult for the predictive model to learn
the rules and hidden information of the data. Due to the complexity of water quality
prediction, obvious spatial differences are observed in the prediction accuracy of the VCLM
model in areas with different pollutant evolution rules. Furthermore, the concentrations
of TN and TP are significantly related to many human factors (e.g., agricultural fertilizers,
industrial wastewater, and urban sewage). As noted by Li, et al. [48], more than 65%
of the nutrient load in Poyang Lake comes from five major tributaries, and according to
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Figure 1, it can be seen that GJWC is close to two major tributaries (Xiuhe and Ganjiang),
especially, Ganjiang is the largest tributary of Poyang Lake, with the transport in the two
major tributaries, the nutrient concentration near the GJWC site fluctuates dramatically,
which will lead to a decrease in model performance for short-term prediction of this site. In
contrast, HMS is located at the mouth of Poyang Lake, which is less influenced by nutrients
from the five major tributaries and more influenced by the nutrient concentration changes
caused by the backflow of water from Yangtze River into the lake. According to our field
investigation, there are a lot of sand mining boats in the middle of the lake not far from DC
from July to March, and sand mining causes lake water turbidity to increase, and then it
affects the nearby water’s quality.

For the pollutant sources with certain regularity or periodicity, this will help the model
to predict the future water quality; thus, more data and information with direct or indirect
influence on the water quality of Poyang Lake are introduced, which will help to further
improve the robustness of the model. In addition, for different geographical locations, it
may be more reliable to construct models based on actual pollutant sources. Furthermore,
the influence of the Yangtze River on the water levels in the lake area is also a factor that
cannot be ignored, and data from the hydrological monitoring stations of the mainstream
of Yangtze River and the flow data from the Three Gorges Dam can be further introduced,
which will help improve the interpretability of the model. However, the VCLM model
varies from station to station, but the overall performance is satisfactory enough to predict
the actual water’s quality accurately, which will also help to further identify pollution
sources and water quality management.

6. Conclusions

A hybrid prediction model called VMD-CSSA-LSTM-MLR (VCLM) was proposed to
improve the prediction accuracy of surface water quality parameters, which are highly
nonlinear and nonstationary. To verify the effect of the VCLM model, the data of four
online surface water quality monitoring stations in Poyang Lake were taken as examples
and compared with three standalone models and six hybrid prediction models. Compared
with SSA, GA, and PSO algorithms, the improved SSA algorithm called CSSA has better
optimization performance. Compared to traditional BP and SVR algorithms, LSTM can
capture long-term correlations of the time series well, has strong predictive ability for
nonlinear time series, and can improve the reliability of water quality parameter prediction.
For the different frequency characteristics of the sub-sequences decomposed by VMD, the
high-frequency part is predicted by CSSA-LSTM, and the low-frequency part is predicted
by MLR, which can improve the performance of the model effectively. The standalone
prediction models were compared with the hybrid prediction models based on the VMD or
CEEMDAN method. The prediction method after the time series can improve the prediction
accuracy of the model. Furthermore, compared to CEEMDAN, the VMD method can
separate the original water quality parameter time series, extract internal features effectively,
and accurately describe the stationarity of the time series. The adaptive VMD method based
on PE has the advantages of reducing pseudo-components effectively, avoiding modal
aliasing, and improving noise robustness. By applying the ten aforementioned models to
the data of four online surface water quality monitoring stations in Poyang Lake, combined
with five evaluation indicators, the results show that VCLM has the best predictive effect,
the best model performance, and the highest degree-of-fit to the observed value.

Although the advantages and feasibility of the proposed hybrid forecasting model
based on the VMD method have been verified by actual data, some potential problems
and research directions are still needed to be studied. First of all, the proposed method
has large differences in the prediction performance on the data sets of different sites, and
the differences in the evolution of pollutants in various regions lead to spatial differences
in model performance. Therefore, in future research, we can try to add real-time updated
data to better model nitrogen and phosphorus to continuously improve the accuracy of our
models. Second, when extreme events, such as urban and industrial wastewater discharge,
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occur, models based on historical data cannot reflect the sharp increase in concentration.
Therefore, in future research, we can try to introduce extreme events as influencing factors
in the model to improve the performance of the model. Finally, the concentration of total
nitrogen and total phosphorus will also be periodically affected by human factors, such as
annual crop fertilization and occasional sand mining. Thus, including changing nitrogen
and phosphorus trends in forecasting models on either a monthly or quarterly basis can
further improve modeling accuracy.
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Nomenclature

BP back-propagation neural network
CC correlation coefficient
CCBM CEEMDAN-CSSA-BP-MLR
CCLM CEEMDAN-CSSA-LSTM-MLR
CCSM CEEMDAN-CSSA-SVR-MLR
CEEMDAN complete ensemble empirical mode decomposition with adaptive noise
CSSA chaos sparrow search algorithm
DC Duchang Station
DO dissolved oxygen
EC electrical conductivity
EEMD ensemble empirical mode decomposition
ELM extreme learning machine
EMD empirical mode decomposition
GJWC Ganjiang Wucheng Station
HMS Hamashi Station
IMF intrinsic mode function
KGE Kling–Gupta efficiency
LSTM long short-term memory network
MAE mean absolute error
MAPE mean absolute percentage error
MLR multiple linear regression model
NSE Nash–Sutcliffe efficiency coefficient
PACF partial autocorrelation function
PE permutation entropy
PH potential of hydrogen
PRCP precipitation
RMSE root mean square error
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SSA sparrow search algorithm
SVR support vector regression
SWAT soil and water assessment tool
TAN total ammonia nitrogen
TN total nitrogen
TP total phosphorus
TUB turbidity
VCBM VMD-CSSA-BP-MLR
VCL VMD-CSSA-LSTM
VCLM VMD-CSSA-LSTM-MLR
VCSM VMD-CSSA-SVR-MLR
VMD variational mode decomposition
WL water level
WTMP water temperature
XHWC Xiuhe Wucheng Station
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