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Abstract: Nowadays, plant invasion has become a global ecological threat to local biodiversity and
ecosystem stability. Spartina alterniflora encroaches on the ecological niches of local species and
changes the soil’s nutrient cycle. However, few comprehensive assessments focus on the effects of S.
alterniflora invasion. Here, we investigated how soil sulfur changed with spatiotemporal variation
and life forms of native species after S. alterniflora invasion and speculated the possible mechanism of
the sulfur increase based on the references. The invasion of S. alterniflora increased soil total sulfur by
57.29% and phytotoxic sulfide by 193.29%. In general, the invasion of S. alterniflora enhanced the total
plant biomass and soil nutrients, e.g., soil organic carbon, total nitrogen, and soil microbial biomass
carbon, further increasing soil sulfur content. The sulfur accumulation caused by S. alterniflora might
result in the poisoning of native species. Thus, we hypothesized that the success of S. alterniflora
invasion was closely connected with soil sulfur, especially toxic sulfide. Our study suggests that
researchers should give more attention to the correlation between S. alterniflora invasion and the soil
sulfur increase. More research is needed to investigate the mechanisms of the successful invasion by
accumulating phytotoxic sulfide.

Keywords: Spartina alterniflora; meta-analysis; invasion; sulfide; sulfur; effect size

1. Introduction

Coastal wetlands are of great importance to ecosystem biodiversity, stability, and
sustainability, playing a vital role in global carbon sequestration [1], wetland hydrology [2],
and biodiversity protection [3]. Ecological communities are complex, with dynamic interac-
tions among organisms [4]. Alien plant invasion is a major threat to coastal ecosystems,
which may cause biodiversity loss, affecting marine ecosystem services across temporal
and spatial scales [5].

Originally, Spartina alterniflora lived in the Atlantic Coast area of North America, pro-
viding food sources and nursery areas for animals [6]. For erosion control, soil amelioration,
and dike protection, S. alterniflora has been widely introduced in northern and coastal
Europe, Africa, Australia, New Zealand, and China. S. alterniflora was first introduced to
China in 1979, behaving well in soil stabilization, heavy metal removal, and carbon dioxide
sequestration with high primary productivity [7]. However, its significant negative impacts
on coastal native species and ecosystems gradually emerged, and its distribution area
continued to expand [8]. The invasion of S. alterniflora reduces local biodiversity and affects
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large-scale ecosystems such as animal migration due to the change of habitats of migratory
birds and further shapes insular mutualistic networks [9]. There was an explosive growth
of S. alterniflora in China with the area increasing by 50,204 ha between 1990 and 2015 [10].
To date, the distribution of S. alterniflora in China is concentrated in the eastern coastal
area, covering the temperate monsoon climate and subtropical monsoon climate from the
Leizhou Peninsula in the south to the Duliujian River in the north with the latitudinal range
of 20◦ N–39◦ N. Zhanjiang, Zhangjiang, Minjiang, Yangtze River, and Yellow River basin
are all contained [11].

Sulfur is a necessary macronutrient for the synthesis of many metabolites, participating
in essential biochemical reactions of plants and responding to environmental changes [12].
In the soil of coastal wetlands, sulfur mainly comes from seawater. It can be divided into
inorganic sulfur and organic sulfur [13], and the proportions are closely related to soil
type, pH, drainage status, organic matter content, mineral composition, and depth [14].
The sulfur cycle in the soil of coastal wetlands is complex since tidal flooding periodically
changes the soil redox conditions, thus changing the proportions of sulfate and sulfide by
affecting the redox process in the sulfur cycle [15]. Sulfates can be absorbed by roots and
transported through membranes by proton–sulfate cotransporters [16], while the reductive
sulfide usually causes ecological toxicity in the ecosystem, including plants, animals, and
microorganisms [17]. Reduced sulfur compound is a potent phytotoxin that inhibits the
activity of cytochrome c oxidase in mitochondria, thereby inhibiting energy production [18].
The biological toxicity of sulfide depends on the ability of the species to metabolize sulfide
into mercaptan [19]. Strong evidence was reported in the defining effect of sulfide on
species distribution in salt marshes [20]. However, S. alterniflora with high sulfide tolerance
was reported to survive in high sulfide concentrations up to 8 mM, which was much higher
than other species in salt marshes [19], resulting from the ability to absorb sulfide and
divert energy from metabolism to oxidize sulfide [21].

S. alterniflora was reported to increase the soil sulfur content after the invasion in pre-
vious studies [22–24]. The reduction of sulfate in the flooded and anaerobic environment
will lead to a large amount of toxic sulfide accumulation [25], which may have adverse
effects on organisms with weak sulfur tolerance in the ecosystem. Meanwhile, the invasion
of S. alterniflora changed the abundance, composition, and structure of the soil microbial
community [26], especially sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria
(SOB) [27]. SRB use sulfate as an electron acceptor for organic matter to reduce sulfate
to sulfide [28]. The reduction of organic matter by SRB is considered the most important
degradation pathway in the soil of the intertidal zone [29,30]. It was reported that S. alterni-
flora might have unique detoxification mechanisms, oxidizing sulfide through aerenchyma
to reduce the sulfide content around the rhizosphere in flooded soil [31]. In addition, there
is a feedback mechanism between plants and soil. Therefore, more biogenic elements,
especially sulfur, can be circulated in the soil–plant system after S. alterniflora invades with
high primary productivity [32].

Most previous studies found that S. alterniflora invasion in communities with Phrag-
mites australis, Suaeda salsa, Scirpus mariqueter, and Cyperus malaccensis mainly increased
soil sulfur content [22–24,33]. However, according to the published data, we found that
there was also a decrease in soil sulfur content in mangroves and other communities
after S. alterniflora invasion [34–36]. S. alterniflora invasion in mangroves can affect the
soil biochemical process by reducing carbon and nitrogen storage and heterogeneity of
biogenic elements [37]. The effects of S. alterniflora invasion on soil sulfur content and
distribution vary in regions with different environmental conditions. However, there is
no comprehensive analysis to discuss and summarize the effects of S. alterniflora invasion
on soil sulfur content and distribution with spatiotemporal variation and life forms of
native species.

We undertook a synthesis to assess the effects of S. alterniflora invasion on soil sulfur
using meta-analysis. Our analysis covered 38 studies of S. alterniflora invasion located along
the eastern coast of China with a latitudinal range of 20.9◦ N–39.7◦ N and a longitudinal



Water 2022, 14, 1633 3 of 15

range of 110.1◦ E–112.1◦ E and included 2501 data items (Figure 1). The native plants in the
invaded areas are mainly S. mariqueter, P. australis, S. salsa, C. compressus, Aegiceras cornicula-
tum, Avicennia marina, Kandelia obovate, and Kandelia candel. Specifically, we measured the
effect size of S. alterniflora invasion on soil total sulfur, sulfate (SO4

2−), and sulfide (S2−).
We conducted subgroup analyses with the data obtained according to the seasons, invasion
stages, soil depths, and life forms of native species using meta-analysis. We attempted
to answer two questions: (a) What are the effects of S. alterniflora invasion on soil sulfur
content and distribution? (b) What are the changes in soil nutrients and physicochemical
properties caused by S. alterniflora invasion, and how do they impact soil sulfur? The
results of our previous studies and many other studies showed that the increase in biomass
brought by S. alterniflora was accompanied by an increase in soil sulfur content [23,24,38],
because sulfur could accumulate and be stored in tissues of S. alterniflora [39]. Therefore,
we hypothesized that (a) the introduction of S. alterniflora increased soil total sulfur, SO4

2-,
and S2- contents; (b) soil nutrients and physicochemical properties were influenced by S.
alterniflora invasion and further increased soil sulfur content through indirect approaches.
Our analysis provides the first comprehensive assessment of the effects on soil sulfur
content after S. alterniflora invasion, and a new perspective on the mechanisms of global
plant invasion related to soil sulfur is proposed.
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Figure 1. A distribution map of S. alterniflora invasion sites with soil sulfur data. The different colors
of circles indicate various life forms of native species, and the sizes of circles represent the number
of studies.

2. Materials and Methods
2.1. Literature Research and Data Collection

To identify quantitative evidence of the impacts of S. alterniflora invasion on soil sulfur
content and distribution, we conducted a systematic search of the scientific literature. On
2 March 2020, we searched for articles reporting soil sulfur content before and after S.
alterniflora invasion using the Web of Science and the China National Knowledge Internet



Water 2022, 14, 1633 4 of 15

(CNKI), with a restriction on the year of publication from 1979 to 2020. The following search
combination was used: (Spartina alterniflora OR Spartina-alterniflora OR Smooth Cordgrass OR
Smooth-Cordgrass OR Sporobolus alterniflorus) AND (invasi* OR invad* OR exotic OR alien
OR encroach OR introduced OR allochthonous OR non-indigenous OR nonindigenous OR
non-native) AND (sulfur OR sulfate OR sulfide OR sulphide OR sulphate OR sulphur OR
S), and the keyword combination in the Chinese literature search was the same.

Through literature retrieval, we obtained 830 references from the Web of Science and
180 references from CNKI. Then, we screened the reference lists of all obtained articles to
further select publications related to our research topic. The references obtained from the
literature search were evaluated according to the following steps by scanning the titles
and abstracts of articles to exclude articles that were completely unrelated to our topic.
Then, we searched for data from the publications we found by reading the full texts and
Supplementary Materials. The inclusion and exclusion criteria were as follows: (1) at least
one kind of soil sulfur content, such as total sulfur, SO4

2−, and S2− was reported; (2) the
research contained duplications with data of both native communities and invasive S.
alterniflora communities; (3) the means and standard deviations of the data were reported;
and (4) studies with other artificial interventions or without replication were excluded
(Figure S1). Although the keywords in the literature search did not impose geographical
restrictions, the study sites of the publications that met the requirements after screening
were all in China, which might lead to unavoidable geographical limitations of our study.

For each study, we extracted the basic characteristics of each study, including pub-
lication year, journal, location, temperature, precipitation, type of invasive species, the
biomass of invasive plants and native plants, and soil properties (Table S1). The study sites
were marked on a map and were mostly located on the eastern coast of China (Figure 1).
Following the above criteria, 1339 observations of sulfur-related variables were extracted
from 38 publications. The variables we chose were related to plant biomass and soil
physicochemical properties, including aboveground and underground biomass, soil pH,
electrical conductivity, bulk density, salinity, water content, total carbon, soil organic carbon,
soil microbial biomass carbon, organic matter, total nitrogen, ammonium (NH4

+), nitrate
(NO3

−), carbon–nitrogen ratio (C/N), total phosphorus, total sulfur, available sulfur, SO4
2−,

S2−, H2O-S, adsorbed-S, HCl-soluble-S, and HCl-volatile-S. For each variable included,
means, standard deviations/standard errors/confidence intervals, and sample sizes (n)
were extracted from native communities and the communities invaded by S. alterniflora.
If the sample size was lacking, it was defined as 3. Each observation was regrouped for
subgroup meta-analysis according to the differences in season species, invasion stages,
soil depths, and life forms of the native species. The invasion stages were divided into
an earlier stage (invaded for 0–5 years) and a later stage (invaded for more than 5 years).
The soil depths were divided into three groups: 0–20 cm, 20–50 cm, and 50–100 cm. The
life forms of native species were grouped into herbaceous and woody communities, and
mudflats without vegetation served as a control. Part of the data was directly obtained
from the article. When the data were presented in a bar chart or line chart, GetData Graph
Digitizer (http://www.getda ta-graph-digitizer.com/ (accessed on 2 March 2020)) was
used to extract the data in the graphic.

2.2. Statistical Analysis

The method of Hedges was followed to conduct the meta-analysis [40]. Hedges’ g was
used to measure the unbiased, standardized mean difference between the experimental
group (S. alterniflora invasion) and the control group (the native communities). The invasion
of S. alterniflora was considered the only treatment in the two groups. Hedges’ g was
estimated as

SDpooled =

√
(n invaded−1)SDinvaded

2+(n native−1)SDnative
2

ninvaded+nnative−2
(1)

http://www.getda
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g =
xinvaded−xnative

SDpooled
(2)

Vg =
nnative+ninvaded
nnativeninvaded

+
g2

2(n native+ninvaded−2)
(3)

We chose random-effect models to analyze our data, as the data we collected were
from field sampling, which might be largely heterogeneous [41]. A negative effect size
indicates a negative effect on the native community after S. alterniflora invasion, while a
positive effect size indicates a positive impact. Hedges’ g and a 95% confidence interval
(CI) were used to present the effect of each factor.

Funnel plots were used to assess the publication bias of effect size standard errors
against residuals [42]. The appearance of asymmetry reflects large residuals and high
variances. When the funnel plot was asymmetric, we removed the data with large residual
values and high variances to adjust for potential publication bias [43,44]. If there was no
change in the outcomes of the analysis after adjustment, our results were not severely
influenced by potential publication bias. If the direction of effects was changed, publication
bias might severely affect the results. I2 was used to represent the heterogeneity of each
factor. Stata 12.0 was used to conduct the above analysis. (eRR++ − 1)× 100% was calculated
with R software to indicate the percentage change [45]. In addition, to identify the effects of
S. alterniflora invasion on soil total sulfur, SO4

2−, and S2−, scatter diagrams and box charts
were created for more intuitive analysis. All figures were created using Origin 9.0 software.

3. Results
3.1. Effects of S. alterniflora Invasion on Soil Sulfur

Although there were asymmetries in some funnel plots (Figures S2–S7), the direction of
the response did not change after removing the data with large residuals, so we considered
that there was no significant effect on our study caused by publication bias [44].

Significant increases in soil total sulfur (standard mean difference: 1.72, CI: 1.53/1.92),
available sulfur (SMD: 0.58, CI: 0.21/0.95), and S2− (SMD: 1.84, CI: 1.50/2.17) were found
according to the results of the meta-analysis (Figure 2). H2O-S (SMD: 0.84, CI: 0.51/1.17),
adsorbed-S (SMD: 1.08, CI: 0.78/1.39), HCl-soluble-S (SMD: 0.44, CI: 0.21/0.66), and HCl-
volatile-S (SMD: 0.13, CI: −0.06/0.31) are four different inorganic sulfur forms, and the
effect sizes showed positive effects (Figure 2).
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shown in parentheses. EC, electrical conductivity; TC, total carbon; SOC, soil organic carbon; SMBC,
soil microbial biomass carbon; OM, organic matter; TN, total nitrogen; TP, total phosphorus; TS, total
sulfur; AS, available sulfur.
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According to the results of subgroup analysis, the effects of S. alterniflora invasion on
soil total sulfur, sulfate, and sulfide all showed increasing trends with increasing depths,
especially total sulfur, with effect sizes of 0.82 at 0–20 cm, 1.31 at 20–50 cm, and 3.60 at
50–100 cm (Figure 3a). Considering the lack of data on soil sulfate and sulfide in woody
communities invaded by S. alterniflora, these indicators were compared only in herbaceous
communities and mudflats. A lower effect of S. alterniflora invasion on soil total sulfur was
found in the woody communities with an SMD of 0.94, and it was higher in the herbaceous
communities and mudflats with SMDs of 1.45 and 2.33 (Figure 3a). Except for the slightly
negative effect on soil sulfate in the invasion of S. alterniflora in herbaceous communities
(SMD: −0.01), the concentrations of soil sulfide and sulfate in the herbaceous communities
and sulfate in mudflats increased after S. alterniflora invasion (Figure 3b,c). In the subgroup
analysis by season, we found no conspicuous or regular change in soil sulfur (Figure 3a).
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Compared with soil total sulfur content, sulfate and sulfide content responded differ-
ently in four seasons to the invasion of S. alterniflora (Figure 3). It is worth mentioning that
the effects on soil total sulfur after S. alterniflora invasion in autumn (SMD: 2.30) and winter
(SMD: 2.34) were more significant than those in spring (SMD: 1.56) and summer (SMD: 1.02)
(Figure 3a), while the effect sizes of sulfate and sulfide in spring were greater than those in
the other three seasons (Figure 3b,c). To observe the changes more intuitively and visually
in soil sulfur content after S. alterniflora invasion, three scatter diagrams and box charts
are shown in Figure 4. The content of soil total sulfur with S. alterniflora was generally
higher than that in mudflats and herbaceous communities except in woody communities
(Figure 4a). We chose not to show scatter plots or box charts of the soil sulfide and sulfate
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contents in the woody communities due to a lack of data in mangrove communities in
previous literature.
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3.2. Effects of S. alterniflora Invasion on Soil Physicochemical Properties

The analysis revealed that after S. alterniflora invasion, plant biomass and 22 soil
properties, including physical and chemical properties and nutrients, changed significantly
compared with the native areas (Figure 2). The invasion of S. alterniflora had a positive
direct effect on plant biomass, the effect size of aboveground biomass was 3.51, and the
effect size of underground biomass was 0.453 (Figure 2). Similarly, other soil biogenic
elements, including soil total carbon (SMD: 0.51, CI: 0.05/0.98), organic carbon (SMD: 1.54,
CI: 1.15/1.94), microbial biomass carbon (SMD: 2.47, CI: 1.22/3.71), organic matter (SMD:
1.64, CI: 1.04/2.23), total nitrogen (SMD: 1.22, CI: 0.93/1.51), and total phosphorus (SMD:
0.15, CI: −0.13/0.43), all showed different degrees of positive effects after S. alterniflora
invasion (Figure 2). The effect size of NH4

+ (SMD: 0.39, CI: −0.05/0.83) and NO3
- (SMD:

0.31, CI: −0.05/0.68) were both positive, and the effect size of C/N was −0.96 with a CI
from −0.30 to −0.61.

Unlike positive effects on C, N, P, and S, different directions of effects appeared in soil
physical properties. Negative effects were found in soil pH (SMD: −0.23, CI: −0.56/0.10)
and bulk density (SMD: −0.915, CI: −1.222/−0.608), while positive effects appeared for
electrical conductivity (SMD: 0.18, CI: −0.17/0.53), salinity (SMD: 0.14, CI: −0.40/0.67),
and water content (SMD: 1.20, CI: 0.82/1.59) (Figure 2).

3.3. Effects Differed in Various Spatiotemporal Conditions and Life Forms of Native Species

The results of the subgroup analysis of soil properties showed that the range of
changes after S. alterniflora invasion also varied among seasons, invasion stages, soil depths,
and life forms of native species (Figure 5). In the four seasons, soil organic carbon and
total nitrogen increased, and the highest effect size appeared in spring, while the lowest
was in autumn (Figure 5a). In all subgroups of soil depths, the invasion of S. alterniflora
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enhanced soil organic carbon and total nitrogen contents more in 0–50 cm soil layer than
in the 50–100 cm layer (Figure 5c). After S. alterniflora invasion, soil organic carbon and
total nitrogen increased in the herbaceous communities and mudflats but decreased in the
woody communities (Figure 5d). The contents of soil total phosphorus in the herbaceous
communities decreased after S. alterniflora invasion (SMD: −0.43), but that in the woody
communities increased (SMD: 0.22) compared with an SMD of 0.57 in mudflat (Figure 5d).
In addition, soil total phosphorus contents in the earlier stage of S. alterniflora invasion
decreased (SMD: −0.66), while it increased in the later stage (SMD: 1.50) (Figure 5b).
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Figure 5. Effects of S. alterniflora invasion on soil properties in different subgroups. The y-axis is
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The effects of S. alterniflora invasion on soil pH differed among seasons, with negative
effects in summer and autumn and positive effects in spring and winter (Figure 5a). The
soil pH in the invaded woody communities displayed significant positive effects with an
SMD of 0.81. In contrast, the effect sizes of soil pH in herbaceous communities and mudflats
were all negative, with SMDs of −0.03 and −0.86, respectively (Figure 5d). S. alterniflora
invasion had a more significant impact on soil pH in the earlier invasion stage than in the
later stage (Figure 5b), and the effect size of soil pH increased with depth (Figure 5c). The
effect size of water content increased in the seasons according to the ranked order of spring
(SMD: 0.44), summer (SMD: 0.69), autumn (SMD: 1.39), and winter (SMD: 1.67) (Figure 5a),
which was also more obvious in the surface layer than in the deeper layers (Figure 5c). In
the process of S. alterniflora invasion, soil water content increased more during the later
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invasion stage (SMD: 1.90) than during the earlier stage (SMD: 1.04). Soil bulk density
decreased more during the later invasion stage (SMD: −1.46) than during the earlier stage
(SMD: −0.50) (Figure 5b). After S. alterniflora invasion, soil bulk density decreased in all
depths suffering a more significant impact in the 0–20 cm (SMD: −0.56) and 20–50 cm
(SMD: −0.82) layers than in the 50–100 cm (SMD: −0.23) layer (Figure 5c). Soil salinity
increased slightly in the earlier invasion stage (SMD: 0.27) while decreased in the later stage
(SMD: −1.28) (Figure 5b).

4. Discussion
4.1. S. alterniflora Invasion Increased Soil Sulfur Contents

The results confirmed our first hypothesis that S. alterniflora invasion tended to increase
soil sulfur content caused by the addition of sulfur sources from primary production [24].
The increase in sulfur content could promote the growth of S. alterniflora in return and
enhance its tolerance to metal, and the increase in sulfide could threaten the growth of
native species (Figure 2), further promoting S. alterniflora expansion. It was reported that
sulfide could limit root hair development and nutrient uptake, inhibit respiratory metallo-
enzyme activities, and reduce polyphenol oxidase and external phosphatase activity in
different species [46]. However, the high tolerance to the phytotoxic sulfide of S. alterniflora
was verified [19].

The effects of S. alterniflora invasion on soil sulfur content also varied across seasons
(Figure 5a) with different temperature, tide, and precipitation, affecting plant growth status,
microbial activity, and soil properties [47,48]. S. alterniflora can uptake sulfate dissolved in
pore water directly to grow new tissue, decreasing the response of soil sulfur significantly
in summer compared with that in spring (Figure 5a). Plants grow most vigorously in
spring, absorbing abundant nutrients from the soil, while the roots need to accumulate
large amounts of sulfur for winter consumption [49]. Therefore, decomposition of a
large amount of litter entering the soil leads to a significant increase in soil total sulfur
content in autumn and winter (Figure 5a) [50]. In addition, the abundance and activities
of soil microorganisms vary in different climatic conditions, affecting the sulfur cycle
mediated by microbial communities after S. alterniflora invasion [51]. Sulfate is mainly
believed to mainly come from seawater because sulfate is the second most abundant ion in
seawater [19]. The irregular and inconspicuous response of soil sulfate after S. alterniflora
invasion was in agreement with previous studies [52], which can be explained by the
material exchange through frequent tidal flooding (Figure 3b). S. alterniflora was reported to
release oxygen through aerenchyma to oxidize toxic sulfide to sulfate in the rhizosphere [53].
Therefore, the seasonal variation in soil sulfide is similar to sulfate (Figure 5a), since they
are interchangeable [19].

The more significant response of soil total sulfur and sulfide contents in the later stage
of invasion (longer than 6 years) (Figure 5b) was consistent with the sulfur enrichment effect
and accumulation with the increase in invasion time proposed by Wang et al. (2019b) [24].
The return of plant sulfur to the soil through the litter pathway leads to the accumulation
of soil sulfur, so S. alterniflora behaves as a sulfur pump to constantly import sulfur to the
soil [50].

The effect sizes of S. alterniflora on soil total sulfur, sulfate, and sulfide contents
increasing with soil depths (Figure 5c) were closely associated with the length of roots, the
transport capacity of soil, and the microbial activities in different layers [33]. The roots of S.
alterniflora were mainly distributed in the soil of 0–25 cm, while the roots of mangroves and
herbaceous species were distributed in deeper and shallower layers, respectively [54]. In
addition, the increase of soil water content and decrease in bulk density after S. alterniflora
invasion led to water-soluble ions such as sulfate vertically leaching into the deep soil. Since
the roots of S. alterniflora cannot penetrate the deepest layer of soil, the bulk density and
water content cannot be changed there [55]. Furthermore, the ecological niches and nutrient
sources of microorganisms were changed dissimilarly in different layers (Figure 5c); thus,
the biological driver also altered soil sulfur content and distribution indirectly [19].
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The differences in the magnitude of the increase of soil total sulfur, sulfate, and
sulfide after S. alterniflora invasion in different life forms (Figure 4) are mainly because the
diverse root activities and living characteristics of plants lead to various soil properties
after invasion [56]. The introduction of S. alterniflora accelerated the biogeochemical cycle
of soil sulfur by accelerating root activity and litter decomposition; thus, the maximum
effect was found in mudflats that were originally unvegetated (Figure 5d). Herbaceous and
woody species are the main native plants disrupted by the invasion of S. alterniflora on the
eastern coast of China. Herbaceous species are distributed in a wide latitude from 24.3◦N
to 37.5◦N with hot, humid summer but cold, dry winter [35], while woody species are
mainly distributed in the Jiulong River Estuary, Leizhou Peninsula, and Zhangjiang Estuary
with a humid subtropical climate [34,37,57]. Mangroves are composed of tropical intertidal
halophytic arbors and shrubs with complex food webs, high diversity of species, and high
net primary productivity [58]. In addition, it has been reported that mangrove wetlands
maintain a high level of organic carbon, which is three times the average carbon density of
natural soil, while the organic carbon content of S. alterniflora soil is much lower [59,60].
Compared with herbaceous communities and unvegetated mudflats, woody communities
have the largest aboveground and underground biomass with high levels of salinity, redox
potential, organic matter content, and sulfur sources [61]. The high aboveground biomass
might reduce the quantity of light obtained by S. alterniflora and limit its growth. In
turn, S. alterniflora invasion also weakens the relationship between light use efficiency and
photochemical reflectance index in mangrove communities [62]. Stable litter decomposing
communities were also found in mangroves to withstand the environmental changes and
disturbances [63]. Therefore, mangroves have better resistance to the S. alterniflora invasion
in the slight change of soil sulfur.

4.2. Invasive Plant Biomass Promotes Soil Nutrient Contents, Changes Physicochemical Properties,
and Increases Soil S Contents

The results showed that the invasion of S. alterniflora stimulated the contents of soil
sulfur, including total sulfur, S2−, and SO4

2−, by 57.29%, 193.29%, and 4.50%, respectively
(Figure 6). All results of the meta-analysis support the conceptual framework (Figure 6),
which might be an illustration of the pivotal role of sulfur in the success of S. alterniflora
invasion. After the invasion of S. alterniflora, the distinct increase in aboveground biomass
and underground biomass (Figure 2) led to direct enhancement in net primary production
and decomposition of litters [64].

The residues of S. alterniflora may stimulate soil sulfur accumulation by supporting
more nutrients and abundant decomposers [14]. The growth of microorganisms is closely
related to carbon and nitrogen sources, and a low C/N is conducive to the reproduction of
microorganisms that might participate in the sulfur cycle [65,66]. More abundant available
resources generated from S. alterniflora support more decomposers (C/N raised by 7.06%
and soil microbial biomass carbon raised by 22.23%), promoting more plant-available
nutrients through faster nutrient cycling (soil organic carbon raised by 54.06%, total nitrogen
raised by 37.53%, and total phosphorus raised by 2.32%) [55]. In turn, more nutrients
stimulate the activity and reproduction of soil microbes, including those participating in the
sulfur cycle [27]. According to previous studies, the invasion of S. alterniflora changes the
abundance, composition, and community structure of sulfur-related bacterium, especially
SRB and SOB [32,38,51]. In addition, the increase in microbial activity further changes soil
physicochemical properties as well as plant biomass [67].

After S. alterniflora invasion, soil physical properties were changed, further affecting
the contents and distribution of sulfur (Figure 6) [68]. The slight decrease in soil pH
derived from organic acids secreted by root activities could lead to a higher proportion of
H2S among sulfide compounds (Figure 6), because pH could greatly affect the chemical
speciation of sulfide (H2S, HS−, and S2−) [19]. Although S. alterniflora could change
soil pH by organic acids and ammonium nitrogen assimilation, no significant change
in pH was found because of the exchange of substances between water and salt with
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frequent tides [52]. The woody mangroves invaded by S. alterniflora were mostly located
in Fujian and Guangdong provinces and were severely affected by acid rain, leading to a
soil pH between 6.52 and 7.63 [69]. In addition, the various buffering capacities of woody
communities and herbaceous communities result in the different directions of the response
in soil pH after S. alterniflora invasion (Figure 5d), which are correlated with soil clay,
texture, and organic matter [70].
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Bulk density can reflect the density of the solid soil matrix in its natural configuration,
which is strongly associated with a series of soil and hydrological processes [71]. With
the decrease in soil bulk density (Figure 2), sulfate could be vertically transferred into
deeper layers by improving the leaching capacity along the vertical direction, changing
the spatial distribution of sulfur. Furthermore, S. alterniflora can absorb salt from soil and
returned through salt-secreting glands [23], while salts can affect the decomposition and
mineralization rates of litter [72,73]. Therefore, the accumulation of salt by S. alterniflora
results in the retention of salt from the tide to the soil, indirectly leading to the increase of
soil sulfur [74]. At last, the positive impact on soil water content after S. alterniflora invasion
(Figure 6) affects sulfur content directly through the migration of soluble ions [75] and
indirectly by accelerating organism synthesis and litter decomposition [23]. The large leaf
area index, plant density, and biomass of S. alterniflora provide shade and reduce water loss
for soil [76,77]. Meanwhile, more organic matters introduced by S. alterniflora improve the
soil structure and colloid conditions, strengthening the capacity of adsorption and water
retention [49].

Numerous hypotheses explain the successful invasion with characteristics of the
invaders or the invaded ecosystems [78]. In this study, we focus on the invader S. alterniflora.
One of the invasion theories of S. alterniflora is allelopathy, e.g., reporting that the root
exudates of S. alterniflora inhibit offspring of S. mariqueter [79]. Our results suggest that
S. alterniflora might successfully invade by increasing the phytotoxic sulfide content in
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the soil, and the mechanism of sulfide increase might be closely related to other invasion
theories. Therefore, the important role of sulfur in the invasion of S. alterniflora needs to be
studied further.

5. Conclusions

Based on a meta-analysis and conceptual framework, the effects of S. alterniflora
invasion on soil sulfur were uncovered. The invasion of S. alterniflora significantly increased
the sulfur content with high plant biomass in direct ways. Enhancing ecosystem nutrient
pools, promoting abundant decomposers, and altering the soil physical properties also
indirectly increase the soil sulfur content. Although the response of soil sulfur content
after S. alterniflora invasion varied with seasons, invasion stages, soil depths, and native
communities, positive feedbacks were still found. Sulfide is phytotoxic to most plants
except for S. alterniflora; thus, the accumulation of soil sulfur after S. alterniflora invasion
might place native plants in danger, accelerating the process of invasion and community
succession. Overall, our findings indicate that the importance of soil sulfur in the successful
invasion of S. alterniflora needs more thorough studies in the future.
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www.mdpi.com/article/10.3390/w14101633/s1, Figure S1: (a) The screening process used in the
meta-analysis; (b) evidence on the response of soil sulfur content after S. alterniflora invasion was
synthesized in our database of researches published between 2012 and 2019.; Table S1: Basic informa-
tion including literature source, site location, native species, native species life form, temperature,
precipitation, sample years, and soil properties extracted from the articles used in the meta-analysis;
references for analysis.; Figure S2–S7: Funnel plots of the meta-analysis.
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