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Abstract: Deterministic flood hazard estimates neglect the inherent uncertainty associated with
model estimates and can substantially underestimate flood risk. Monte Carlo simulation (MCS) has
been a valuable tool for conducting uncertainty analysis. However, its application has primarily
been limited to a single research setting. Recent development of a point approximation method,
simplified uncertainty bounding (SUB), simulated the uncertainty from MCS with high accuracy
(e.g., a critical success index of 0.75). However, an evaluation of additional flood hazard metrics and
hydro-climate settings that impact the distribution of uncertainty is required. We evaluated SUB
at two contrasting study sites by comparing their results with MCS and identified scenarios where
performance increased and decreased. The SUB method accurately matched aerial inundation metrics,
but performance was reduced for relative errors in flood depth and top width. Hydraulic structures
had a heterogeneous impact on accuracy, and the confinement ratio had a positive relationship with
the top width error. While SUB generally performed well with relative errors of approximately
±10% for a 90% confidence interval, some outliers did exist. The acceptability of the approach will
depend on the specific application. Though SUB overestimated uncertainty, it provides a conservative
estimate and is a cost-effective alternative to MCS.

Keywords: flood modeling and inundation mapping; uncertainty analysis in flood hazard layer
development; fluvial flood hazard; probabilistic floodplain mapping

1. Introduction

As global flood losses continue to rise, evidence has emerged that highlights the poten-
tial impacts of uncertainty on flood risk estimates and the need to incorporate uncertainty
into floodplain management [1–4]. Despite a significant portion of flood insurance claims
occurring outside regulatory flood hazard boundaries [5,6], standard methods continue to
depict flood hazards as deterministic estimates that convey a precisely known outcome.
Considering the density of infrastructure and development patterns immediately adjacent
to deterministic flood hazard boundaries [7,8], quantifying the uncertainty in flood extent
could identify locations and assets with elevated flood risk.

Sources of uncertainty in model estimates of flood hazards are numerous and well
documented [9,10]. Monte Carlo simulation (MCS) is a useful tool to estimate uncertainty in
flood hazard estimates, but this methodology has primarily been limited to a single research
setting. Alternative methods to approximate uncertainty, such as first order approximation,
require knowledge of derived response functions that are difficult to determine for complex
hydraulic models. A cost-effective alternative to quantify uncertainty in flood hazards
estimates from hydraulic models could be a valuable tool in floodplain management.

Stephens and Bledsoe [3] introduced a potential method that matched the uncer-
tainty in inundation areas estimated from MCS with high accuracy. Their approach,
hereafter referred to as simplified uncertainty bounding (SUB), implemented systematic
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sampling and can be classified as a point estimation method. However, SUB requires
further testing of additional flood hazard metrics at locations with contrasting climates and
geomorphic settings.

Historic and projected increases in flood loss present a challenge for floodplain man-
agement and underscore the potential value in quantifying and transparently portraying
uncertainty in flood hazard estimates. While multiple methods exist for quantifying this
uncertainty, quantifying differences and influential factors among approaches that vary in
complexity is required to more clearly understand their limitations and increase applicabil-
ity across a broader audience.

This study seeks to determine how flood hazard uncertainty estimated by an alterna-
tive, cost-effective approach compares to MCS. It also seeks to identify factors, in addition to
model inputs and parameters, that influence uncertainty estimates. We conducted the MCS
and SUB of 1-dimensional hydraulics at multiple locations with contrasting climatic and
geomorphic settings. The SUB method was evaluated by quantifying errors in flood depth,
top width, and inundated area relative to MCS. Potential influences from factors in addition
to stochastic forcing, such as geomorphic and hydraulic metrics, were evaluated through
regression analysis with the error of SUB. Despite its cost-effectiveness, the application of
SUB in the literature is limited, and this is the first study that evaluates its performance
compared to MCS for regulatory floodplain models at contrasting settings.

Sections 1.1–1.3 provide a more detailed background on the uncertainty of flood hazard
estimates by 1-D hydraulic models, various methods for approximating that uncertainty,
and the influence of hydraulic geometry on uncertainty propagation. Section 2 describes the
study locations of this analysis, the hydraulic model implemented, methods for estimating
uncertainty in flood hazard estimates, and methods and metrics for evaluating factors that
influence uncertainty propagation. Section 3 presents the results, followed by a discussion
of those results in Section 4 and conclusions in Section 5.

1.1. Uncertainty in Hydraulic Model Results

Uncertainties in hydraulic modeling stem from a lack of knowledge and random
variability [11]. Random variability can typically be defined statistically, but knowledge
deficiencies may be difficult to quantify statistically due to changing characteristics in
time and space. The stochastic occurrence of flood events provides an example of random
variability, and the subjective assignment of friction parameters in hydraulic models to
represent roughness that is spatially and temporally variable is an example of uncertainty
from knowledge deficiencies. For practical purposes, uncertainties from knowledge defi-
ciencies are often treated as though they are random in nature, and transparency has been
suggested in assumptions about uncertainties in hydraulic modeling and their implications
for flood hazard estimates [12,13].

While flood hazard estimates contain numerous sources of uncertainty, discharge,
friction parameters, and topography have been consistently documented as the most
influential sources within a particular modeling scheme [10,14]. However, the model
structure or numerical scheme itself can be a significant source of uncertainty [15,16].

1.2. Approximation Methods

Numerous methods, such as MCS and first order approximation (FOA), have been
apply to quantify uncertainty in open channel flow conditions [17–20]. While MCS directly
quantifies the distribution of results through a large number of simulations, FOA provides
an approximation by estimating the mean and variance of results [21]. However, the
application of FOA requires limiting assumptions, such as near normal distributions of
uncertain inputs, linear models, and a relatively small coefficient of variations in uncertain
inputs [21], whereas other techniques such as MCS are computationally intensive. Other
uncertainty approximation techniques include point estimation methods, and they approx-
imate uncertainty by quantifying specific points of a result distribution [22]. Applications
of point estimation methods to flood hydraulics is lacking.
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MCS of a finite difference model was employed to obtain distributions of flow vari-
ables along a reach of the Columbia River based on a description of the spatiotemporal
uncertainty in model parameters derived from comprehensive field data [19]. The results of
that analysis indicated that the distribution of results was non-homogeneous in space and
time, and the relative impact of model parameters on flow variables differed. For instance,
velocity was most sensitive to cross-section geometry, whereas bed slope had the largest
impact on flow depth. Numerous other applications have implemented MCS in various
frameworks to evaluate uncertainty in hydraulic model estimates [1,23–32].

Less computationally intensive approaches have implemented FOA with Manning’s
equation to probabilistically describe flow variables as a result of parameter uncertainty [17,18].
These studies considered friction slope and roughness as the predominant sources of
uncertainty, but they did not evaluate the uncertainty from FOA against other estimation
techniques such as MCS. However, applications with water quality models have shown
that FOA can provide satisfactory estimates for the central tendency of a distribution when
compared against MCS, but the results between the two approaches diverged in the tails of
the distribution [33]. For non-linear systems, FOA becomes less accurate as the parameter
values depart from their mean [34].

Tyagi and Haan [20] developed a method to correct FOA errors for power function
models, and they documented the magnitude of errors for various model exponents. They
show that FOA errors increase with increasing uncertainty in model inputs and increasing
non-linearity in model structure. However, the application of this approach to standard
hydraulic models may not be viable due to the complexity of the model structure. For
example, Tyagi and Haan [20] provided an example using Manning’s equation, but common
hydraulic models implemented to delineate flood hazards tend to become more numerically
complex as the space–time dimensions of the model domain increase in complexity. The
authors noted that, in more complex models, MCS may provide a more practical approach
and that it is difficult to predict the error based on input and parameter distributions alone
due to the complex functional form of hydraulic models.

An application of FOA with HEC-RAS to estimate parameter uncertainty propagation
exemplifies the complications of FOA when the mathematical response function is difficult
to deduce a priori [29]. In that particular example, MCS was used to quantify the response
function and evaluate the relationship between inundation and topography, discharge, and
friction parameter uncertainty. Their analysis revealed a complex relationship in inundation
uncertainty between topography, discharge, and friction parameters. Further, the nature of
this relationship varied among two reaches with different valley types.

The SUB method is a point estimation technique that requires a reduced number of
model simulations based on a systematic sampling of uncertain model inputs and parame-
ters. It has been shown to approximate the range of uncertainty in the inundation extents
derived from MCS with a high degree of accuracy, providing an attractive alternative [3].
However, the method has only been tested at a single location, and its transferability to
other sites is unknown due to variability in factors that might influence the performance
of the approach. For instance, spatial variance in flood hazard uncertainty suggested that
a local valley form might impact uncertainty distributions. Further, performance was
evaluated based solely on the accuracy of inundated area. Discrepancies in water surface
elevation or flood depth might also be important and not represented by measures of fit
based on inundated area.

1.3. Influence of Hydraulic Geometry

The Saint-Venant equations for a gradually varied, unsteady 1-dimensional (x-direction)
open channel flow can be expressed through the conservation of mass as [35]

∂(AV)

∂x
+

∂A
∂t

− q = 0 (1)
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and the conservation of linear momentum can be expressed as

∂V
∂t

+ V
∂V
∂x

+ g
(

∂h
∂x

− S0 + S f

)
= 0 (2)

where A is the cross-sectional area, V is the velocity, t is the time, x is the longitudinal
distance along the channel, q is the lateral inflow or outflow, h is the flow depth, S0 is the
channel bed slope, Sf is the friction slope, and g is the acceleration due to gravity. The friction
slope is typically solved by an empirical roughness relation such as Manning’s equation:

S f =
u2n2

R4/3 (3)

where n is Manning’s roughness coefficient, and R is the hydraulic radius. Equations (1) and (2)
contain three independent variables: x, t, and S0; they contain two dependent variables: h and
V. Area and friction slope are functions of flow depth. For irregular channels, empirically
derived power functions can define the relationship between hydraulic geometry parameters
(e.g., area and hydraulic radius) and flow depth, for example [36],

A = ahb + εA (4)

where a and b are cross-sectionally unique parameters of the power function, and εA repre-
sents an error term. Thus, the solution to depth and velocity will be partially dependent
on the relationship between depth and hydraulic geometry parameters, which can vary
in space along a reach. Further, Equation (2) highlights the fact that the solution is also
partially dependent on adjacent hydraulic controls, such as expansions or contractions that
might be a result of bridges, a valley form, etc.

Longitudinal variability in hydraulic geometry parameters will result in longitudinally
varying sensitivity of uncertainty depending on the metric in question. Consequently, the
error in uncertainty approximation methods is expected to differ as a result of varying
sensitivities. For instance, the rate of change in water surface elevation corresponding to a
unit change of inputs and parameters will be different for a v-shaped valley compared to
a u-shaped valley, and the resulting change in flow depth versus inundated area will be
different among the two locations.

While this relationship can be shown conceptually using the governing equations of
fluid dynamics, it is difficult to evaluate analytically for practical applications due to com-
plex hydraulic interactions between downstream/upstream boundary conditions, friction
parameters, and local topography. Therefore, numerical modeling experiments present an
attractive approach to evaluate the performance of approximate methods for uncertainty
analysis. The intention here is not to fully identify the causal mechanisms describing
errors in uncertainty approximation methods. Rather, we have provided this conceptual
illustration to guide the selection of commonly computed hydraulic variables that might
correlate with the relative magnitude of errors and indicate scenarios of reduced accuracy.

2. Materials and Methods
2.1. Study Sites

Bronx Wash, Tucson, AZ, USA, and Proctor Creek, Atlanta, GA, USA, served as study
sites to evaluate SUB against MCS and investigate factors that might increase/decrease
its accuracy (Figure 1). Conducting model experiments with study sites provided an
advantage over hypothetical channel geometries by including complexities of urban en-
vironments, such as a heterogeneous topography, in-stream structures (e.g., bridges and
culverts), and their simultaneous impacts on hydraulics. The two study sites were selected
based on fundamental differences in the climate, hydrologic regime, urban watershed
structure, geomorphic context, and socio-political environment to account for a wide range
of influences on uncertainty distributions. However, both watersheds are highly urban
(Table 1).



Water 2022, 14, 1618 5 of 21

Water 2022, 14, x FOR PEER REVIEW 5 of 22 
 

 

selected based on fundamental differences in the climate, hydrologic regime, urban wa-
tershed structure, geomorphic context, and socio-political environment to account for a 
wide range of influences on uncertainty distributions. However, both watersheds are highly 
urban (Table 1). 

Bronx Wash is characterized by a semi-arid climate receiving 300 mm of rain annu-
ally. Precipitation is bimodal with approximately half the annual precipitation occurring 
during the summer months as monsoonal rainfall characterized by short-duration, high-
intensity events with high spatial heterogeneity. Winter events tend to have longer dura-
tion, lower intensities, and larger spatial extents. Proctor Creek experiences a similar bi-
modal pattern; however, it is characterized by a humid subtropical climate receiving ap-
proximately 1195 mm of rainfall annually. Mixed deciduous forest and vegetated open 
space typically characterize undeveloped portions of Proctor Creek. Undeveloped areas 
of Bronx Wash predominantly consist of herbaceous patches and bare soil. This results in 
higher fractions of rainfall to runoff and a decreased lag to peak time compared to Proctor 
Creek. Consequently, the uncertainty in model inputs and parameters for each site are 
different (Table 2). 

 
Figure 1. Model study sites: (a) Proctor Creek, Atlanta, GA, USA; (b) Bronx Wash, Tucson, AZ, USA. 

Table 1. Study site characteristics. 

 Drainage Area 
(km2) 

Mean Basin 
Slope (%) 

% Imperviousness % Developed 

Bronx Wash 3.2 1.89 46 100 
Proctor Creek 42 9.76 35 84 

  

Figure 1. Model study sites: (a) Proctor Creek, Atlanta, GA, USA; (b) Bronx Wash, Tucson, AZ, USA.

Table 1. Study site characteristics.

Drainage Area
(km2)

Mean Basin
Slope (%) % Imperviousness % Developed

Bronx Wash 3.2 1.89 46 100
Proctor Creek 42 9.76 35 84

Bronx Wash is characterized by a semi-arid climate receiving 300 mm of rain annually.
Precipitation is bimodal with approximately half the annual precipitation occurring during
the summer months as monsoonal rainfall characterized by short-duration, high-intensity
events with high spatial heterogeneity. Winter events tend to have longer duration, lower
intensities, and larger spatial extents. Proctor Creek experiences a similar bimodal pat-
tern; however, it is characterized by a humid subtropical climate receiving approximately
1195 mm of rainfall annually. Mixed deciduous forest and vegetated open space typically
characterize undeveloped portions of Proctor Creek. Undeveloped areas of Bronx Wash
predominantly consist of herbaceous patches and bare soil. This results in higher frac-
tions of rainfall to runoff and a decreased lag to peak time compared to Proctor Creek.
Consequently, the uncertainty in model inputs and parameters for each site are different
(Table 2).

2.2. Hydraulic Model

Model simulations of flood hydraulics were conducted with the Hydrologic Engineer-
ing Center’s River Analysis System 5.0.7 (HEC-RAS). HEC-RAS is capable of simulating
steady and unsteady flows and 1-D and 2-D hydraulics. Considering sources of uncertainty
in addition to flood magnitude, such as channel change and land use, greatly increases the
complexity and computational demand of conducting MCS in a 2-D analysis compared to
1-D. Therefore, we conducted a steady, 1-D flow analysis to provide a cost-effective method
of simulating uncertainty in land use and channel change with MCS.
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Table 2. Sample parameterization for MCS.

Bronx Wash Distribution µ σ

Flood quantile 0.99 (cms) Lognormal 16.9 4.6
Flood quantile 0.98 (cms) Lognormal 13.2 3.7

Manning’s n-value (channel) Lognormal 0.017–0.035 0.09–0.12
Manning’s n-value

(floodplain) Lognormal 0.025–0.055 0.11–0.15

Channel change (m) Normal 0 0.61
Proctor Creek

Flood quantile 0.99 (cms) Lognormal 221.8 33.3
Flood quantile 0.98 (cms) Lognormal 189.4 23.9

Manning’s n-value (channel) Lognormal 0.04–0.065 0.13–0.15
Manning’s n-value

(floodplain) Lognormal 0.07–0.11 0.16–0.18

Channel change (m) Normal 0 0.09

HEC-RAS solves the energy equation using the standard step method in a 1-D steady
flow analysis (Equation (5)).

Z2 + Y2 +
α2V2

2

2g
= Z1 + Y1 +

α1V1
2

2g
+ he (5)

where Subscripts 1 and 2 identify upstream and downstream cross sections, respectively,
Z is the elevation of the channel thalweg, Y is the water surface elevation, V is the cross-
sectional average velocity, α is a weighting coefficient, g is gravitational acceleration, and he
is the energy loss between Cross Sections 1 and 2. The specific energy at a cross section is
calculated as

E = Z + Y +
αV2

2g
(6)

The energy loss, he, is a function of the distance between the two cross sections,
the expansion and contraction loss parameters, and the friction slope between the two
cross-sections, Sf:

S f =

[
Q
K

]2
(7)

K =
1
n

AR2/3 (8)

where Q is the volumetric water discharge, K is conveyance to allow subdivision of
cross-sections, n is Manning’s roughness coefficient, A is the flow area, and R is the
hydraulic radius.

The implemented models were based on regulatory floodplain models, which were
developed, calibrated, and approved by professional engineers to regulate floodplain
development. The regulatory floodplain model at Proctor Creek was developed in a recent
version of HEC-RAS (5.0.4). Therefore, the existing calibration was assumed to be adequate,
and its parameters were taken as the mean condition in MCS. The regulatory model at Bronx
Wash was developed in HEC-2, the precursor to HEC-RAS. Therefore, it was converted to
HEC-RAS and calibrated to observed water depths during the summer monsoon season of
2017. Calibration at Bronx Wash matched observations within 0.06 m and was achieved by
adjusting channel n-values and expansion/contraction coefficients.

2.3. Monte Carlo Simulations

MCS was conducted according the probabilistic floodplain mapping framework of [3],
and 1000 simulations achieved statistical convergence. For each simulation, latin-hypercube
sampling populated a parameter set of discharge, channel and floodplain roughness values,
and channel bed elevation. The MCS generated 1000 different flood scenarios each with a
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unique water surface. Each water surface was compared with a 1 m digital elevation model
(dem) to delineate 1000 unique inundation areas, which quantified the spatial distribution
of inundation probability for a flood of a specified occurrence likelihood, such as the 1%
AEP flood (Figure 2). The non-exceedance inundation probability for a particular location
or pixel on a floodplain was determined by

Pi,Q = 1 − 1
n

n

∑
j=1

fi,j (9)

where i indicates the pixel or location on the floodplain, Q denotes the flood of specified
occurrence probability, n is the number of simulations, and fi,j is the inundation status
(1 = wet, 0 = dry) at a pixel for simulation j of n.
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estimates using MCS and the SUB method.

The Hydrologic Engineering Center’s Statistical Software Package (HEC-SSP) quan-
tified uncertainty in discharge at Proctor Creek by estimating the magnitude–frequency
relationship with a Log-Pearson III distribution and annual peak flood observations at the
United States Geological Survey stream gage 02336526 from 1961 to 2018; however, gaps
in the observational record reduced the number of annual peak flood observations to 25,
increasing the standard deviation in quantile estimates. A regional flood regression equa-
tion determined the magnitude–frequency relationship at Bronx Wash, since stream gage
observations did not exist in the watershed [37]. A two-parameter log-normal distribution
defined uncertainty in discharge quantile estimates such that the HEC-SSP quantified the
standard deviation at Proctor Creek, and the standard error of prediction in the regional
regression equation defined the standard deviation at Bronx Wash.

Performance of SUB and factors impacting differences between the two approaches
were evaluated for two separate flood frequencies, the 1% and 2% annual exceedance
probability (AEP) flood (100-year and 50-year flood). These frequencies were selected
because they are both socially and practically relevant in terms of floodplain management
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and infrastructure design but evaluate performance for two separate points along the flood
magnitude–frequency curve.

The existing Manning’s n-values in the calibrated regulatory model quantified the
mean roughness values. The distribution was assumed to follow a two-parameter lognor-
mal distribution [32,38], and Equation (10) from Burnham and Davis [38] quantifies the
standard deviation:

σ = Nr ∗ (0.582 + 0.1 ∗ ln(n)) (10)

where Nr is a reliability constant ranging from 0 to 1 based on the confidence in the
estimated Manning’s n-value (0 = perfect confidence, 0.5 = moderate confidence). A value
of 0.5 was used to represent moderate confidence in this analysis. From this approach, a
unique mean and standard deviation described each prescription of Manning’s n-value
within a cross section.

Evaluation of manual field measures at the USGS stream gage 02336526 quantified
uncertainty in the channel bed elevation at Proctor Creek [3,39]. Historic measurements of
channel bed elevation change at two adjacent rivers were used to bracket the response of
channel change at Bronx Wash [40,41]. A normal distribution described channel change,
which was simulated by uniformly adjusting the channel bed up or down depending on
the sampled parameter set. Sections of the channel at Bronx Wash are composed of concrete.
Degradation was not simulated at these locations; however, aggradation was simulated.
In other locations, Bronx Wash is characterized by a sand bed channel with a high stream
response potential due to channel resistance relative to the magnitude and frequency
of expected flows. As such, an increased mean and standard deviation described the
distribution of channel change at Bronx Wash compared to Proctor Creek, since the channel
at Proctor Creek is characterized by a mixed sand and gravel bed with vegetated banks.
However, the anthropogenic impacts on cross-sectional shape, planform, and floodplain
topography are evident at both locations, as is typical of many urban stream corridors.

2.4. The Simplified Point Approach

We developed the novel SUB method as an alternative to MCS for estimating uncer-
tainty in flood hazard estimates. It involves conducting deterministic model simulations
where select quantiles of the model input and parameter distributions are systematically
sampled. For instance, a 90% confidence interval on inundation extents from SUB would
be generated by running two deterministic simulations that implemented the 5th and 95th
percentile of each model input and parameter distribution (Figure 2). Thus, one could
evaluate a desired range of uncertainty by conducting two deterministic model simulations
that bracket an upper and lower bound based on quantified distributions of model inputs
and parameters.

2.5. Evaluation Metrics

The uncertainty in flood hazard estimates derived from MCS served as a reference
to evaluate the accuracy of SUB by comparing flood area, depth, and width. To make
this comparison, systematically sampled quantiles of the SUB method were compared
against equal quantiles of non-exceedance probabilities from MCS results. For example, the
inundation area from a systematic sample of the 5th percentile of the input distributions
in the SUB method was compared against the flood area that was not exceeded in 5% of
the MCS.

The critical success index (CSI) (Equation (11)) was used to evaluate the inundation
area. The CSI is commonly used to evaluate the performance of a simulation relative to
a validation area that is effective in floodplain mapping when the focus is on the spatial
distribution of flood extents [42,43].

CSI =
A

A + B + C
(11)
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where A = Hit—a validation area correctly identified as inundated by the simplified
approach; B = False alarm—an incorrectly identified inundated area by the simplified
approach outside the validation area; C = Miss—a validation area identified as dry by the
simplified approach. In addition to the CSI, total inundated area estimated by SUB and
MCS were compared as a ratio (i.e., SUB inundated area divided by MCS inundated area).

Relative error normalizes the difference between an estimate and an exact value by
the exact value. While the CSI provides a measure of aerial accuracy, differences in the
relative error of flood depth and top width provide a measure that is directly relatable to
acceptable or inacceptable levels of error in additional flood hazard metrics (e.g., ±10%
in depth). Consequently, the relative error in flood depth and top width at model cross
sections were also compared between the two approaches. The hydraulic depth in the
channel of MCS quantiles normalized absolute depth errors, while the top width of MCS
quantiles normalized the absolute width error. Quantifying depth, width, and area provide
a comparison of different hazard types (i.e., extent and intensity), which is important
for determining where their uncertainty distributions might be inversely related due to
valley shape.

2.6. Impact of Hydraulic Structures

The impact of hydraulic structures on the performance of SUB was evaluated by
removing structures from the model and re-analyzing the performance of SUB. Errors with
and without structures provided a means to isolate their impact. The absolute value of
relative errors for simulations with structures were subtracted from the absolute value
of simulations without structures. In this case, positive values indicated that structures
increase error, and negative values indicated that structures decrease error (i.e., more closely
match MCS results). A significant portion of Bronx Wash flows through a culvert under a
parking lot, and removing this structure from the model would not provide a meaningful
comparison. The hydraulic structures at Proctor Creek primarily consist of bridges and
roadway culverts of relatively short length. Therefore, the impact of hydraulic structures
was only investigated at Proctor Creek.

2.7. Correlation Metrics

The performance of SUB might vary due to differences in input and parameter distri-
butions; however, physical characteristics that control the rate of hydraulic response might
also impact its performance. We used ordinary least squares regression to evaluate the
correlation between multiple physical and hydraulic covariates with SUB errors. Covariates
were selected based on their ability to describe morphometric or hydraulic attributes that
might influence the sensitivity of uncertainty, including confinement ratio, friction slope,
and Froude number.

Confinement ratio was calculated as the ratio of the 100-year floodplain width to
the 2-year floodplain width and served as a metric to characterize valley shape. A lower
value of this metric describes a narrower, confined valley, while higher values represent
valleys with wider floodplains relative to channel width. In confined valleys, we anticipate
that flood depth will exhibit greater sensitivity to changing inputs and parameters and
therefore greater error in SUB; in less confined valleys, we anticipate a greater sensitivity of
flood width.

Friction slope served as a hydraulic metric to describe the impacts of various physical
characteristics and their interacting effects on hydraulics, such as changes in bed slope,
valley constrictions, and spatially varying roughness coefficients. These characteristics can
have a substantial impact on the flow but are difficult to isolate, and friction slope reflects
these impacts.

The Froude number quantifies the ratio of gravitational forces to inertial forces, indi-
cating a departure from the minimum specific energy and subcritical versus supercritical
flow conditions. It was selected as a covariate because the rate of change in water surface
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elevation relative to specific energy varies with the departure from critical flow conditions
and the minimum specific energy.

Ordinary least squares regression in the R statistical program was used to quantify the
relationship between covariates and SUB errors. In some instances, natural log-transformed
values served as a more appropriate model, which was determined based on visual inspec-
tion and the quantitative range of the variables in question. Regression diagnostics were
evaluated based on the coefficient magnitude, p-value, and visual inspection [44]. Further,
Spearman’s ρ provided a non-parametric evaluation, resistant to outliers, of the monotonic
relationship between the SUB error and the co-variates [44]. Error at individual quantiles
constituted the sample population in the regression analysis, and the unique covariates for
each sample were based on the results of SUB.

3. Results
3.1. Inundated Area

The 90% confidence intervals in inundation extents estimated by SUB generally agreed
with MCS (Figure 3). However, the accuracy of the SUB method was spatially variable.
Noticeable deviations occurred in certain locations, while the results appeared identical to
MCS in other locations. Deviations at the 95% quantile tend to overestimate the results of
MCS, and they tend to underestimate the results of MCS at the 5% quantile, presenting a
more precautionary estimate of uncertainty and flood risk.
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Figure 3. 90% confidence intervals (CI) of flood inundation estimated by MCS and the SUB for
(a) the 1% AEP flood at Proctor Creek, (b) the 2% AEP flood at Proctor Creek, (c) the 1% AEP
probability flood at Bronx Wash, and (d) the 2% AEP flood at Bronx Wash. The 90% CI indicate areas
that have a 5–95% chance of being inundated by the flood with a specific AEP.
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The spatial patterns of inundation among the 1% and 2% AEP flood magnitudes
appeared similar, but the uncertainty appeared greater for the 1% AEP flood compared to
the 2% AEP for both Proctor Creek and Bronx Wash. Additionally, differences in inundation
extent accuracy emerged between the two flood magnitudes. For instance, SUB of the
2% AEP flood at Bronx Wash deviated from MCS to a greater extent along the southeast
inundation boundary compared to the 1% AEP (Figure 3c,d). Thus, the performance of
SUB varies spatially and among different flood magnitudes.

The CSI and percentage of inundated area indicate that SUB simulates the mean
condition with high accuracy, but performance declines with increasing distance from the
mean (Figure 4). Performance appeared to be worse at the lowest quantiles (less than
0.05). Despite this relationship, the CSI was greater than 80% for all quantiles exceeding
0.1 at Proctor Creek and greater than 70% for all quantiles exceeding 0.05 at Bronx Wash.
Lower quantiles resulted in an underestimation of inundated area, and higher quantiles
resulted in an overestimation of inundated area. This general error pattern overestimates
the uncertainty quantified by MCS, supporting observations in Figure 3.
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Figure 4. (a) Critical success index comparing SUB against MCS for each reach and flood frequency
and (b) the ratio of inundated area estimated by SUB relative to MCS. McMullen Creek from Stephens
and Bledsoe [3].

For comparison, we included the results of Stephens and Bledsoe [3] at McMullen
Creek, Charlotte, NC. Performance was improved at Proctor Creek and McMullen Creek
compared to Bronx Wash, which is likely due in part to the reduced variance in model
input and parameter uncertainty compared to Bronx Wash. In general, performance
among flood frequencies at each reach was similar with the exception of a minor deviation
around the 0.8–0.95 quantile at Bronx Wash. This result contrasts the spatial variation
observed in Figure 3, suggesting that spatial patterns in error shift with discharge so that
performance is similar among flood magnitudes; however, spatial variation in performance
occurs due to variations in local channel and floodplain characteristics that propagate
uncertainty differently.

3.2. Relative Error in Depth and Top Width

Relative depth errors in SUB varied among quantiles and locations (Figure 5). Similar
to the CSI, quantiles closest to the median generally resulted in the least amount of error for
Proctor Creek. However, a larger number of points close to the median quantile deviated
from the error of 0 at Bronx Wash, which supports its reduced CSI at the median quantile
compared to Proctor Creek. Errors at individual stations matched the overall patterns
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depicted by the CSI at Proctor Creek. Higher quantiles tended to overestimate depth,
and lower quantiles tended to underestimate depth. Error patterns among the two flood
magnitudes were similar for Proctor Creek and Bronx Wash.
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Figure 5. Relative depth errors in SUB relative to MCS for (a) the 1% AEP flood at Proctor Creek,
(b) the 2% AEP flood at Proctor Creek, (c) the 1% AEP probability flood at Bronx Wash, and (d) the
2% AEP flood at Bronx Wash. Vertical gray lines indicate hydraulic structure locations.

With a few exceptions, relative errors of less than ±0.2 generally characterized high
quantiles, and quantiles around 80–90% tended to approximate MCS with a relative error of
less than ±0.1. Based on these results, SUB could estimate the upper 90% confidence limit
of depth with a relative error of approximately 0.1. Some locations would have smaller
errors, and a few outliers would have larger errors. Lower quantiles, especially those
below 5%, generated the largest error magnitudes at Proctor Creek, as evidenced by the
proportion of points exceeding a relative error of ±0.2. However, the error among stations
exhibited much more variability at Bronx Wash, and a clear relationship between relative
error and quantiles was not visible.

Negative values described the relative depth errors for stations greater than 2 km at
Bronx Wash. That section of the wash has a concrete channel boundary, and the error is
likely influenced by lower n-values and a truncated channel change distribution that did
not simulate degradation. Relative depth errors at Bronx Wash tended to be greater than
Proctor Creek, and several outliers elevate the relative depth error to more than ±0.4.

A rapid decline in relative depth error located near the 6 km station at Proctor Creek
appeared to coincide with a structure location, as indicated by the vertical gray lines,
suggesting that the structure imposes a hydraulic control and impacts the accuracy of
SUB. A similar pattern where relative errors decrease appears at other structure locations.
However, an obvious relationship between relative depth error was difficult to decipher
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at all structure locations due to their abundant presence. A relationship between relative
depth error and structure locations did not readily present itself at Bronx Wash.

The relative top width error of the simplified approach exhibited patterns similar to
those of the relative depth error; however, many more outliers exist (Figure 6). Bronx Wash
exhibited larger magnitudes of relative depth error, and Proctor Creek exhibited larger
magnitudes of relative top width error. Larger quantiles generally resulted in relative
top width outliers at Proctor Creek, but low and high quantiles resulted in relative top
width error outliers at Bronx Wash. According to Figure 6, the simplified approach can
be expected to result in a relative error in top width of approximately 0.1–0.2, with the
exception of some outliers that might be higher or lower. More extreme outliers existed at
high quantiles, with rare instances of elevated relative top width errors ranging from 1 to
nearly 4. However, outliers at low quantiles did not exceed 1.
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and (d) the 2% AEP flood at Bronx Wash. Vertical gray lines indicate hydraulic structure locations.

While relative errors provide a dimensionless evaluation that is comparable among
locations, absolute error magnitudes aid in evaluating SUB. Even though a greater variance
in relative depth error occurred at Bronx Wash, greater variance existed in the absolute
magnitude of depth error at Proctor Creek (Figure 7). However, the distribution of top
width error was nearly identical among locations, with the exception of large positive errors
occurring above the 95% quantile. Significant differences in the distribution of absolute
error among flow magnitudes did not exist at either location. The cumulative distribution
of absolute errors highlights the general accuracy that can be expected by SUB. For example,
SUB could generally be expected to approximate the upper or lower 90% confidence limits
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of inundation width with ±20 m accuracy, noting the exception of some outliers that would
have larger errors.
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3.3. Hydraulic Structures

Hydraulic structures had a heterogeneous impact on relative error at Proctor Creek
(Figure 8). Negative values in Figure 8 indicated instances where structures reduced
error, and positive values indicate instances where structures increased error in SUB. The
impact of structures varied among quantiles, flow magnitudes, and stations. However, it is
important to note that the impact of hydraulic structures on the accuracy of SUB propagated
upstream and downstream, but the impact diminished with increasing distance from the
structure. Structures tended to increase the relative depth error for lower quantiles of the
2% AEP flood at Proctor Creek and decreased error for higher quantiles. Thresholds might
exist at structures or topographic transitions where hydraulic conditions change rapidly
with increasing/decreasing water levels. For instance, a bridge may reduce errors by
constricting flow and partially controlling the maximum flow rate on the downstream side
of the bridge once water levels reach the bottom of the bridge deck but before overtopping
occurs. However, the impact of hydraulic structures on the accuracy of SUB was neither
negligible nor straightforward.

3.4. Correlation Metrics

The ability to predict where SUB errors might influence uncertainty analyses could aid
in the inference of results or in determining its applicability. We evaluated three hydraulic
metrics across 21 quantiles and two AEPs at each site to identify variables that might
predict an increase or decrease in depth or top width errors from SUB. This resulted in
a total of 126 correlation plots. For organizational purposes, regression diagnostics are
available in the Supplementary Materials. Here, we summarize the general findings from
the regression and trend analysis and highlight the significance of each metric to predict
error magnitudes of SUB (Tables 3 and 4). Tables 3 and 4 provide a qualitative description.
The following paragraphs provide a more quantitative summary of the analysis.
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Table 3. General trends between top width errors in SUB and physical and hydraulic metrics.
(+) indicates a positive trend, (−) indicates a negative trend, and (0) indicates no apparent trend.

Predictor
Proctor Creek Bronx Wash

1% AEP 2% AEP 1% AEP 2% AEP

Confinement
Ratio + + + +

Froude Number − − 0 0
Friction Slope − 0 0 0

Table 4. General trends between depth errors in SUB and physical and hydraulic metrics. (+) indicates
a positive trend, (−) indicates a negative trend, and (0) indicates no apparent trend.

Predictor
Proctor Creek Q Bronx Wash

1% AEP 2% AEP 1% AEP 2% AEP

Confinement
Ratio 0 0 0 0

Froude Number 0 0 0 0
Friction Slope − − + +

Overall, a positive relationship was identified between the top width error and the
confinement ratio. OLS regression and Spearman’s ρ indicated a statistically significant
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increase in top width error with an increasing confinement ratio at the 5% significance
level. This means that, as the valley width increases relative to channel size, errors in the
uncertainty of inundation width will increase. The SUB method provides a more accurate
prediction of top width uncertainty where confinement is greater. The rate of change in top
width with water surface elevation will typically be greater in the valley bottom compared
to the valley walls. Consequently, a larger valley bottom provides a larger area for errors
in top width to propagate at a faster rate compared to more confined valleys where top
width error is reduced, because the inundation extents reach the valley walls at lower
flood depths. Further, the floodplain is often characterized by higher roughness values
with greater variance compared to the channel. An increased portion of flow in areas with
higher roughness variance will inevitably impact the error of the simple approach.

At Proctor Creek, top width error generally decreased as the Froude number increased;
however, the trend was not significant at a 5% significance level for quantiles greater than
70%. A decreasing but insignificant trend was also identified for quantiles less than 50%
at Bronx Wash. Above the median, the slope of the trend and correlation coefficient was
insignificant and varied among quantiles. A decrease in top width error with an increasing
Froude number would suggest that, as the water surface approaches a critical flow depth,
the sensitivity of uncertainty to changes in inputs and parameters decreases.

Similar to the Froude number, top width error generally decreased as friction slope
increased at Proctor Creek. Trends were statistically significant according to OLS regression
and Spearman’s ρ for all quantiles less than 95%. Additionally, the magnitude of the trend
slope generally decreased with increasing quantiles, indicating the diminishing correlation
between friction slope and top width error with increasing top width. However, at Bronx
Wash, trend slopes were not statistically different from 0, and an apparent trend was
not discernable.

Linear regression and Spearman’s ρ did not indicate a correlation between depth
error and confinement ratio at Proctor Creek. At Bronx Wash, Spearman’s ρ identified
a statistically significant negative trend at 8 of 21 quantiles for the 1% AEP. All trend
slopes above the 30% quantile were negative, and all trend slopes below the 30% quantile
were positive. However, the OLS regression did not support this finding as most trend
slopes were insignificant and nearly 0. Visual inspection did not reveal an apparent
trend. Consequently, confinement ratio did not appear to be correlated with depth errors.
Similarly, trend slopes between the Froude number and the depth error were nearly 0 and
insignificant, indicating that the Froude number was a poor predictor of depth errors.

A predominantly statistically insignificant but negative trend was identified between
friction slope and depth error at Proctor Creek. Trend slopes were statistically significant at
less than half of the quantiles, and with the exception of one quantile, all trend slopes were
negative according to OLS regression and Spearman’s ρ. In contrast, trend slopes between
friction slope and depth error were predominantly positive at Bronx Wash with a large
majority of the trends identified as statistically insignificant.

4. Discussion

The accuracy of SUB in simulating the uncertainty estimated by MCS was variable
among the analyzed stream reaches, model cross sections, quantiles, and flood frequencies.
Spatial variation in the accuracy of the SUB method is supported by the findings of an
FOA analysis at two reaches with different valley shapes [29]. In that analysis, uncertainty
was more sensitive to different parameters and propagated differently among reaches with
a V-shaped valley and a U-shaped valley. These findings indicate that changes in valley
shape and local characteristics that influence model parameterization impact the sensitivity
to uncertainty and thus the accuracy of SUB.

The SUB method performed relatively well with the exception of some outliers. Rela-
tive errors identified in our analysis are slightly larger than an evaluation of relative error
in the uncertainty of levee flow capacity with FOA [20]. They found a relative error of
0.02 and 0.04 in the mean and standard deviation, respectively. Considering that 1-standard
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deviation would relate to an upper quantile of 84% for SUB, relative depth errors were
generally less than 0.1 at this quantile but variable among stations. Tyagi and Haan [20]
quantified relative error in discharge at a single cross section determined by a simplified
flow model, and they used different uncertain parameters compared to this analysis. Con-
sequently, an equal comparison of relative errors among studies is difficult. For instance,
there are stations in our analysis with relative errors smaller than those quantified by Tyagi
and Haan [20], but there were also stations with larger relative errors.

We were unable to identify studies that evaluated flood depth, top width, or inunda-
tion area with other point estimation techniques for comparison. However, similar to our
results, point estimation techniques were shown to perform adequately but slightly less
accurately than FOA methods when calculating the risk of culvert failure [45]. However,
there are contrasting results where point estimation techniques did not adequately match
the variance of flood hydrographs from MCS in a distributed rainfall–runoff model [46].
Differences in the performance of the SUB method among various flood hazard metrics
are similar to a study finding that flood peak and flood volume impacted uncertainty in a
hydrologic model differently [47].

The increased relative error at Bronx Wash compared to Proctor Creek is supported
by the results of an FOA analysis that shows increasing error with increasing variation in
model parameters [20], since model inputs and parameters at Bronx Wash are characterized
by higher variance compared to Proctor Creek. Further, decreasing accuracy of SUB with
increasing departure from the mean is similar to other studies that evaluate methods for
approximating uncertainty [34,48]. However, SUB is straightforward and provides an
attractive alternative to other approximation methods that are more complex or require
prior knowledge of response functions.

The SUB method generally provides a conservative estimate of uncertainty by over-
estimating flood hazards at higher quantiles and underestimating flood hazards at lower
quantiles. The consequences of overestimating uncertainty in inundation extents might
result in increased capital costs; however, the consequences of underestimating uncertainty
might result in flood loss or human endangerment [49].

The acceptability of the absolute error magnitudes from SUB will inevitably depend
on the specific application. The SUB method nonetheless provides a cost-effective approx-
imation when evaluating the degree of uncertainty. For instance, information gained by
SUB can inform investment decisions regarding data collection and analysis approaches. If
the uncertainty bounds from SUB are large, more complex approaches such as MCS might
be warranted, whereas more certain outcomes might not warrant the added investment.
However, it is important to consider that MCS is also an estimation technique that does not
provide a perfect quantification of uncertainty [20]. Although the distribution of results
obtained from MCS appeared to converge with fewer than 1000 simulations, it is possible
that more simulations could be required to adequately sample the extremes in the tails
of a distribution.

The lack of readily available data that directly quantify uncertainty distributions of
model inputs and parameters, such as channel capacity, presents a limitation for both the
SUB method and MCS in practical applications. However, this challenge can be overcome
by using regionally and locally available expertise and judgement to reasonably bracket
uncertainty distributions. Another limitation exists in the fact that there is uncertainty
in the functional distributions applied to estimate extreme values and uncertainty itself
(e.g., Log Pearson Type III or Generalized Extreme Values distributions).

Hydraulic structures had significant but heterogeneous impacts on SUB errors. How-
ever, the model structure could impact these results due to shifts in the numerical scheme,
when flow through a bridge or culvert becomes pressurized and transitions to overtopping.
Future studies may seek to perform similar analyses with additional models that utilize dif-
ferent numerical schemes at hydraulic structures. However, HEC-RAS is a widely accepted
and readily available 1-D hydraulic model for simulating flood hazards. The accuracy
of the numerical scheme to simulate actual flow conditions for a given set of inputs and
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parameterizations will dictate the overall level of impact. Despite this added level of uncer-
tainty, the variation in the results of simulations with and without structures highlights the
fact that structures present thresholds that can increase or decrease SUB errors.

While errors in SUB were spatially variable, the correlation results indicated scenarios
where errors are likely to be greater. This information can help guide application of the
approach and interpretation of the results. For example, unconfined flat floodplains will
likely result in conservative estimates of uncertainty, considering that top width errors
increased as the confinement ratio increased. Varying trends between depth and top width
errors with individual hydraulic metrics are supported by the findings of Gates and Al-
Zahrani [19]. They found that channel geometry had the smallest impact on flow depth
uncertainty compared to bed slope and discharge, but channel geometry had the largest
impact on flow velocity. The variation among trends highlights the complex relationship
between non-uniform topography and hydraulic conditions.

Evaluating additional metrics may provide further insight on unique features that
control uncertainty propagation, and it may enable quantitative adjustments to the SUB to
more accurately simulate the uncertainty estimated by MCS. For instance, we utilized the
confinement ratio to describe valley shape. However, this metric may fail to capture abrupt
topographic shifts, e.g., in a floodplain terrace, where the inundation extent drastically
increases beyond a threshold depth. Certain features may have a substantial impact on
flood extent uncertainty relative to a threshold depth. An analysis of larger river systems
would enhance the transferability of results and, given the likely increase in flood hazard
magnitude, may reveal an increase or decrease in the relative error of the SUB method
compared to MCS.

5. Conclusions

We quantified the uncertainty in inundation area, flood depth, and top width by
varying discharge, roughness coefficients, and channel bed elevation in the MCS of flood
hydraulics at two reaches with contrasting hydrologic and geomorphic settings. We also
quantified uncertainty with the novel SUB method by conducting model simulations based
on a systematic sampling scheme of uncertain inputs and parameters. The SUB method
was evaluated against MCS through the CSI, the percentage of inundated area, and the
relative errors in depth and top width. Further, we conducted regression and trend analysis
to identify apparent topographic and hydraulic parameters that might impact the accuracy
of SUB. The main conclusions drawn from this analysis are as follows:

1. The accuracy of SUB to estimate uncertainty from MCS was variable among reaches,
spatially within reaches, and across quantiles of the uncertainty distribution. However,
accuracy generally increased with decreasing deviation from the mean, and accuracy
decreased with increased variance in model inputs and parameters.

2. The CSI and percentage of inundated area indicated that SUB was highly accurate, but
the relative top width error indicated poorer performance, especially for some outliers.

3. Hydraulic structures can significantly impact the accuracy of SUB but in a non-
uniform manner. The direction of the error depends on the quantile and location. This
suggests that structures present thresholds in the sensitivity of hydraulic response to
uncertainty in model inputs and parameters.

4. Results of the regression and trend analysis indicated varying influences of hydraulic
and topographic metrics, highlighting the complexity of hydraulic processes. How-
ever, a positive relationship was consistently identified between the confinement ratio
and the top width error, indicating that SUB will overestimate uncertainty in flood
width for less confined floodplains. Consistent relationships with additional metrics
were not identified among stream reaches.

Overall, SUB performed reasonably well despite some outliers with increased error, but
it requires careful consideration of the effects of hydraulic structures and topographic com-
plexity on accuracy. Adequacy of SUB will ultimately depend on the application, but the re-
sults of this analysis can be used to inform anticipated error magnitudes and acceptability.
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The results of this analysis have described the accuracy of SUB at contrasting settings
and highlighted conditions that might reduce accuracy. However, additional research is
warranted to provide further insight on the impacts of a model’s numerical scheme at
hydraulic structures, additional metrics that may impact uncertainty propagation, and
transferability to larger river systems. Despite errors relative to MCS, SUB can provide a
valuable and cost-effective tool for uncertainty analysis, particularly where resources limit
the practicality of MCS. For instance, reducing the computational demands compared to
MCS provides accessibility to a larger number of practitioners. Certain applications might
require the implementation of more complex uncertainty analyses, but SUB can help inform
this decision. Regardless, these results underscore the high degree of inherent uncertainty
associated with predicting flood hazards from extreme events.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/w14101618/s1. Figures S1–S24 present ordinary least squares and
Spearman’s Rho trend and correlation significance between SUB errors and all analyzed covariates
for each annual exceedance probability simulated.
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