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Abstract: Regional flood frequency analysis (RFFA) is widely used to estimate design floods in
ungauged catchments. Both linear and non-linear methods are adopted in RFFA. The development
of the non-linear RFFA method Adaptive Neuro-fuzzy Inference System (ANFIS) using data from
181 gauged catchments in south-eastern Australia is presented in this study. Three different types
of ANFIS models, Fuzzy C-mean (FCM), Subtractive Clustering (SC), and Grid Partitioning (GP)
were adopted, and the results were compared with the Quantile Regression Technique (QRT). It was
found that FCM performs better (with relative error (RE) values in the range of 38–60%) than the SC
(RE of 44–69%) and GP (RE of 42–78%) models. The FCM performs better for smaller to medium
ARIs (2 to 20 years) (ARI of five years having the best performance), and in New South Wales, over
Victoria. In many aspects, the QRT and FCM models perform very similarly. These developed
RFFA models can be used in south-eastern Australia to derive more accurate flood quantiles. The
developed method can easily be adapted to other parts of Australia and other countries. The results
of this study will assist in updating the Australian Rainfall Runoff (national guide)-recommended
RFFA technique.

Keywords: ANFIS; flood; fuzzy logic; RFFA; ungauged catchments; Australian Rainfall and Runoff

1. Introduction

Floods often cause extensive damage and disruption to human life. Losses of life,
social impacts, homelessness, and financial loss such as property and infrastructure dam-
age are the most common impacts of large flood events. In recent years, devastating
floods in Europe, China, Australia, Iran, and other parts of the world have been linked to
climate change [1].

Hydrologists use a risk-based method in flood estimation; in this regard, the term
‘design flood’ is often used, which is defined as flood discharge associated with an annual
exceedance probability (AEP) or average recurrence interval (ARI) or return period. For
gauged catchments, at-site flood frequency analysis (FFA) is generally adopted to esti-
mate design floods. For ungauged catchments or for sites with poor quality/inadequate
streamflow data, regional flood frequency analysis (RFFA) is used. There have been nu-
merous research studies on both at-site FFA and RFFA around the globe, such as GIS-based
methods [2], region-of-influence (ROI)-based RFFA methods [3,4], RFFA using wavelet neu-
ral networks [5], index flood methods (IFM) [6,7], regression-based RFFA methods [8,9], arti-
ficial intelligence (AI)-based methods [10,11], random forest forming regions in RFFA [12,13],
L-moments based index flood methods [14,15], and Rational Method [16].

During the past two decades, many different forms of linear RFFA techniques have
been proposed such as IFM in south-east Australia [17]; USA [18]; UK [19]; in New South
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Wales (NSW), Australia [20]; in Canada [21]; and in Czech Republic [22] and Quantile
Regression Technique (QRT) in northern USA [23]; UK [24]; NSW [25]; and USA [26]. These
linear techniques cannot account for the inherent non-linearity in the rainfall-runoff process,
and hence several non-linear RFFA techniques have been proposed, including Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) [27,28], Artificial Neural Network (ANN) [29,30],
Support Vector Machine (SVM) [31,32], and Machine Learning Models (MLMS) [33].

ANFIS has been used to identify non-linear relationships between chaotic data [27].
For example, Bozchaloei and Vafakhah [34] applied ANN and ANFIS methods to study
flow duration curves at Namak Lake catchment in Iran using 21 years of data from
33 catchments and found that ANFIS had a better performance than other methods.
Riahi-Madvar et al. [35] studied streamflow prediction at Kuran River in Iran, where they
used different variations of ANFIS mixed with other methods such as Fire-Fly Algorithm
(FFA), Genetic Algorithm (GA), Grey Wolf Optimization (GWO), Particle Swarm Opti-
mization (PSO), and Differential Evolution (DE) hybridized and found that the ANFIS-
GWO outperformed other techniques. Sharifi Garmdareh et al. [36] used ANFIS, ANN,
and SVM models in RFFA at Namak Lake using data from 55 hydrometric stations with
20 years of flood discharge data, and found that ANFIS and SVM models outperformed
the ANN model.

Shu and Ouarda [37] studied the performance of the ANFIS model in Quebec, Canada,
using data from 151 gauging stations, and found ANFIS as a useful method in estimating
flood quantiles. Mukerji et al. [38] compared three models, including ANFIS, to predict
design floods at the Ajay River Basin in Jharkhand, India. They compared the relative per-
formance of ANN, ANGIS, and ANFIS techniques based on 20 rainfall-runoff events. They
demonstrated that the ANGIS model had the best performance, and in most cases, the AN-
FIS model outperformed the ANN model. Aziz et al. [39] used data from 452 catchments
to compare the performance of linear and non-linear RFFA techniques in south-east Aus-
tralia. In their study, the ANN was found to generate more accurate flood quantiles than
the Co-Active Neuro Fuzzy Inference System (CANFIS). Jimeno-Sáez et al. [40] applied
ANN and ANFIS to estimate peak flows using over 30 years of recorded flow data from
14 gauging stations in Spain. They found that the ANFIS model outperformed the ANN
model. Different variations and combinations of artificial intelligence (AI)-based models
were adopted in RFFA by many other researchers [41,42].

In some of these comparison studies, it can be seen that AI-based RFFA models
performed better than the common linear RFFA techniques. In this study, ANFIS is
selected over other AI-based methods as it is one of most widely used techniques in
hydrology [10,35] and performed better than other AI-based techniques as noted above.
Comparing the ANFIS model with the QRT model for eastern parts of Australia seems
to be necessary since there are very limited studies on the application of non-linear RFFA
techniques in Australia and internationally. The motivation of this study is to create sound
scientific basis on the ANFIS-based RFFA techniques based on the recent flood data, which
will assist in the upgradation of the RFFA techniques in the national Australian Rainfall
and Runoff guide. The objectives of this study are: (i) to develop and test three different
non-linear/AI-based RFFA techniques; (ii) to identify the best performing AI-based RFFA
technique in south-east Australia; and (iii) to compare non-linear AI-based RFFA techniques
with QRT (linear method).

2. Material and Methods
2.1. Study Area

Southeast Australia (NSW and Victoria (VIC) states) was selected for this study since
this area of Australia has the best quality hydrological data. This region is home to about
57% of the country’s population

A total of 181 catchments were selected from the study area. The selected catchments
are natural and have not been affected by any major land-use changes. Figure 1 shows the
locations of selected catchments (training and test catchments). The annual maximum flow
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record length of these 181 catchments varies from 40 to 89 years (average = 48 years). Flood
quantiles for AEP of 1 in 2, 1 in 5, 1 in 10, 1 on 20, 1 in 50, and 1 in 100 years (Q2, Q5, Q10,
Q20, Q50, and Q100, respectively) were estimated using an LP3 distribution for each of the
selected 181 catchments. A Bayesian fitting procedure based on the method of moments
was adopted to fit the log-Pearson Type 3 (LP3) distribution [43]. As shown in Table 1, a
total of eight catchment characteristics were selected as predictor variables. These were
selected as previous studies in this region found these to be the most important predictor
variables in RFFA [3,25]. Using a random selection method, 126 catchments were selected
as a training data set, leaving 55 as the testing data set.
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Figure 1. Location of the selected catchments.

Table 1. Important statistics of the selected predictor variables for 181 study catchments.

Predictor Variable Name of Variable Unit
Statistical Parameter

Minimum Maximum Mean

AREA Catchment area km2 3.00 1010.00 349.06

I62
Design rainfall intensity with 6 h

duration and 2 years return period mm/h 24.60 87.30 39.03

MAR Mean annual rainfall mm 484.39 1953.23 970.50

SF Shape factor - 0.25 1.62 0.78

MAE Mean annual evapo-transpiration mm 925.90 1543.30 1112.74

SDEN Stream density km−1 0.51 5.47 2.06

S1085 Slope of central 75% of the mainstream m/km 0.80 69.90 13.02

FOREST Fraction forest - 0.00 1.00 0.55
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2.1.1. Catchment Area (AREA)

Catchment area (AREA) is one of the main morphometric characteristics of a catchment,
which impacts many other characteristics. The AREA of a catchment usually directly relates
to other characteristics such as stream length and slope of a catchment [7,44]. This predictor
variable has been used in almost all the RFFA studies and is regarded as a scaling factor in
the rainfall-runoff process. It was measured using a planimeter on the topographic map
(1:100,000 scale).

2.1.2. Design Rainfall Intensity (I62)

Rainfall intensity directly impacts flood generation processes and has been used in
many RFFA studies [3,9]. To define design rainfall intensity, one needs to select a rainfall
duration and return period. In this study, a duration of 6 hours with a return period of
2 years was selected to obtain design rainfall intensity at the catchment centroid, following
the approach of ARR [9]. This was obtained from the Australian Bureau of Meteorology’s
(BOM) website using the intensity-frequency-duration (IFD) tool.

2.1.3. Mean Annual Rainfall (MAR)

MAR does not affect flood peaks directly, but it is a surrogate to many other catchment
characteristics. It was obtained from the BOM website.

2.1.4. Shape Factor (SF)

The shape of a catchment directly impacts the flood generation process, e.g., flood
responses are usually slower in elongated catchments than rounder ones. The shape
factor was calculated by dividing the shortest distance between the catchment outlet and
catchment centre by the square root of AREA [9].

2.1.5. Mean Annual Evapotranspiration (MAE)

MAE data was obtained from BOM website [9]. MAE, also known as the dryness
index, similar to MAR, is indirectly related to the flood generation process.

2.1.6. Stream Density (SDEN)

SDEN is one of the most influential factors in the rainfall-runoff process. The more
and longer tributaries there are in a catchment, the higher the stream density, e.g., more
tributaries let water move into the mainstream faster, resulting in a larger peak flow. It
was calculated by dividing the total stream length within the catchment (on a 1:100,000
topographic map) by AREA.

2.1.7. S1085

The mainstream slope (S1085) affects water velocity. This factor was measured based
on the mid 75% of the stream length, excluding the bottom 10% and top 15% of the
catchment length. The higher the S1085, the quicker the flood response. S1085 was
calculated using the following equation:

S1085 =
(H2− H1)
(0.75× L)

(1)

where H2 and H1 are heights above sea level at 0.85, 0.10 points of the length of the
mainstream, measured from catchment outlet, and L is the mainstream length.

2.1.8. Forest

FOREST is a primary factor in determining water loss through infiltration during
a rainfall event, e.g., the higher the FOREST, the lower the pace of flood generation, as
FOREST increases the roughness of a catchment. This factor was calculated by dividing
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the forested area by the total catchment area (AREA), and the area was measured using a
planimeter on a topographic map with a scale of 1:100,000.

2.2. Methodology
2.2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

In a fuzzy system, input and output data are defined linguistically, and in case of a
lack or inconsistency of information, a fuzzy system is an excellent tool for adaptation [45].
The most popular Fuzzy Logic (FL) methods that are implemented include those that are
suggested by Assilian and Mamdani [46] and Takagi and Sugeno [47]. ANFIS is a fuzzy
system based on Takagi and Sugeno’s method that performs as a network of nodes and sets
of parameters linked to each other. As shown in Figure 2, the ANFIS model consists of 5
different layers between raw input data and model outputs. Due to the learning capability,
this model uses a set of rules to change the parameters to minimize the model error [27,48].
ANFIS is based on a collection of ‘if-then’ fuzzy rules that gradually train the data. In this
study, three common types of ANFIS, Grid Partitioning (GP), Subtractive Clustering (SC),
and Fuzzy C-mean (FCM) are used, and the best results are compared with the QRT.
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Figure 2. ANFIS model based on two input variables and one output.

2.2.2. Grid Partitioning (GP)

The structure of the ANFIS model consists of five layers, including premise and
consequence parts, e.g., for only two inputs and one output with nine rules, as shown
in Figure 2.

Layer 1: fuzzification layer
In this layer, input values are divided into fuzzy clusters using membership functions,

shown in Equation (2), where O_iˆ1 is the membership function of A_i, and A_i is a
linguistic label. A set of parameters such as (a, b, c) are used in this layer to calculate
the membership degrees of each function shown by µ(x). Several differentiable functions,
including bell-shaped, trapezoidal, and triangular, can be used to define µ(x), e.g., the
bell-shaped function as shown in Equation (3).

O1
i = µAi (x) (2)

µAi (x) =
1

1 +
[(

x−ci
ai

)2
]bi

(3)

Layer 2: rule layer
As shown in Equation (4), incoming values of membership degrees turn into firing

strength as shown with wi.

wi = µAi (x)× µBi (y), i = 1, 2 (4)

Layer 3: normalization layer
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In this layer, firing strength values produced in the rule layer are normalised
using Equation (5).

wi =
wi

w1 + w2
i = 1, 2. (5)

Layer 4: defuzzification layer
In this layer, as shown in Equation (6), weighted values for each rule are calculated

using normalized firing strength values produced in layer 3.

wi fi = wi(pix + qiy + ri) (6)

where pi, qi, and ri are the parameter set also known as consequence parameters.
Layer 5: summation layer
In this layer, output of layer 4 is summed by using Equation (7) to produce the final

result for ANFIS.
ANFIS output = ∑i wi fi =

∑i wi fi

∑i wi
(7)

In this study, the MATLAB code was used for training and testing the ANFIS model.
This code uses the maximum, product, summation, and the weighted average for And, Or,
Implication, Aggregation, and Defuzzification methods for Grid partitioning-ANFIS models.

2.2.3. Subtractive Clustering (SC)

This method is a partitioning method that determines cluster centres based on the
density measurement of each data point. Initially, all data has the potential to become a
data centre. However, after normalizing and scaling the data, the density of each data is
defined according to Equation (8).

Di = ∑N
j=1 exp

(
−
(

2
ra

)2
.
∣∣∣∣xi − xj

∣∣∣∣2) (8)

where Di is a density measure, ra is the influence radius, xi is the regarded cluster centre,
and xj is the remaining data point. Since data with adjacent data are more likely to be at
the centre of a cluster, they are first selected as the cluster’s centre. Then, in the successive
iterations, the new centre points are calculated according to Equation (9) using the centre
point of the former iteration.

Di = Di − Dci ∑N
j=1 exp

(
−
(

2
ra

)2
.
∣∣∣∣xi − xj

∣∣∣∣2) (9)

where Dci is the centre point of the previous iteration. In each iteration, the centre point
is defined as the highest density point in the corresponding cluster. Once a new central
point is identified, the density of the data points is revised, and this process continues until
an appropriate number of clusters are generated. Therefore, the final identified centre for
the clusters is used for the fuzzy rules. Chiu [49] and Chiu [50] have also suggested other
automatically-identified clustering methods for SC.

2.2.4. Fuzzy C-Means (FCM)

The FCM model reduces the non-linearity of data by grouping the training data
based on similar attributions. For classification purposes, this method assigns each data
to the corresponding category based on its distance to the centre of the category. The
FCM algorithm was suggested by [51]. In this method, each point of a data set belongs
to different groups using membership functions, which ranges between zero and one, so
that the sum of their total (membership functions) for each data point is one. In the FCM
method, n data points are divided into c fuzzy clusters (c < n), and the location of these
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clusters would be appropriately adjusted. The FCM model is based on the square error
distance, and this concept is considered as the following mathematical basis.

In the following equations, xk is assumed as the k’th vector data-point (k = 1, 2, . . . , n).
vi is the centre of the i’th cluster (I = 1, 2, . . . , C). Error distance dik of xk is calculated as
follows: dik = || xk − vk ||. In Equation (10), the degree of membership of k’th data-point in
the cluster i is denoted by uik [52], where:

∑C
i=1 uik = 1 (10)

Furthermore, the purpose is to minimize the following function [52]:

J(U, v) = ∑C
i=1 ∑n

k=1 (uik)
m(dik)

2 (11)

The exponent parameter, m, should satisfy 1 < m < ∞, and is generally chosen
to be m = 2 [53]. It is also called the fuzzifier parameter and adjusts the fuzziness of
clustering [54,55], e.g., in the larger amounts of m (m→∞), the membership degrees of
data-points tend to be well-fuzzy [52].

The FCM algorithm could be described in the following steps, as introduced by
Nourani and Komasi [53]:

1. Assuming initial locations for each cluster centre.
2. Each data-point joins the cluster with the nearest cluster centre.
3. New cluster centres are computed and considered the centroids of clusters.
4. Terminate the process if the cluster partition is stable. If not, go to the second step.

For step 2, the membership value can be expressed by the Lagrange multiplier tech-
nique, Equation (12) [52]:

uik = 1/

{
∑n

j=1

[
dik

2
/

djk
2

] 1
m−1
}

(12)

After the membership degree of data-points to clusters are crisp, one gets [53]:

uik = 0; ∀ i 6= j

ujk = 1; j s.t. djk = min
(

djk, i = 1, 2, . . . , c
)

Cluster centres at the third step can be recalculated via Equation (13) [52]:

vi =
∑n

k=1(uik)
mxk

∑n
k=1(uik)

m i = 1, 2, . . . , c (13)

where uik and vi are calculated by minimizing the J(U,v) using the following Lagrangian
objective function:

min{ Jm(U, V, λ; x) = ∑c
i=1 ∑n

j=1 uij
m|| xi − vi|| 2+

∑n
k=1 λk ∑c

i=1(uik − 1)} (14)

andcomputing

(
dJm

dvi
= 0

dJm

duij
= 0

dJm

dλk
= 0

)
In this study, the Darbin–Watson statistic is used to examine the degree of correlation

among the predictor variables.

2.2.5. Quantile Regression Technique (QRT)

QRT, proposed by the United States Geological Survey (USGS), is a regression-based
method that uses streamflow, catchment characteristics, and climatic variables data to
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develop a prediction equation for an individual return period of interest [18,26]. This
method can be expressed by Equation (15):

log(QT) = a + b× log(B) + c× log(C) + d× log(D) + . . . (15)

where QT = flood quantile for ARI of T years; a, b, c, d, . . . are regression coefficients; and B,
C, D, . . . are catchment characteristics (predictors).

In this study, the ordinary least squares (OLS) and a backward variable selection
method were adopted in SPSS software to estimate the regression coefficients. Final
regression equations were developed based on predictor variables with a p-value of less
than or equal to 0.10.

2.2.6. Statistical Measures Used in Evaluation

Based on the model prediction (Qpred) for the 55 test catchments, the following
evaluation statistics were used to compare the performance of different RFFA techniques.

RE =
Qpred−Qobs

Qobs
× 100 (16)

REr = median[abs(RE)] (17)

RMSE =

√
mean

[
(Qpred−Qobs)2

]
(18)

RBias =
[

mean
(

Qpred−Qobs
Qobs

)]
× 100 (19)

RRMSE =

√
mean

[
(Qpred−Qobs)2

]
mean(Qobs)

(20)

RMSNE =

√√√√mean

[(
Qpred−Qobs

Qobs

)2
]

(21)

Qobs is an at-site flood quantile obtained by at-site FFA (using LP3 distribution), and
Qpred is predicted-flood quantiles using either ANFIS or QRT for each test catchment.

3. Results and Discussion

Three types of ANFIS models, FCM, SC, and GP, were developed. For the FCM
model, the training data set was divided into 2–50 clusters to find the best possible number
of clusters; e.g., for the Q2 model, data were divided into eight clusters (due to large
errors, models with the number of clusters less than ten are shown in Table 2). For SC,
different radius values were tested, ranging from 0.30–0.99, e.g., for Q2 model rad = 0.76
was selected since it produced the best RMSE value. For GP, seven different membership
function types were tested, including trimf, trapmf, gaussmf, gbellmf, gauss2mf, dsigmf,
and pimf, and membership function numbers ranging from two to five, e.g., triangular
membership function type with membership function number of two was found to be the
best performing model for Q2.

The best performing parameters based on the RMSE criteria for the three types of
ANFIS model for Q2–Q100 are shown in Table 2. For the FCM model, it was found that
dividing data into two to eight clusters produced relatively better results (Table 2). For
the SC model, the best performing rad was found to be between 0.76–0.79 for Q2, Q20, Q50
and Q100, and 0.39 and 0.37 for Q5 and Q10, respectively. For the GP model, the triangular
membership function type with membership function number = two, was found to be
the best performing parameter for Q2, Q5, Q10, and Q100. However, for Q20 and Q50, the
gauss2mf model exhibited better performance.
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Table 2. Rad_SC, nCluster _FCM, mf-type, and mf_n for GP.

nCluster_FCM Rad_SC MF-Type and mf_n_GP

Q2 8 0.76 Trimf-2
Q5 2 0.39 Trimf-2
Q10 5 0.37 Trimf-2
Q20 3 0.77 Gauss2mf-5
Q50 2 0.78 Gauss2mf-5
Q100 3 0.79 Trimf-2

The top-seven of the 35 best-performing membership functions and numbers for each of the quantiles are
shown in Table 3, and this categorization is based on RMSE. The Trimf-2 model appears to be one of the seven
best-performing membership functions.

Table 3. Seven best-membership functions based on RMSE.

Q2 Q5 Q10 Q20 Q50 Q100

Trimf-2 Trimf-2 Trimf-2 Gauss2mf-5 Gauss2mf-5 Trimf-2
Gauss2mf-5 Trapmf-2 Pimf-2 Dsigmf-5 Dsigmf-5 Gauss2mf-5

dsigmf-5 Pimf-2 Trapmf-2 Trapmf-5 Trapmf-5 Trapmf-5
Trapmf-5 Gaussmf-2 Dsigmf-2 Trimf-2 Gauss2mf-2 Dsigmf-5
Gbellmf-5 Gbellmf-2 Gauss2mf-2 Gaussmf-2 Trimf-2 Pimf-5
Gaussmf-2 Gauss2mf-2 Gbellmf-2 Trapmf-2 Gbellmf-5 Gauss2mf-4
Gauss2mf-2 Dsigmf-2 Gaussmf-2 Gbellmf-2 Gaussmf-5 Trapmf-4

Figure 3 shows a boxplot of RE values for three different types of ANFIS models. The
thick line within a box represents the median RE value. For the FCM model, RE values
gradually increase with increasing return periods, with an overestimation for Q10, Q20, Q50,
and Q100, with the best performance for Q5, where the boxplot is the smallest in size and
the median RE value is near the 0.00 line. For the SC model, an overestimation is found for
Q100; however, in mid-range return periods, e.g., Q10, Q20, and Q50, the median RE values
are near the 0.00 line, indicating a smaller bias. This model has the best performance for
Q10, with the smallest box width and the median RE value sitting near 0.00. For the GP
model, underestimation is found for all the six quantiles; however, it performs the best for
Q5 as far as the width of the boxplot is concerned.

Water 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

Figure 3 shows a boxplot of RE values for three different types of ANFIS models. The 

thick line within a box represents the median RE value. For the FCM model, RE values 

gradually increase with increasing return periods, with an overestimation for Q10, Q20, Q50, 

and Q100, with the best performance for Q5, where the boxplot is the smallest in size and 

the median RE value is near the 0.00 line. For the SC model, an overestimation is found 

for Q100; however, in mid-range return periods, e.g., Q10, Q20, and Q50, the median RE values 

are near the 0.00 line, indicating a smaller bias. This model has the best performance for 

Q10, with the smallest box width and the median RE value sitting near 0.00. For the GP 

model, underestimation is found for all the six quantiles; however, it performs the best for 

Q5 as far as the width of the boxplot is concerned. 

 

Figure 3. Boxplot of RE values for FCM, SC, and GP-based RFFA models. 

Figure 4 shows boxplots of Qpred/Qobs (Q_Ratio) values for FCM, SC, and GP models. As 

shown in this figure, a notable underestimation occurs for GP, in particular for Q5 and Q10. 

In terms of bias, the SC model performs the best, as in this case, the median line is closer 

to the 1-1 reference line. As can be seen from Figure 4, all the models perform best for Q5, 

having the smallest box width. 
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Figure 4 shows boxplots of Qpred/Qobs (Q_Ratio) values for FCM, SC, and GP models.
As shown in this figure, a notable underestimation occurs for GP, in particular for Q5 and
Q10. In terms of bias, the SC model performs the best, as in this case, the median line is
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closer to the 1-1 reference line. As can be seen from Figure 4, all the models perform best
for Q5, having the smallest box width.
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Some important evaluation statistics such as REr, QT_pred/QT_obs (median), RRMSE,
RBias, and RMSNE were adopted for validation of FCM, SC, and GP, as shown in Table S1 [56].
As seen in Table S1 (in the supplementary section), in terms of REr, the FCM model performs
better in all ranges of ARIs except for Q2, where SC outperforms FCM. Moreover, for Q100,
REr of FCM outperforms REr of SC by 16.3%. In terms of Q_Ratio, FCM exhibits a better
performance in lower ranges of ARIs (Q2, Q5, and Q10); however, SC performs better than
FCM and GP for mid and high ARIs (Q20, Q50 and Q100) with the best performance of
Q_Ratio = 0.98 for Q50 (1.11 for FCM and 0.47 for GP).

The REr values for the FCM and SC models range between 38.18–59.80% and 38.85–69.85%,
respectively. Haddad and Rahman [57] reported similar statistical measures for linear
regression models, with REr ranging between 13–42%, Rahman and Rahman [58] with REr
ranging between 22–37%, and Rahman et al. [25] with REr ranging between 33–44%. In
terms of RRMSE, the SC model outperforms the other two models with the smallest range
for RRMSE, which is a sign of better accuracy. This statistic has been used in different
AI-based studies, Ouarda and Shu [59] reported RRMSE of 0.57–0.76 for four different
methods, including the ANFIS model with RRMSE of 0.57–0.64. RRMSE ranges between
0.78–1.08 for FCM and 0.71–1.00 for SC and 0.82–1.30 for GP. The best and worst values
for RBias are found to be −1.24 for SC_ Q20 and −916.13 for GP_ Q50, which shows a sign
of gross under-estimation. RBias is another important statistic used in some studies, e.g.,
Desai and Ouarda [60] reported RBias for different models ranging from −27.85 to 3.4,
and Shu and Ouarda [37] reported RBias for the ANFIS model between −11 to −8. The
GP model had the best RMSNE value of 0.94 for Q2; however, in terms of RMSNE, the SC
model performs better than FCM in lower ARIs (Q2, Q5, and Q10), and FCM outperforms
the other models in higher ranges of ARIs (Q20, Q50, and Q100).

The cumulative percentage of catchments having a given range of REr values are
shown in Figure 5 for Q50. As can be seen in this figure, the FCM model generally seems to
be the best performing model because, for most quantiles, there is a greater proportion of
catchments with lower ranges of REr values (0–19%, 20–39%, and 40–59%) than the other
two models. However, for ARIs of 5, 10, and 100 years, all the models perform similarly.
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Figure 5. Plot of cumulative percentage of REr for FCM, SC, and GP.

Figures 6 and 7 show qualitative comparisons of REr and Q_Ratio values between the
three models (FCM, SC, and GP). Qualitative identifiers such as ‘Good’, ‘Fair’, and ‘Poor’
are assigned to different ranges of REr and Q_Ratio values [25]. As seen in Figure 6, ‘Good’
is assigned to REr values between 0 to ±30%, ‘Fair’ is assigned to REr values in the range
of ±30% and ±60%, and ‘Poor’ is assigned to other stations with REr values beyond these
ranges. Similarly, in Figure 7, ‘Good’ is a qualitative identifier for the test catchments
with the Q_Ratio value between 0.8–1.3, and ‘Fair’ is assigned to Q_Ratio values in the range
of 0.6 to 0.8, and 1.3 to 2, and ‘Poor’ ranking is assigned to the rest of Q_Ratio values. In
terms of REr values, as shown in Figure 6, the FCM model performs better than the other
models because it has more ‘Good’-rated stations than the other two models. As shown
in Figure 7, although both FCM and SC models outperform the GP model, the SC model
seems to be a better performing model than the FCM since it has fewer ‘Poor’-rated test
catchments. Table S2 (in supplementary section) shows the important predictor variables
for different models.
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Figure 6. Grouping REr (%) values for FCM, SC, and GP.
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Figure 7. Grouping Q_Ratio values for QRT and IFM models.

The spatial distribution of absolute REr values is presented for all the six quantiles for
the FCM, SC, GP, and IFM models, e.g., Q20 is shown in Figure 8. Green, brown, yellow, and
red colours for different REr value ranges were used as visual indicators. Green triangular
shape demonstrates the best performing catchments with the lowest absolute REr values
of ≤25. As seen from Figure 8, the FCM model performs slightly better than others for
Q20 since it has more green triangular shapes than SC and GP. For catchments close to
the north-eastern and south-eastern parts of NSW, the FCM model demonstrates better
performance. The SC model generally performs better in eastern NSW. Most of the poorly
performing catchments are located in the southwest of NSW and VIC, with RE values
of ≥100, similar in all the three models. FCM shows a better performance since it has
relatively fewer brown and red triangular shapes than SC and GP. Interestingly, all three
models are common to most low-performance test catchments. Further investigation is
needed to understand why most of the catchments located in VIC are performing poorly
by ANFIS models, which is left for future research efforts.
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Table 4 represents the evaluation statistics for the QRT model as an example of how a
linear model compares to the best performing ANFIS models. As seen in this table, REr
values for QRT are slightly better than FCM in all ranges of ARI, except for Q5, where
FCM performs slightly better than QRT. In terms of Q_Ratio, QRT performs better than FCM
except for Q2. In terms of RMSE, QRT has a better performance in higher ranges of ARI. In
terms of RBias and RMSNE, QRT appears to have better results in the low to mid ranges
of ARI. In terms of RRMSE, both FCM and QRT models perform very similarly, with QRT
performing slightly better. As shown in Figure 9, boxplots of RE values for FCM and QRT
for each quantile are compared. Based on the sizes of the boxes and the number of outliers
for each quantile, both models perform very similarly for Q2 and Q5. However, QRT is
slightly better for Q10, Q20, Q50, and Q100 because the median lines for each quantile are
closer to the zero-reference line, and the boxes are slightly smaller for QRT, meaning that
the outputs of the QRT model are more consistent and reliable compared to the FCM model.

Table 4. Comparison of important statistics between QRT and FCM as the best ANFIS model.

Quantile Q2 Q5 Q10 Q20 Q50 Q100

Statistics QRT FCM QRT FCM QRT FCM QRT FCM QRT FCM QRT FCM

REr 43.10 51.43 39.10 38.18 35.58 39.96 38.88 46.90 40.01 53.23 48.12 59.80

QT_pred/QT_obs
(Median) 0.93 0.95 0.97 1.07 0.97 1.11 1.05 1.23 1.00 1.11 1.07 1.45

RMSE 49.91 50.88 115.46 119.05 190.22 206.06 289.55 315.90 507.50 531.49 749.58 845.69

RBias 31.76 44.60 32.32 67.60 38.23 87.67 41.72 53.66 46.43 44.29 57.25 61.43

RMSNE 1.13 2.06 1.32 2.64 1.50 3.02 1.61 2.34 1.78 1.85 2.09 2.90

RRMSE 0.82 0.84 0.75 0.78 0.77 0.84 0.79 0.87 0.88 0.93 1.01 1.08

The findings of this study were compared with the results of Aziz et al. [61], in which
they applied four different AI-based RFFA methods, ANN, GAANN, GEP, and CANFIS,
to estimate design floods using data from 452 small- to medium-sized catchments in the
eastern parts of Australia. They reported REr values for the CANFIS method ranging from
34.48 for Q20 to 180.77 for Q2. They also reported median Q_Ratio values of 0.79 for Q10
and 2.81 for Q2 with the best value of 0.95 for Q5. Based on the REr and Q_Ratio values
reported for the CANFIS method, it was found that the results of the FCM method were
more reliable, robust, and consistent.
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4. Conclusions

This study compares three types of ANFIS models in RFFA, FCM, SC, and GP using
data from 181 catchments in south-east Australia (70% being used for training and 30% for
testing of the models). FCM has been identified to perform better in terms of REr values.
Based on the Q_Ratio values, SC has performed slightly better than the FCM. The GP has
the weakest performance among the three, with notable underestimation of design floods
for all the six ARIs. The FCM model provides more accurate flood quantile estimates for
NSW catchments than those of Victoria. Also, among all the quantiles, FCM presents the
best RFFA model for Q5.

It is recommended to test ANFIS models in different parts of Australia and compare
the results with other common linear RFFA models, as this has the potential to become the
preferred RFFA method in Australia. The ANFIS model can also be mixed and combined
with other methods such as genetic algorithms to reduce model error. Future studies should
consider a greater number of predictor variables in model building and testing. Monte
Carlo cross validation should also be applied instead of a single split-sample validation.
Also, uncertainty analysis should be extended following new approaches [62].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14101608/s1, Table S1: Important statistics from the validation
(test data) of ANFIS models; Table S2: Important predictor variables for the QRT and ANFIS models.
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