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Abstract: Ammonium is one of the main inorganic pollutants in groundwater, mainly due to agri-
cultural, industrial and domestic pollution. Excessive ammonium can cause human health risks
and environmental consequences. Its temporal and spatial distribution is affected by factors such as
meteorology, hydrology, hydrogeology and land use type. Thus, a groundwater ammonium analysis
based on limited sampling points produces large uncertainties. In this study, organic matter content,
groundwater depth, clay thickness, total nitrogen content (TN), cation exchange capacity (CEC), pH
and land-use type were selected as potential contributing factors to establish a machine learning
model for fitting the ammonium concentration. The Shapley Additive exPlanations (SHAP) method,
which explains the machine learning model, was applied to identify the more significant influencing
factors. Finally, the machine learning model established according to the more significant influencing
factors was used to impute point data in the study area. From the results, the soil organic matter
feature was found to have a substantial impact on the concentration of ammonium in the model,
followed by soil pH, clay thickness and groundwater depth. The ammonium concentration generally
decreased from northwest to southeast. The highest values were concentrated in the northwest and
northeast. The lowest values were concentrated in the southeast, southwest and parts of the east
and north. The spatial interpolation based on the machine learning imputation model established
according to the influencing factors provides a reliable groundwater quality assessment and was not
limited by the number and the geographical location of samplings.

Keywords: ammonium nitrogen; spatial interpolation; machine learning; random forest; SHAP

1. Introduction

Groundwater is a component of water supply [1]. It is distributed in various natural
and geological environments and is affected by numerous factors. Natural groundwater
recharge in Asia has uneven spatial and temporal distribution. Since the 1970s, an increasing
water demand has resulted in severe groundwater overdraft, water-level decline and water
quality degradation in China [2,3].

There is growing concern about the consequences of nitrogen pollutants in groundwa-
ter since they are harmful to human and environmental health [4], for example, leading
to noncarcinogenic health risk for adults and children due to the use of groundwater as
drinking water [5,6]. Excessive nitrogen can cause soil acidification, eutrophication and
greenhouse gas [7–10]. Therefore, the evaluation of the current situation of nitrogen contam-
ination is of great significance to avoid groundwater quality degradation and contributes
to the utilization of groundwater resources.

Based on the analysis of on-site sampling data combined with statistical methods, the
distribution information of groundwater quality can be understood. Filling sampling gaps
is traditionally carried out using spatial interpolation methods. However, the performance
of the interpolation method depends not only on the method itself, but also on the quality
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of the data. Due to the sparse and uneven characteristics of geological sampling points, the
results of normal estimation have great uncertainty. Many researchers have attempted to
improve the methods. For example, a decision tree for selecting an appropriate method
was developed based on data availability and the features of the method [11]. A geological
modeling method based on the dynamic normal estimation of sparse point clouds was
proposed to improve accuracy [12]. Some researchers also pointed out that the optimal sam-
pling design and spatial predicting method are both important for predictive mapping [13].
However, the determination of key control points of spatial variability that may be affected
by multiple factors has become increasingly challenging in practice [14]. The improvement
of methods can help to solve problems in the sampling data, but it also ignores the value
of data to a certain extent. Therefore, not only the problem of insufficient or uneven data
needs to be improved, but we also need to make full use of the information hidden in the
existing data.

In recent years, machine learning (ML) methods have been remarkably useful in the
extraction of essential information from data in the natural sciences, where the major goal
is to obtain novel scientific insights and discoveries from observational or simulated data,
particularly in cases where there are not enough data to understand the physical process
of the system and relatively accurate prediction is required [15]. For example, a logistic
regression (LR) model was built with independent variables, and the binary occurrence
probability of nitrate in groundwater was predicted [16]. Multiple linear regression tree
(MLR), classification, regression tree (CART), random forest (RF) and boosted regression
tree (BRT) models were built to predict the spatial distribution of nitrate in groundwa-
ter [17]. A hybrid nonlinear machine learning model, BRT, was developed to interpolate
and visualize the nitrate contamination of groundwater in California’s Central Valley [18].
These studies have been proven to be valuable to obtain the distribution of groundwa-
ter quality. However, less research has been directed towards the interpretation of the
results from machine learning models; that is, it is not clear which factors play a key role
in groundwater quality, which is not conducive to pollution prevention and control in
key polluted areas. By balancing interpretability and accuracy [19], interpretable machine
learning methods that provide explanation for black-box model outputs are available for
water research [20,21].

The current study took a typical irrigation area in Northeast China as an example
to establish a machine learning model of ammonium concentration using environmental
factors. Then, the SHAP method, which can explain the fitting results of the machine
learning model for ammonium concentration values, was used to identify the significant
influencing factors through feature importance and a dependency analysis. According to
the significant influencing factors, a machine learning model was established for ammo-
nium data imputation (Figure 1). The flowchart is shown in Figure 1. The results of this
method will provide reliable information with which to assess ammonium pollution in
groundwater. The method is not limited by the number of samples or geographic location.
In addition, the machine learning imputation method establishes a link between ground-
water ammonium and the main influencing factors, which may be beneficial for pollution
prevention at key sites.
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2. Materials and Methods
2.1. Materials
2.1.1. Study Area

Located in the Sanjiang Plain, Heilongjiang Province (Figure 2), the Puyang irrigation
district h a cold–temperate continental monsoon climate with an average annual tempera-
ture of −19.3 ◦C from January to 21.7 ◦C in July. The average evaporation is 694.4 mm, with
a relative air humidity of 70–80%. The average annual precipitation is 535.5 mm, 70% of
which occurs in June to September. The frost-free period is 116–154 days, and the seasonal
frozen soil depth is 1.5–2.5 m.
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The characteristic landform pattern consists of terraces and flood plains. Topograph-
ically, the study area is higher in the west and lower in the east, with an elevation of
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64.0–70.0 m, and has a slope of 1/1000–1/3000 m. The Quaternary porous aquifer is com-
posed of medium sand, medium-coarse sand and gravel, with a hydraulic conductivity of
9.6–16.1 m/d, and the buried depth is generally between 2 and 3 m. The unconfined aquifers
and weakly confined aquifers mainly receive water from precipitation infiltration; lateral
runoff replenishment; and discharge through lateral runoff, evaporation and exploitation.

2.1.2. Data

A total of 79 samples of shallow groundwater with groundwater wells mainly con-
sisting of domestic wells and irrigation wells were sampled in August 2017 in the Puyang
irrigation area (Figure 1). The inorganic nitrogen (NH4

+, NO3
− and NO2

−) was analyzed
using ion chromatography. This study focused on groundwater ammonium concentrations.

For the comprehensive consideration of groundwater ammonium-influencing factors
and the existing relevant information in the study area, the following environmental factors
for predicting groundwater ammonium concentration were selected: in soil samples,
organic matter content, total nitrogen content (TN), cation exchange capacity (CEC) and
pH. Land-use type information was obtained from the Resource and Environment Science
and Data Center. In addition, groundwater depth and clay thickness were derived from
historical data. Specific descriptions are presented in Table 1.

Table 1. Description of environmental factors related to the groundwater ammonium.

Factor Description Source Point
Number Date Resolution Rmse Place

Organic matter Data from the
special study on

soil environmental
quality

Kriging interpolation 457 October 2018 690 m 16.61 Songhua
River-Naoli

River Basin in
Sanjiang Plain

and surrounding
areas

TN Kriging interpolation 457 October 2018 690 m 0.70
CEC Kriging interpolation 457 October 2018 690 m 7.27
pH Kriging interpolation 457 October 2018 690 m 0.49

Groundwater
depth

Groundwater
sampling point

data
Kriging interpolation 275 August 2017 690 m 3.94

Clay thickness Historical data Kriging interpolation 1614 690 m 2.64

Land use Data on the
relevant website

Resource and
Environment Science

and Data Center
2018 1000 m

Ammonium concentrations were selected as the label (the predicted item), while the
remaining items, including organic matter content, groundwater depth, clay thickness, TN,
CEC, pH and land-use type were selected as features that had an influence on the label.

2.2. Methods
2.2.1. Random Forest Regression Model

According to information from scikit-learn, which takes sample size and different
problems into account to select the right estimator, the random forest regression model was
applied to predict the continuous digital output for the ammonium concentration. The
random forest regression model is an ensemble algorithm based on decision tree theory,
which divides the data multiple times according to some cut-off values in the features, and
creates many subsets to distinguish different samples [22,23]. The core purpose of decision
tree algorithms is to select the best feature for a branch, such as ID3, C4.5 and CART [24].
Random forest consists of independent trees built by randomly selected features, averaging
the results of each tree to determine the final output. It has an improved prediction accuracy
compared with a single decision tree. Some additional benefits are that random forests are
good at solving nonlinear problems, require no normalization or scaling of data and are
insensitive to multicollinearity [25–29].

2.2.2. Model Interpretation

In recent years, Shapley Additive exPlanations (SHAP) demonstrated superior per-
formance in uncovering the underlying phenomenon [30–32]. In this study, the Python
SHAP library was used to understand the importance of the variables for predictions in the
random forest models.
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Proposed by Lundberg and Lee [33], the method based on the optimal Shapley values
of alliance game theory is a common feature attribution mechanism that can explain
artificial intelligence. The Shapley value of the feature is the weighted summation of
the feature contribution to the output (prediction) of all possible feature combinations
(Equation (1)):

φj(val) = ∑
S⊆{x1,x2,,...,xp}{xj}

|S|!(p− |S| − 1)!
P!

(
val

(
S∪

{
xj
})
− val(S)

)
(1)

where φj is the Shapley value of feature j, x is the feature of the instance, S is a subset of
features and p is the number of features.

SHAP explains the output of an instance by computing the contribution of the feature
to the prediction. It is represented as Equation (2):

g
(
z′
)
= φ0 +

M

∑
j=1

φjz
′
j , (2)

where g is the explanatory model, φj is the Shapley value for a feature j, M is the number of
input features and z′∈{0, 1}M equals 1 when a feature is observed.

Tree SHAP, used for this study, is a variant of SHAP [34]. The influencing factors were
identified using feature importance and a feature dependence analysis. Features with large
absolute Shapley values are important. Interaction effects are captured using a feature
dependence plot based on the SHAP interaction value [35]. The interaction value between
feature i and feature j is defined as in Equation (3):

φi,j(f, x) = ∑
S⊆M{I,J}

|S|!(M− |S| − 2)!
2(M− 1)!

∇i,j(f, x, S), (3)

where M represents all features, S is a subset of the features and x is the feature vector of
the instance.

2.2.3. Kriging Interpolation Method

According to the instructions of Surfer, Cokriging uses a more densely sampled
correlated secondary variable to help guide the estimation of the primary variable. Thus,
the Kriging interpolation method was used to obtain the spatial distribution of the original
groundwater ammonium concentration because the method is useful for interpolation
with almost any type of data set. In order to qualitatively analyze the rationality of the
machine learning imputation result, the kriging method was also applied to the ammonium
concentration distribution mapping after data imputation.

Based on the theory of regionalized variables and semivariogram (Equation (4)),
Kriging is a geostatistical analysis method that considers the size of the sample values, the
spatial location and the distance between samples [36]. According to the original data and
the structural characteristics of the variogram, the value of the unknown sampling point
can be estimated.

γ(h) =
1

2N(h) ∑N(h)
i=1 [Z(xi)− Z(xi + h)]2, (4)

where γ(h) is the semivariogram, N(h) is the logarithm of points at distance h, h is the
distance between samples and Z(xi) is the value of the sample xi.

3. Results and Discussion
3.1. Model Performance Evaluation

Parameter tuning needs to be conducted to maximize model performance. In this
study, the mean square error (MSE) was selected to evaluate the model performance, which
measures the difference between the prediction values and their corresponding actual
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values. A good performance should result in low MSE values of close to 0. The index was
calculated using Equation (5):

MSE =
1
n

n

∑
i=1

(yi − yi)
2, (5)

where n is the number of samples, i is each sample, yi is the actual value of the sample
point i and yi is the value predicted by the model.

To analyze the influencing factors with a high performance machine learning model,
random_state, the parameter related to the randomness of this algorithm, was adjusted
with other parameters, which remained at default because the parameters associated with
the structure of the decision tree (the underlying algorithm of random forest) are designed
to overfit the data [37]; that is, these parameters ensure that the algorithm fits the data as
closely as possible at their default values. Figure 3 shows that the minimum MSE is 0.017
when random_state is equal to 271, which indicates a good fit to the data. Figure 4 displays
the predictions for the data. In summary, the model has good performance and can be used
to influence a factor analysis.
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For the ammonium concentration prediction model, the max_depth, n_estimators and
min_impurity_decrease parameters were selected for tuning using the grid search technique
and 10-fold cross-validation (the data were randomly divided into 10 sub-samples, of
which 9 sub-samples were used to train the model each time, and 1 sub-sample was
used to test the model) to optimize model performance, with the aim to fit the original
data as much as possible whilst avoiding fitting of the noise and random fluctuations,
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resulting in reducing the generalization ability of the model for unseen data. It is noted
that max_depth and n_estimators are usually the most effective parameters for random
forest model performance [29,37]. Furthermore, min_impurity_decrease, stops a split if the
level of reduction from the split is less than the entered amount. This parameter was tuned
in the training process because it allows for more concise control over the tree structure.
The optimal parameter combination is based on the MSE results of the test set during the
grid search. In addition, according to previous related research, 10-fold cross-validation
was used in this study [29,38].

As can be seen from the results, the selected optimal parameters values were as follows:
n_estimators: 60; max_depth: 7; min_impurity_decrease: 0. The training and test score
with an MSE of 0.02 and 0.09, respectively, suggest that the model has a low error level and
is generalizable. Based on this result, the model seemed to perform well, and the predictive
performance was good in the comprehensive evaluation.

Table 2 shows the information of the machine learning models. Considering the
number of data and the machine learning method of this study, the trained machine
learning model displayed high performance and can be used for further analysis. In order
to reduce the errors and improve the performance, advanced machine learning algorithms
should be selected on the basis of increasing the amount of data.

Table 2. Information of the machine learning models for ammonium concentration.

Model Parameter Parameter Value MSE

Fitting model random_state 271 0.017

Prediction model
max_depth 60

Training data MSE = 0.02
Test data MSE = 0.09

n_estimators 7
min_impurity_decrease 0

3.2. Analysis the Influencing Factors of Ammonium Concentration in Groundwater
3.2.1. Feature Importance

In the summary plot (Figure 5), the features are ordered according to their importance
in the machine learning model output, and the colors represent the value of each feature.
For the seven original features, the top four were selected in order of importance for analysis
and further imputation-model construction in this study.
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The organic matter content, clay thickness, groundwater depth and pH were regarded
as the main influencing factors of this study according to the order of feature importance
and the variance inflation factor (VIF) for multicollinearity detection (Table 3). Specifi-
cally, organic matter had the greatest impact on the model, while pH, clay thickness and
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groundwater depth were the three next most important features (Figure 5). The higher
values of these factors result in higher SHAP values, which means a higher probability
that ammonium pollution has occurred. However, the observations of groundwater depth
were theoretically unexpected, and it was speculated that the comprehensive result of the
interactions between other factors were in accordance with feature dependency in SHAP
theory [34], which is discussed further in the feature-dependency analysis section.

Table 3. VIF of the influencing factors.

Influencing
Factor Organic Matter pH Clay Thickness Groundwater

Depth

VIF 3.19 2.07 3.30 2.01

3.2.2. Spatial Distribution of the Influencing Factors

In order to perform an intuitive analysis of the influencing factors identified in the
previous section, continuous maps for the spatial distribution were generated using Kriging
methods. The spatial distribution of ammonium concentration is shown in Figure 6.
The influencing factor results of Kriging interpolation based on the same 79 sampling
points are shown in Figure 7. Table 4 shows the MSE results of the interpolation of the
influencing factors.
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Table 4. MSE of Kriging interpolation result.

Organic Matter pH Clay Thickness Groundwater Depth

1247.91 31.93 3.08 31.61

Figure 6 shows that the concentration of ammonium in the study area presented
obvious spatial distribution characteristics, with values generally decreasing from north-
west to southeast. The high-value areas were concentrated in the northwest and northeast
districts, followed by the central, southeast, northwest and north of the overall area, while
the organic matter content decreased from north to south, with the largest content in the
north (Figure 7a). Together, Figures 6 and 7a show that the concentrations in the highest
and lowest value areas of ammonium nitrogen were similar to the organic matter content,
indicating that ammonium concentrations were related to the organic matter content. How-
ever, the overall distributions of the two were not exactly consistent. For example, the low
organic matter content in the southeast correlated with a high ammonium concentration.

For pH, the tendency of pH to decrease from the south to north was obviously inconsis-
tent with the ammonium concentrations (Figures 6 and 7b). It is noted that the ammonium
concentrations were lower and the pH values were higher in the southeast edge of the
study area, while in the northwest, the ammonium concentrations were higher and the pH
values were lower.

With regard to the influencing factor of clay, the thickness in the north and southwest
was greater than in other areas, and the thickness decreased from northwest to southeast.
Except for the thicker clay and higher concentration in the northwest and a few northeastern
districts, there was no significant distribution pattern in other locations (Figures 6 and 7c).

In addition, for the groundwater depth, the variation from deep to shallow can
be summarized as follows: west > north > southeast (Figure 7d); ammonium nitrogen:
northwest and northeast > central, south and southeast > southwest and some areas in
the north and southeast. As seen in Figures 6 and 7d, the groundwater depths were
lower in the southeast with higher ammonium nitrogen concentrations between 0.10 and
0.50 mg/L, while the depths were higher in the southwest with lower ammonium nitrogen
concentrations. As for the north and central regions, the above-mentioned relations did not
exist between the groundwater depth and ammonium nitrogen concentration.

Therefore, it can be concluded that the distributions of these four influencing factors
were similar to the ammonium concentration in some areas, but this was not applicable to
the entire irrigation area. It can be inferred that the ammonium concentration distribution
was a comprehensive result of the interaction between the influencing factors. To further
analyze the relationship between the ammonium concentration and distribution of the
influencing factors in the overall irrigation area, the interactions were analyzed using SHAP
feature dependency (Figure 8).

3.2.3. Feature Dependency

In accordance with the influencing factors of ammonium concentration in 79 ground-
water samples in August 2017 in the irrigation area, the SHAP feature dependency plots
were automatically color coded according to the strongest interaction for the influencing
factors. Red dots represent higher values, and the blue dots represent lower values.

As shown in Figure 8a, a high organic matter content and TN correspond to larger
SHAP values, which suggests that an increasing organic matter content and TN increase
the risk of ammonium pollution.
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Subsequently, the SHAP values tended towards 0.0 as the pH increased with a pH
of less than approximately 5.6 (Figure 8b), which suggests that, upon increasing pH, the
probability of ammonium pollution risk decreases. Conversely, when pH was higher than
5.6, the SHAP values were approximately 0.1 (Figure 8b), which means that increasing pH
while clay thickness is low will not have a significant effect on the changes in ammonium
nitrogen concentration.

Figure 8c shows the impact of clay thickness and CEC on NH4
+ concentration. In-

creasing clay thickness caused higher ammonium concentration occurrence because the
SHAP value increased significantly. Furthermore, the red points on the bottom of the figure,
representing higher values of CEC, indicate that the ammonium concentration tended to
be lower with a low clay thickness and high CEC.

Finally, the groundwater depth was selected to determine its impact on NH4
+ con-

centration, and has the strongest interaction with clay thickness (Figure 8d). SHAP values
were negative for points with a groundwater depth of below 6 m. The change in trend of
the points indicated that increasing groundwater depth decreases the probability of a high
ammonium concentration. In contrast, SHAP values were positive for points with a ground-
water depth of above 6 m. It is speculated that at groundwater depths of greater than 6 m,
ammonium concentrations may have been more susceptible to higher clay thicknesses in
this study.

Some studies have shown that the mineralization of organic nitrogen from nitrogen
fertilizers or natural soil is one of the potential sources of NH4

+ [39], and there is a positive
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correlation between NH4
+ and DOC [5]. It has been demonstrated that the NH4

+ absorption
rate is high with a low nitrification rate in the range of a large DOC input in groundwa-
ter [40]. Therefore, organic matter is conducive to the enrichment of NH4

+, and the process
of mineralization is likely to affect the concentration of NH4

+ in the irrigation area.
In general, pH affects groundwater concentrations and nitrogen by influencing the

process of nitrification and denitrification [41]. Previous research shows that ammonium is
abundant in groundwater when pH < 9.23 [42], and the decline in pH value leads to H+
and NH4

+, forming a competitive relationship [43].
In terms of clay, the adsorption effect and the provision of a reducing environment

to maintain the stability of ammonium nitrogen leads to thicker clay which contributes to
ammonium accumulation [44,45]. As the main physical and chemical property that affects
the removal of ammonium [46], an increase in CEC will reduce the NH4

+ concentration
mainly because the accumulation of nitrifying bacteria by particles helps to nitrify and
degrade ammonium nitrogen. Moreover, high CEC is beneficial to the adsorption of
ammonium in soil, leading to a decrease in the concentration of ammonium in groundwater.

For groundwater depth, generally, as the groundwater depth decreases, its effect on the
concentration is enhanced, since a shallower depth reduces the vertical migration distance
of nitrogen, resulting in reduced attenuation [47]. Meanwhile, ammonium nitrogen is more
likely to dissolve through the interaction of shallow groundwater and soil [48].

3.3. Imputation of Ammonium Concentration in Groundwater

Uniform distribution was used as the main principle by considering the distribution
of point choice. Using ArcGIS, 39 points were generated in the central district of the study
area where sampling points were sparse (Figure 9). After the information on the influencing
factors of these points was extracted, it was input to the model to predict the concentration
of ammonium. Together with the original 79 sampling points, the dataset comprised
118 points. Figure 9 shows the distribution of ammonium concentration predicted by data
imputation through machine learning, and it can be seen that the ammonium concentration
generally decreased from northwest to southeast. The high-value areas were concentrated
in the northwest and northeast. The low-value areas were concentrated in the southeast,
southwest and parts of the east and north.

Water 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

Finally, the groundwater depth was selected to determine its impact on NH4+ con-
centration, and has the strongest interaction with clay thickness (Figure 8d). SHAP values 
were negative for points with a groundwater depth of below 6 m. The change in trend of 
the points indicated that increasing groundwater depth decreases the probability of a high 
ammonium concentration. In contrast, SHAP values were positive for points with a 
groundwater depth of above 6 m. It is speculated that at groundwater depths of greater 
than 6 m, ammonium concentrations may have been more susceptible to higher clay thick-
nesses in this study. 

Some studies have shown that the mineralization of organic nitrogen from nitrogen 
fertilizers or natural soil is one of the potential sources of NH4+ [39], and there is a positive 
correlation between NH4+ and DOC [5]. It has been demonstrated that the NH4+ absorption 
rate is high with a low nitrification rate in the range of a large DOC input in groundwater 
[40]. Therefore, organic matter is conducive to the enrichment of NH4+, and the process of 
mineralization is likely to affect the concentration of NH4+ in the irrigation area. 

In general, pH affects groundwater concentrations and nitrogen by influencing the 
process of nitrification and denitrification [41]. Previous research shows that ammonium 
is abundant in groundwater when pH < 9.23 [42], and the decline in pH value leads to H+ 
and NH4+, forming a competitive relationship [43]. 

In terms of clay, the adsorption effect and the provision of a reducing environment 
to maintain the stability of ammonium nitrogen leads to thicker clay which contributes to 
ammonium accumulation [44,45]. As the main physical and chemical property that affects 
the removal of ammonium [46], an increase in CEC will reduce the NH4+ concentration 
mainly because the accumulation of nitrifying bacteria by particles helps to nitrify and 
degrade ammonium nitrogen. Moreover, high CEC is beneficial to the adsorption of am-
monium in soil, leading to a decrease in the concentration of ammonium in groundwater. 

For groundwater depth, generally, as the groundwater depth decreases, its effect on 
the concentration is enhanced, since a shallower depth reduces the vertical migration dis-
tance of nitrogen, resulting in reduced attenuation [47]. Meanwhile, ammonium nitrogen 
is more likely to dissolve through the interaction of shallow groundwater and soil [48]. 

3.3. Imputation of Ammonium Concentration in Groundwater 
Uniform distribution was used as the main principle by considering the distribution 

of point choice. Using ArcGIS, 39 points were generated in the central district of the study 
area where sampling points were sparse (Figure 9). After the information on the influenc-
ing factors of these points was extracted, it was input to the model to predict the concen-
tration of ammonium. Together with the original 79 sampling points, the dataset com-
prised 118 points. Figure 9 shows the distribution of ammonium concentration predicted 
by data imputation through machine learning, and it can be seen that the ammonium con-
centration generally decreased from northwest to southeast. The high-value areas were 
concentrated in the northwest and northeast. The low-value areas were concentrated in 
the southeast, southwest and parts of the east and north. 

 
Figure 9. Spatial distribution of ammonium concentration in groundwater with data imputation
using machine learning model.

3.4. Reliability Analysis of the Results of Points Imputation Using Machine Learning Model

This section presents the Kriging interpolation results when using original points and
adding point data using the machine learning method. An analysis is presented for the
level of performance of the machine learning imputation method.

Through the qualitative evaluation of the spatial interpolation methods using visual
assessment, it was found that the two methods both provided satisfactory results for the
overall decreasing trend of the NH4

+ concentration from the northwest to the southeast
(Figures 6 and 9), indicating that they both provide a good fit for most sampling points.
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However, there were clear differences in that the machine learning method yielded higher
concentration values in the south, southwest, northeast and parts of northwest, and lower
concentration values in the east, northwest and central districts (Figure 10). In particular, the
machine learning method identified northeast and central districts where the ammonium
concentrations were greater than 0.5 mg/L, and also identified concentrations of less than
0.1 mg/L in the southeast (Figure 9). Further qualitative evaluation was performed on
typical sites where ammonium concentrations increased and decreased significantly, which
comprised eight points (Figure 10). The observations in Figure 9 are theoretically more
reasonable than those in Figure 6 in that the points with higher ammonium concentrations
(points 1, 2 and 3) generally corresponded to a lower pH, higher organic matter content
and higher clay thickness (Table 5). Additionally, the points with lower ammonium
concentrations (points 4–8) generally corresponded to a higher pH, a lower organic matter
content and lower clay thickness (Table 5).
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Figure 10. Difference in ammonium concentration between the machine learning imputation method
and Kriging method.

Table 5. Values of influencing factors for typical points.

Point Number Groundwater Depth (m) Clay Thickness (m) Organic Matter (g/kg) pH

1 5.71 2.41 36.00 5.70
2 4.79 2.11 36.86 5.63
3 7.04 2.26 32.92 5.72
4 4.92 1.37 32.95 5.63
5 5.03 1.37 33.13 5.70
6 4.40 1.37 31.46 5.85
7 4.35 1.35 32.27 5.97
8 4.36 1.35 32.41 5.98

According to the quantitative evaluation of the results of the two methods, the inter-
polation seemed to perform better after the machine learning data imputation (machine
learning MSE = 0.21; Kriging MSE = 0.27). Previous studies have shown that the Co-Kriging
method, which introduces correlation into spatial modeling, is superior to the traditional
Kriging method in terms of the reliability and accuracy of results for groundwater nitrogen
distribution analysis [14,49]. It was speculated that higher accuracy would be obtained
after machine learning data imputation if the sophisticated kriging method was applied to
the groundwater ammonium interpolation.

In summary, the machine learning imputation method, which was based on the
influencing factors from SHAP interpretation, yielded more reasonable results, thereby
improving the accuracy of the Kriging method, and was not limited by the number of
samples or geographic location. An additional benefit is that the machine learning imputa-
tion method can establish a link between groundwater ammonium nitrogen and the main
influencing factors, which may be beneficial for pollution prevention at key sites.
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4. Conclusions

The random forest ensemble model was established to model ammonium concen-
tration using a set of relevant factors, whereas the random forest model was established
based on the influencing factors for ammonium concentration data imputation. Spatial
interpolation was performed to finally obtain the concentration distribution. Furthermore,
the use of a machine learning model based on influencing factors for the spatial prediction
of ammonium concentration values was compared to the Kriging interpolation result. The
primary findings can be summarized as follows.

The organic matter feature was found to have a substantial impact on the concentration
of ammonium, followed by the pH, clay thickness and groundwater depth. The ammonium
concentration generally decreased from northwest to southeast. The highest values were
concentrated in the northwest and northeast. The lowest values were concentrated in the
southeast, southwest and parts of the east and north.

The concentration distribution analysis derived through the qualitative visual inspec-
tions showed that the results from the machine learning imputation method are more
reasonable. The interpolation result seemed to perform better after machine learning data
imputation. An additional advantage of machine learning imputation is that, given original
sampling points, missing data can be infilled when there is little spatial connection between
monitoring sites. The results suggest the good applicability of the model for ammonium
concentration mapping in the study area. In summary, the machine learning imputation
method yielded more reasonable results, improving the accuracy of the results, and was
not limited by the number of samples or geographic location. In addition, the method can
establish a link between groundwater ammonium and the main influencing factors, which
may be beneficial for pollution prevention at key sites.

The limiting factors of this study include the relatively small study area selected with
slight changes in environmental conditions, resulting in only minor differences between
the two methods. This also led to insignificant machine learning imputation results. Addi-
tionally, the model accuracy needs to be improved by increasing the data size and applying
advanced machine learning methods. In addition, the various soil data used in this study
were derived from soil quality research and may not be applicable to other areas to more
accurately detect ammonium content in groundwater.

In light of the fact that the variation law of groundwater quality is not easy to obtain,
and that it would be desirable to analyze it on the basis of multi-source data, it is not
unexpected that the robust behavior of prediction supports machine learning imputation
techniques in the evaluation of groundwater quality. We recommend that the model
performance be optimized by expanding the study area, and that the method be widely
used with the ancillary support of multi-source big data, especially in groundwater quality
assessments in industry.
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