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Abstract: Marshlands in arid and semi-arid areas are considered constantly changing environments
due to unsecured water supplies as a result of high evapotranspiration and limited and highly
variable rainfall. Classification of marshlands in these regions and mapping of their land cover is
not an easy task and maps need to be upgraded frequently. Satellites provide enormous amounts of
information and data for the continuous monitoring of changes. The aim of this paper is to introduce
an approach using multispectral satellite imagery that was adopted to classify and monitor the Al
Hammar Marsh (Iraq) over several years and to suggest a relationship between the Normalized
Difference Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI), and the
Normalized Difference Water Index (NDWI), using Landsat 8 data with a resolution of 30 m × 30 m,
validated with Sentinel-2 datasets at 10 m × 10 m. Six land cover classes were used: (1) open water,
(2) dry area, (3) dense vegetation, (4) medium-density vegetation, (5) sparse vegetation, and (6) wet
soil. Three indices, NDWI, NDMI, and NDVI, were chosen for the automatic classification of each
pixel and the creation of a time series of land cover maps. The proposed method can efficiently
classify and monitor marshlands and can be used to study different marshlands by adjusting the
thresholds for NDVI, NDMI, and NDWI. Overall, the correlation for all classes (R) between Landsat 8
and Sentinel-2 is about 0.78. Thus, this approach will help to preserve marshes through improved
water management.

Keywords: Al Hammar marsh; NDVI; NDMI; NDWI; wetlands; vegetation monitoring; land
cover mapping

1. Introduction

Large changes in land cover occur all around the world. These changes cause, among
other things, many environmental problems, such as erosion and increased surface runoff,
and are part of complex interactions with drought, climate, and biodiversity [1]. Infor-
mation on land cover/land use (LCLU) is important on both large and small scales for
understanding the influences of many environmental factors, such as climate change,
desertification, and others [2].

Wetlands play an essential role in local and regional water cycles, especially in arid
and semi-arid regions. They are considered to be natural water reservoirs, habitats for
a large number of plants and animals, as well as carbon stores, and thus play a major
role in reducing global warming [3]. Marshlands are some of the most complex ecosys-
tems and include a large number of different habitat types (e.g., grasslands, aquatic and
agricultural lands).
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Due to major anthropogenic interventions within their catchments, many rivers that
feed marshes in these areas undergo major changes in relation to land cover and land
use over time. Many interventions are focused on controlling and altering the natural
hydrology of these rivers and ultimately modifying the flooding regimes. The changes have
negatively impacted marshlands both in terms of water availability and water quality. In
efforts to capture the impact of the interventions on the marshes, the use of remote sensing
data collected through the Landsat programme has become essential. Remote sensing data
are optimal for covering the spatial extents of large marshlands [4] and monitoring their
complex ecosystems. Regular mapping of land cover/land use systems is an ideal way to
monitor the dynamics of wetland ecosystems [5].

During the past decades, remote sensing has become an effective tool for monitoring
land cover changes. Remote sensing detects changes in land cover by detecting changes
in the amount of radiation reflected from the surface. These changes in radiation are only
partially caused by changes in land cover, as many other factors affect radiation, such as
weather, soil moisture, and sun angles. The signals are mixed, so there is a continuous need
to develop increasingly sensitive methods to monitor land cover changes [6].

A recent review conducted by Guo et al. [4] found that remote sensing is extensively
used to assess wetlands across the globe, between 300 to 500 peer-reviewed articles being
published annually over the past five years. Their results also highlighted the Landsat
programme’s importance: out of the 5719 wetland research papers published globally,
1259 papers used Landsat data. In their study, satellite images taken by the Landsat 4, 5,
7, and 8 sensors provided a rich time series of their study area that spans over 31 years
(1986–2017) [4].

Analysis of satellite imagery of a marsh environment is one of the established method-
ologies and is widely used in environmental planning processes in marsh areas that are at
risk from local changes and changes in the sources of rivers [7]. Furthermore, Tucker and
Compton [8] suggested a technique for deriving green biomass data from the Normalized
Difference Vegetation Index (NDVI) [8]. Further analysis methods are Selective Principal
Components Analysis and methods based on variance–covariance matrices [9]. According
to Singh [6], direct multi-date classification is built upon linking a single test dataset with
different dates to monitor land cover change. Post-classification analysis is applied to time
series of classified spectral imagery to compare different time steps independently [6,10].
Lu, Mausel, and Batistella [10] applied a combination of image enhancement and post-
classification for enhancing changes using a binary mask to indicate where change has
occurred in different periods.

The above studies classified wetlands into basic classes: open water, vegetation, and
bare soil. With more elaborate techniques, significantly more details can be extracted from
the imagery [11]. In wetland monitoring, band ratio indices are favoured over single bands
as predictor variables because band ratios eliminate noise [12,13].

A series of spectral indices were developed to assess the temporal variability of
marshes’ inundated areas and the health of vegetation covers. The indices included the
NDVI [14], which is based on the difference between the reflectance of the visible red (R)
and near-infrared (NIR) bands. It is an indicator that can be used to analyse the strong
chlorophyll absorption region of R and the high reflectance plateau of vegetation canopies
in NIR. Healthy vegetation is indicated by high values, whereas bare soil has values near
to zero and open water has values well below zero. This discrimination method allows the
cover classification to be reduced to a level or density slicing operation [15] where threshold
values are used to separate classes.

On the one hand, the traditional survey of wetlands is a fieldwork-intensive task,
which is time-consuming and expensive; thus, it is usually suitable only for small areas [16].
On the other hand, remote sensing provides coverage at various scales and can be repeated
over time; the monitoring is low-cost and high-efficiency [17]. Typically, the boundaries
between wetland types are fuzzy since they change gradually from bare soil to wet soil to
different vegetation covers or open water. Within vegetated areas, there are many different
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types with different densities of vegetation; therefore, the image parameters used for the
monitoring have to be selected to fit the characteristics of the wetlands, and the analysis
methods should also be chosen accordingly [18].

The Normalized Difference Moisture Index (NDMI) is derived from two infrared
bands. It is sensitive to the moisture content of the vegetation, but it can also be used for
separating the basic land cover classes of wetlands. The NDMI is the normalized difference
between near-infrared (NIR) and short-wave infrared (SWIR) bands [19]. In the original
publication, this index was referred to as NDWI. However, for the sake of differentiating it
from the identically named index of McFeeters [20], in what follows, the widely accepted
name Normalised Difference Moisture Index (NDMI) will be used.

Several techniques used wetness indices to group different vegetation classes and
separate flooded and non-flooded pixels by monitoring dynamically changing inundation
extents [21,22]. However, due to the complexity and variety of surface characteristics of
wetlands, there is no single foolproof method for calculating evapotranspiration and these
methods can only be successfully applied to wetlands with uniform vegetation cover [23].

The lack of availability of unsecured water in arid and semi-arid areas threatens the
preservation of marshlands due to high levels of evapotranspiration and limited rainfall,
dramatic changes making the classification and creation of land cover maps of wetlands
a difficult task, yet one that is needed for continuous renewal. This paper introduces a
fast and low-cost method for classifying and monitoring marshlands in these regions. The
analysis is based on analysing water coverage with the NDWI and characterising vegetation
with NDMI and NDVI indices. It is a modification of the UNEP methodology. The results
can support wetland modelling, such as hydrodynamic models for the optimization of
the distribution of available water to preserve marshes, and link this approach to wetland
mapping for the calculation of spatial evaporation and transpiration.

The study area (the Al Hammar marsh in the southern part of Iraq) was chosen
because this marsh was exposed to extreme desiccation in the 1990s. The availability and
regime of water inflow have changed due to major anthropogenic interventions in the last
several decades. Further, they have become targets of upstream water management policy
inside and outside Iraq. Using this approach will help to improve water management
and preservation of the wetlands in these regions due to the lack of inflow and the high
evapotranspiration.

2. Materials and Methods
2.1. Study Area

The Iraqi Marshlands form the largest wetland system in Southwest Asia, covering
more than 20,000 km2 around the confluence of the Tigris and Euphrates Rivers in southern
Iraq and southwestern Iran.

In the past, the marshes served as a flood retention basin. The Al Hammar marsh
is a sub-system of the Iraqi Marshlands, with an area reaching 4500 km2. Between 1991
and 1997, six canals with a total length of 5000 km were built to drain the marshes for
political reasons; by 1999, the marshes became nearly dry [24,25]. Munro and Touron [11]
also observed that the wetlands’ fast decline began in the early 1990s. However, nothing
is known about the wetland’s health prior to the first Gulf War in the early 1980s. The
UNEP estimated in 2001 that just 10% of the natural marshlands survived. By 2003, just
6% of the Al Hammar marsh was marshland [24]. The Iraqi Marshes Restoration Center
(CRIM) began re-flooding it in 2004. Due to the expansion of farmlands, urban areas, and
oil exploitation, the viable restoration area is now about 1600–1700 km2 [26–28]. It is one of
the three Mesopotamian marshlands, which have been designated as Ramsar Sites under
international conservation management [29]. The marsh lies south of the reach of the
Euphrates River before joining the Tigris River at Al Qurna City. This reach of the river runs
from Al Nasiriyah City in Al Nasiriyah Governorate to Al Chibaeich City, in the northern
part of the Al Basrah Governorate. The marsh is located between latitudes 46◦ and 47◦ and
longitude 30◦ and 30.5◦ and is bounded by the Euphrates River as the northern boundary,
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the Shatt Al Arab River as the eastern boundary, the main supply channel of the Al Basrah
Water Supply Project and the Main Outfall Drain (MOD) as the southern boundary, and
Suq AshShuyukh City as the western boundary (Figure 1).
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Figure 1. (a) Map of Iraq. (b) Satellite image showing the geographic location of the Al Hammar
marsh with the boundary set by CRIM [28].

The Al Hammar marsh lies within a region of high evapotranspiration. Daily data
from the Al Chibaeich Meterological station located at E: 47.07, N: 30.94 (maximum and
minimum temperature and relative humidity, maximum and average wind speed and the
sum of solar radiation, rainfall) between 2015 and 2018 and ETo calculator software from
FAO (Food and Agriculture Organisation of the United Nations) version 3.2 were used to
obtain average monthly reference evapotranspiration (ETo) rates [30]; the results are shown
in Figure 2. ETo reaches 300 mm per month during the summer, and a rapid approach is
required for classification and monitoring in order to achieve optimum integrated water
management.

One of the largest drivers which affects water cover and vegetation cover, i.e., the water
balance of marshes in arid and semi-arid areas, is evapotranspiration. It is very intensive
under these conditions due to high air temperatures and low atmospheric moisture content.
Figure 2 shows the temperature and the reference evapotranspiration for the years 2015
to 2018. High ETo concentrated in May until October due to high temperatures, but the
flow into marshland in these months is due to agriculture activities upstream. Thus, a
rapid approach is required for classification and monitoring to obtain optimum water
management in this area.
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According to the Ramsar wetland classification system [31], the territory of the Al
Hammar marsh is mainly covered with seasonal saline or brackish marshes and pools
(code: Ss) and permanent saline or brackish marshes and pools (code: Sp) [29]. The local
name for these seasonal brackish marshes or pools is ‘Ahwar’. There are some permanent
rivers (code: M) in the area. Additionally, there are seasonal saline or brackish lakes and
flats (Code: R) and permanent saline or brackish lakes (code: R). Artificial wetlands are
also common in the marsh, e.g., irrigated lands (code: 3), canals, drainage channels, and
ditches (code: 9).

Al-Hilli [32] described three major groups of plants in the Al Hammar: xerophyte,
halophyte, and hydrophyte communities. Each of these habitats is associated with defined
topographic, edaphic, and climatic conditions. Xerophytic plant communities cover the
elevated semi-desert plateau around the marshes, where the soil is mostly non-saline to
slightly saline. Halophytic plant communities are restricted to the lowlands with shal-
low water tables around areas subject to flooding. Hydrophyte communities consist of
permanently submerged, partly submerged, and floating leaf plants [32].

The Al Hammar marsh comprises a system of deep and shallow lakes depending
on the hydrological regime and water availability [33]. It is covered by the southern
cattail (Typha domigensis), club-rush (Schoenoplectus litoralis) in the permanent marsh, and
common reed (Phragmites australis) in the peripheral marsh [34,35]. In shallow lakes,
pondweed vegetation is typical, such as shining pondweed (Potamogeton lucens). According
to Hussain and Alwan [36], the emergent plant cover is dominated by Schoenoplectus litoralis
(49.46%), Typha domingensis (36%), and Phragmites australis (22.5%), while rigid hornwort
(Ceratophyllum demersum), spiny naiad (Najas marina), and sago pondweed (Potamogeton
pectinatus) constituted the highest cover for submerged hydrophytes. The vegetation
zonation in the Al Hammar marsh is determined by the water regime, salinity, and physical
and chemical properties of the water [32].

The study reported in [36] on plant biomass of the Al Hammar marsh is particularly
relevant for the present study, providing good reference data for vegetation analysis with
remote sensing. The emerged plant biomass in Phragmites australis-dominated communities
in the East Al Hammar marsh was 1238 g m−2 dry weight during summer. The Typha
domigensis-dominated communities attained an even more moderate biomass of 111 g m−2.
The Schoenoplectus litoralis communities had a biomass reaching 91 g m−2. The submerged
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hydrophyte biomass was dominated by Ceratophyllum demersum, at 236 g m−2. These
significant differences in biomass are not surprising, as Phragmites australis forms dense
communities that can reach a height of 4–6 m during the summer [37].

2.2. Analysis Methods

Characterisation of wetlands is typically achieved by analyzing the key land cover
units’ spectral characteristics based on their visible and infrared reflectance. The separation
of open water, vegetation, and soils is best achieved using the red (0.60–0.69 µm) and near-
infrared (0.70–1.30 µm) wavelength ranges. Water shows relatively low or no reflectance
in near-infrared and maximum reflectance in the blue wavelength range. Chlorophyll in
healthy vegetation is a good absorber of electromagnetic energy in the visible range, espe-
cially in red, and strongly reflects in the near infrared. The different vegetation types show
well detectable differences in these characteristics. Bare soil has a gradually increasing
reflectance from the visible range through the near infrared to the middle infrared, depend-
ing on soil characteristics (texture, moisture content, and organic content). Historically, a
combination of analog panchromatic and infrared photography has been used for such
analysis, although now digital multiband scanners have become the preferred medium.
A wide range of aerial and space-borne satellite imaging systems provide data over this
spectral range but differ substantially in their temporal imaging frequency (overpasses
per year), swath diameter, spatial resolution, and cost. The selection of imaging systems
is enforced by a trade-off between these variables and must be attuned to the study’s
objectives and not vice versa.

In 2010, UNEP, UNDP, and CRIM suggested a method based on NDVI to classify
marshlands, and thresholds have been developed to describe the status of marsh vegetation.
The UNEP study [38] showed that NDVI values greater than 0.125 represented vegetation
cover. Sparse vegetation was found to correspond to NDVI values between 0.125 and 0.25,
while medium-density vegetation was associated with NDVI values between 0.25 and 0.5.
Dense vegetation was found to occur in areas with NDVI values above 0.5. Unfortunately,
areas with NDVI values between 0.125 and 0.25 (sparse marshland vegetation) showed
large commission errors, artificially expanding marshland areas. The errors resulted largely
from the inability of the NDVI to differentiate between submerged sparse water vegetation
and sparse terrestrial vegetation. As such, there was a need to initially delineate the
marshland areas as a function of their wetness before classifying the vegetative cover status
in Figure 3. Thresholding of NDMI was used for the delineation of areas with high levels
of soil moisture [39]. NDMI values greater than zero were identified as wet regions [40].
Regions covered with open water were identified by their NDWI values: regions with an
NDWI value greater than zero were defined as open water [41–43].

Three spectral indices were generated from the Landsat images to assess the temporal
variability of the land cover in the marshes and the health of the vegetation cover (Table 1).

Table 1. Spectral indices used to assess the Iraqi marshlands.

Index Equation

NDVI NDVI = (NIR−R)
(NIR+R)

[8]

NDMI NDMI = (NIR−SWIR1)
(NIR+SWIR1)

[19]

NDWI NDWI = (Green−SWIR1)
(Green+SWIR1)

[20]

NIR: Near infrared (Band 4 in Landsat 5 and 7; Band 5 in Landsat 8); R: Red (Band 3 in Landsat 5 and 7; Band 4
in Landsat 8); B: Blue (Band 1 in Landsat 5 and 7; Band 2 in Landsat 8); SWIR1: Shortwave infrared (Band 5 in
Landsat 5 and 7; Band 6 in Landsat 8); Green: (Band 2 in Landsat 5 and 7; Band 3 in Landsat 8).

Variations in the spatial extent of the marshlands over time was assessed by the
method presented in Figure 4. In the first step, open water regions were identified as the
pixels with NDWI values greater than zero. Non-water cells were then separated into dry
areas and wet soils or vegetated areas: if NDMI > 0, then the area is considered a vegetated
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area or wet but non-vegetated area. Then we used the category and thresholds defined by
UNEP [38] (see above) to identify the habitat types and the dominant plants, and the land
cover categories were compared with the in situ data of [32,38,44] (Table 2). The method
was implemented as a model in Arc GIS 9.2. The raster layer was converted to the vector
layer to calculate each class area; the areas are shown in Table A2 (Appendix A).
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Table 2. Comparison of land cover categories based on remote sensing in this study and the habitat
types of the Al Hammar marsh [32,38,44].

RS Categories NDVI1 Habitat Type 2 Dominant Plants 3

Water

Rooted, submerged, helophytic
and free-floating vegetation,

non-vegetated river and canal
(pondweed)

Ceratophyllum demersum,
Myriophyllum verticillatum

Dense vegetation ≥0.5 Flooded communities (reedbed) Phragmites australis

Medium-density vegetation >0.25, <0.5 Flooded communities (reedbed) Typha domigensis

Low-density vegetation >0.125, <0.25 Flooded communities (reedbed) Schoenoplectus litoralis

Wet soil Terrestrial vegetation, scrub Carex spp., Juncus spp.,
Tamarix spp.

Dry area Non-vegetated desert Salsola spp., Bienertia cycloptera,
Hammada elegans, etc.
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2.3. Data Download and Pre-Processing

Images from three Landsat sensors (TM, ETM, and OLI; Table A1), were used to create
the time series of landcover maps of the Al Hammar marsh.

One scene was selected (path166/row 039) for each month, with cloud cover less
than 10% for six years: 1991 (before degradation), 2002 (after degradation), and 2015; 2016,
2017, and 2018 for the analysis. A full breakdown of the data acquired is presented in
Appendix A, Table A1. A total of 58 Landsat images were collected for the Al Hammar
marsh. The available Landsat dataset for the Al Hammar marsh is non-uniform over the
analysis period (some months were not represented due to cloud cover); there is a more
complete record after 2013, when the data from Landsat 8 became available.

3. Results and Discussion

Rectified and enhanced false-colour composites of the marshes in July 1991, 2002, and
2017 are shown in Figure 5. Based on the methodology, the spatial extent of the marshlands
was assessed in each satellite image. A visual inspection reveals the extraordinary degree
of spatial changes in its extent as well as vegetative cover over the years during the study
period. After a strong presence of vegetation in 1991, the 2002 image shows a near-complete
lack of vegetation in the Al Hammar marsh, while there is again vegetation cover in 2017.
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The spectral indices-based classification results (Figures 6–8) provided the basis for the
quantitative analysis shown in Figure 9. In comparison to the baseline (1991), the marsh lost
a large portion of its vegetation cover up to the year 2002. This is the result of the drainage
and desiccation activities carried out by the Iraqi regime during that period. The average
monthly area covered with water dropped from more than 800 km2 in 1991 (Figure 6) to
less than 20 km2 in 2002, as shown in Figure 7. Fortunately, recent restoration efforts have
recovered some of these losses. In the past four years (2015–2018), the vegetated area has
been above the 500 km2 mark 75% of the time (Figures 8 and 9). However, in 2018 the
vegetation and water covers are still lower than in 1991 (Figure 9). In the baseline year
between April and September, vegetation and water (these two land cover classes indicate
the actual extent of the wetland) covered between 1150 and 1430 km2. These land cover
classes did not grow beyond 1150 km2 in 2018 (Table A2). A closer look was taken at
the changes in vegetative cover over the past four years (2015–2018). The results showed
the sensitivity of the marshland to droughts, the vegetation cover in 2015 (a dry year)
appearing to be much lower than the levels seen in 2016, 2017, and 2018, especially in the
months of August through November.

Between April and September 1991, vegetation covered between 400 and 570 km2

in the marshland. Its extent was reduced to less than 50 km2 in 2002, and 170–490 km2

in 2018. Moreover, the vegetation composition changed: the relative areas of high- and
medium-density vegetation dropped in comparison to those of sparse vegetation. This
shows that the recovery of the marshland has been able to reverse the dramatic degradation
seen in 2002.
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3.1. Sensitivity to Spatial Resolution

To analyse the effects of spatial resolution and using different sensors, two images
from different sensors (Sentinel-2 with 10 m resolution and Landsat 8 with 30 m resolution)
taken on the same day—24 August 2017—were compared. We analysed the western part
of the study area, where the two images overlapped, and used the same method to classify
the marshland. The results are shown in Figures 10 and 11. The two resulting maps,
resampled to 10 m spatial resolution, were compared in a confusion (error) matrix. The
overall accuracy of the two maps was 0.78, which can be considered a good match. The
complex patchy pattern of the wetland results in relatively more mixed pixels in the Landsat
image, with the coarser resolution, than in the Sentinel image, leading to more mismatch of
spectrally different classes (e.g., water vs. dry soil).
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3.2. Effects of Water Availability on Land Cover

CRIW carried out monthly discharge measurements at the inlets of the main feeder
canals of the marsh during the period 2015–2018 (Figure 12).
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Figure 12. Average monthly flow (in MCM) to the marshland between 2015 and 2018; no trend is
evident, and the flow depends on the marshland’s upstream water control.

A statistical analysis was carried out to understand the relationships between the
different elements of the water budget and land cover using the Statistical Package for
the Social Sciences (SPSS) software. In a multivariate regression analysis, the land cover
categories were tested against three predictors; the total monthly flow of the feeder canals,
monthly mean air temperature, and ETo had no impact on wet soil, low vegetation, and
medium vegetation. A significant positive impact of total flow on open water cover was
observed, as well as negative impacts of air temperature and evapotranspiration (Table 3).

Table 3. Results of correlation (R) between dependent and independent variables for a statistical
model.

Dry Area Wet Soil Open
Water

Low
Vegetation

MD
Vegetation

Dense
Vegetation

Total Flow
Discharge

Monthly
Air Tem-
perature

ETo (mm)
Total

Dry Area 1
Wet Soil 0.105 1

Open
Water −0.675 ** −0.221 1

Low
Vegetation 0.249 0.431 ** −0.316 1

Medium-
Density

Vegetation
−0.510 ** 0.079 0.008 0.127 1

Dense
Vegetation −0.286 −0.311 −0.118 −0.650 ** −0.083 1

Total Flow
Discharge −0.507 ** −0.269 0.545 ** −0.237 −0.116 0.241 1

Monthly
Air Tem-
perature

0.088 −0.058 −0.445 ** 0.214 −0.007 0.321 * −0.103 1

ETo (mm)
Total 0.063 −0.100 −0.343 * 0.236 −0.039 0.230 −0.029 0.954 ** 1

** Correlation is significant at the 0.01 level (two-tailed test). * Correlation is significant at the 0.05 level (two-
tailed test).

4. Conclusions

Surface reflectance image products were obtained from the USGS Earth Explorer
website: http://earthexplorer.usgs.gov. accessed on 15 October 2020.

http://earthexplorer.usgs.gov
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Results generated using this methodology will be critical to forecast the future state of
marshlands. The revival of marshlands is based on the incoming flows affected by upstream
agricultural and hydrological conditions. This approach can support the examination of
existing management and restoration plans for marshlands/wetlands.

Extreme meteorological and flooding conditions in arid and semi-arid regions result in
rapid and dramatic changes in the water and vegetation cover in wetlands. To understand
these systems and support their management, a robust classification and monitoring
method is required.

A classification approach was presented for monitoring marshlands by a hierarchical
application of NDVI, NDMI, and NDWI indices calculated on the basis of optical satellite
images. The proposed automatic classification results in six land cover classes, namely,
(1) open water, (2) dry area, (3) dense vegetation, (4) medium-density vegetation, (5) low-
density vegetation, and (6) wet soil. The proposed method uses optical indices calculated
from level-2 data, allowing the use of generic thresholds.

Optical indices have been used for wetland mapping by several authors already
(e.g., [45–49]). The approach that is proposed here uses a combination of the indices,
exploiting the strength of each of them in optimally separating different land cover types.
The advantage of the method is the use of fine-tuned, time-independent thresholds for a
systematic and automated mapping.

For long-term monitoring, time series of Landsat images were exploited for classifying
and monitoring the Al Hammar marsh (Iraq) over a time span of 29 years. To estimate
the sensitivity of the method to the spatial resolution of the images, a comparison was
made with the classification result of a Sentinel-2 image. Spectral differences did not
affect the comparison, since the Landsat data can be combined into a systematic time
series with Sentinel-2 images [45,46] Compared to the higher-resolution Sentinel-2 data,
the classification showed a good overall accuracy of 0.78. Differences can be attributed to
the patchy land cover pattern of the Al Hammar marsh, resulting in more mixed pixels at
the 30 m resolution of the Landsat 8 images. In general, it can be concluded that the coarser
resolution of the Landsat images provides sufficient accuracy for defining the land cover
categories, but the much longer time series of the Landsat sensor is superior in monitoring
long-term changes.

A statistical analysis was carried out to identify the direct relationships between
selected variables affecting the water balance (total monthly inflow discharge, monthly
air temperature, and ET) and the formation of land cover classes. A significant positive
correlation between total inflow and open water cover was found. This shows that the
flooding process is fast; open water cover is formed in the same month as the inflow.
There was no direct effect of inflow on vegetation cover detected, since the emergence
of vegetation after flooding occurs with a time delay. The reaction of vegetation cover to
flooding dynamics will be a topic for further analysis.

Significant negative correlations between water cover and air temperature and evapo-
transpiration were also observed. This proves that these climatic factors affect water cover
with high intensity due to the shallowness of the water. For maintaining stable wetland
conditions, a sufficient water depth has to be achieved and maintained.

The implemented monitoring approach allowed the analysis of the flooding dynamics
for a longer period, i.e., from 1991 to 2018.

The results demonstrated the changes within the marshes over the last 28 years. This
analysis sheds light on the timing of major changes and allows the identification of the
primary forcing variables. It was demonstrated that up until 2002 the total area covered by
water and vegetation decreased to 90% of the area in 1991. As a result of the re-wetting
efforts after 2002, recovery was observed, but the wetland extent did not reach the area of
the baseline year of 1991.

The demonstrated method uses empirically defined and validated thresholds which
might be fine-tuned with machine learning techniques. Recent research results for the
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classification of land cover using machine learning are promising [47,48]. Optical indices-
based classification accuracies can be improved significantly [49].

Additionally, to observe the temporal and spatial patterns of land cover change using
this methodology, empirical orthogonal function (EOF) analysis might be used. EOF can be
used to track the temporal and spatial distributions of biomass [50,51].

The results presented here prove that this approach is suitable for classifying marsh-
lands with land cover types of water, dry soil, wet soil, and different densities of vegetation.
It can also be recommended to combine the long time series of Landsat images with new
satellite data to provide more accurate classifications and increase revisiting times.

There is potential to develop our methodology to include other indices and other
landcover groups. The proposed method could be adopted to efficiently classify and
monitor marshlands and be used in different marshlands by changing the thresholds for
NDVI, NDMI, and NDWI.
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Appendix A

Table A1. Landsat data types and acquisition dates.

Date of
Acquisition Sensor Type Date of

Acquisition Sensor Type Date of
Acquisition Sensor Type

22 Feberuary 1991 TM 12 March 2015 OLI 17 March 2017 OLI
10 March 1991 TM 13 April 2015 OLI 02 April 2017 OLI
11 April 1991 TM 31 May 2015 OLI 20 May 2017 OLI
29 May 1991 TM 16 June 2015 OLI 21 June 2017 OLI
14 June 1991 TM 18 July 2015 OLI 23 July 2017 OLI
16 July 1991 TM 19 August 2015 OLI 08 August 2017 OLI

17 August 1991 TM 20 September 2015 OLI 09 September 2017 OLI
18 September 1991 TM 09 December 2015 OLI 11 October 2017 OLI

20 October 1991 TM 10 January 2016 OLI 28 November 2017 OLI
21 November 1991 TM 30 March 2016 OLI 15 January 2018 OLI
23 December 1991 TM 15 April 2016 OLI 20 March 2018 OLI

27 January 2002 ETM 17 May 2016 OLI 05 April 2018 OLI
03 May 2002 ETM 18 June 2016 OLI 23 May 2018 OLI
12 June 2002 ETM 04 July 2016 OLI 08 June 2018 OLI
14 July 2002 ETM 05 August 2016 OLI 10 July 2018 OLI

08 September 2002 ETM 22 September 2016 OLI 11 August 2018 OLI
26 October 2002 ETM 08 October 2016 OLI 12 September 2018 OLI

11 November 2002 ETM 09 November 2016 OLI 14 October 2018 OLI
29 December 2002 ETM 11 December 2016 OLI

23 January 2015 OLI 12 January 2017 OLI
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Table A2. Monthly land cover classification area for each class (in km2) for the years 1991, 2002, 2015, 2016, 2017, and 2018.

1991

Marsh Land Cover January February March April May June July August September October November December

Dry area - 486 323 235 298 322 337 366 412 394 380 587

Wet soil - 74 91 18 15 16 16 17 52 106 18 38

Water - 1054 1225 947 755 712 724 676 611 773 742 666

Low-density vegetation - 63 44 78 58 72 61 57 73 372 102 195

Medium-density
vegetation - 7 2 337 269 294 384 281 393 39 442 197

Densely vegetated - 0 0 69 288 267 161 287 143 0 0

2002

Dry area 1598 - - 1592 1570 1543 - 1506 1469 1490 1559

Wet soil 14 8 6 15.2 19.98 21.55 23 17.7

Water 14 - - 11 9 15 - 20 48 41 25

Low-density vegetation 12 - - 39 57 69 - 89 98 66 36

Medium-density
vegetation 32 - - 34 41 41 - 47 46 62 42

Densely vegetated 13 - - 0 0 1 - 2 1 2 5

2015

Dry area 595 - 435 268 340 443 577 688 745 - - 712

Wet soil 84 - 67 99 95 74 143 184 195 - - 135

Water 760 - 766 788 554 520 388 314 287 - - 408

Low-density vegetation 104 - 99 113 274 143 138 168 176 - - 126

Medium-density
vegetation 112 - 273 264 388 273 285 270 244 - - 255

Densely vegetated 11 - 43 153 31 231 154 59 36 - - 48
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Table A2. Cont.

1991

Marsh Land Cover January February March April May June July August September October November December

2016

Dry area 833 - 476 433 446 504 498 595 566 591 585 428

Wet soil 89 - 98 93 76 139 167 50 69 72 56 141

Water 474 - 647 684 631 376 354 470 441 405 444 500

Low-density vegetation 162 - 99 70 77 230 256 76 86 96 58 68

Medium-density
vegetation 109 - 217 172 192 292 324 213 211 211 276 407

Densely vegetated 16 - 147 232 262 138 85 279 310 310 265 140

2017

Dry area 565 - 443 331 355 439 482 504 522 525 364 -

Wet soil 142 - 61 62 74 135 97 113 111 115 119 -

Water 542 - 702 865 624 440 461 427 417 405 486 -

Low-density vegetation 138 - 108 87 130 104 65 66 76 87 105 -

Medium-density
vegetation 283 - 280 276 410 221 221 221 249 272 381 -

Densely vegetated 13 - 89 62 90 345 356 353 309 279 228 -

2018

Dry area 532 - 436 196 405 419 573 738 775 740 - -

Wet soil 386 - 416 528 390 355 290 242 275 308 - -

Water 386 - 416 528 390 355 290 242 275 308 - -

Low-density vegetation 155 - 127 153 86 143 104 138 201 218 - -

Medium-density
vegetation 206 - 267 217 200 318 224 266 156 108 - -

Densely vegetated 18 - 23 63 212 96 203 59 1 1 - -
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