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Abstract: Runoff in urban streams is the most important factor influencing urban inundation. It also
affects inundation in other areas as various urban streams and rivers are connected. Current runoff
predictions obtained using a multi-layer perceptron (MLP) exhibit limited accuracy. In this study,
the runoff of urban streams was predicted by applying an MLP using a harmony search (MLPHS)
to overcome the shortcomings of MLPs using existing optimizers and compared with the observed
runoff and the runoff predicted by an MLP using a real-coded genetic algorithm (RCGA). Furthermore,
the results of the MLPHS were compared with the results of the MLP with existing optimizers such
as the stochastic gradient descent, adaptive gradient, and root mean squared propagation. The runoff
of urban steams was predicted based on the discharge of each pump station and rainfall information.
The results obtained with the MLPHS exhibited the smallest error of 39.804 m3/s when compared to
the peak value of the observed runoff. The MLPHS gave more accurate runoff prediction results than
the MLP using the RCGA and that using existing optimizers. The accurate prediction of the runoff in
an urban stream using an MLPHS based on the discharge of each pump station is possible.

Keywords: runoff prediction; pump station; urban stream; multi-layer perceptron; harmony search

1. Introduction

In Korea, most of the annual precipitation is concentrated during the rainy season. In
urban areas, the water level of urban streams increases rapidly during the rainy season,
creating a flood risk. Such urban areas have constructed pump stations to prevent backwater
effects from streams and to quickly drain water during rainy seasons. Runoff from pump
stations affects stream water level and inundation in the watershed. For urban streams,
the flow rate is higher in the lower stream, which is close to residential and commercial
areas, than in the upper stream, which is located in mountainous areas. A high flow rate is
associated with an increased risk of damage due to flooding.

Deep learning, including multi-layer perceptron, has advanced in various ways since
its initial development and has been used in various fields. Some important deep-learning
techniques are given below.

• Rosenblatt (1958) introduced the concept of a perceptron as a probabilistic model of
an artificial neural network (ANN) [1].

• Kohonen (1982) suggested the self-organizing map (SOM) in a neural structure using
a topologically ordered transformation of arbitrary dimensional signals to one/two
dimensional discrete maps [2].

• Hopfield (1982) applied the information storage algorithm to neural networks based
on synapses of a general type proposed by Hepp [3,4].

• Pearl (1985) developed the Bayesian network model with self-activated memory [5].
• LeCun et al. (1998) developed a gradient-based learning technique called a convolu-

tional neural network (CNN) for document recognition [6].
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• Rumelhart et al. (1986) introduced a recurrent neural network (RNN) by learning
representations using back-propagating errors [7].

• Hochreiter et al. (1997) suggested long short-term memory (LSTM) to overcome the
vanishing gradient problem in RNNs [8].

• Chung et al. (2014) developed a gated recurrent unit (GRU) to simplify the complex
structure of LSTM [9].

Various studies in the field of hydrology have used deep learning techniques [10].
First, various studies have used ANNs and Deep Neural Networks (DNNs). Multioutput
neural network models have been suggested to predict flow-duration curves in ungagged
locations [11]. A DNN was compared with other machine-learning models such as the
support vector machine (SVM), K-nearest neighbor (KNN), and naïve Bayes for flood
prediction [12]. A deep learning neural network using Adam optimization was applied to
predict flash flood susceptibility and its predictions were compared with those obtained
with other machine learning models [13]. Swarm intelligence algorithms were combined
with a DNN for flood susceptibility mapping [14]. A multilayer perceptron and RNN
were used to predict the real-time water levels in cascaded channels [15]. A hybrid model
with a deep neural network and variational mode decomposition was used for daily
runoff forecasting [16].

Various studies have also been conducted using CNNs. To estimate the availability of
water, Deep-WaterMap has been suggested for mapping surface water [17]. A novel CNN
architecture was constructed for accurate information to extract urban water bodies from
high-resolution remote sensing imagery [18]. A CNN for monitoring scalable flood-level
trends with surveillance cameras has been suggested for flood detection [19]. The accuracy
of inundation forecasting based on computer-vision assistance has improved [20]. A dilated
causal CNN used for forecasting real-time water levels was compared with a multilayer
perceptron and an SVM [21]. A one-dimensional CNN and an extreme learning machine
were applied to predict the streamflow in the Gilgit River, Pakistan [22]. CNN-based
methods with 13 flood triggering factors were compared with an SVM in Shangyou County,
China [23]. Rainfall-runoff modeling with a one-dimensional CNN was compared with
the results of recurrent-type models, including LSTM, in the Mekong Delta [24]. A CNN
with transfer learning was used for water segmentation and water-level estimation in
the Severn and Avon Rivers in the U.K. [25]. A CNN with SegNet architecture and a
fully convolutional network with a transfer learning strategy was suggested to provide
accurate stage measurements [26]. A deep learning approach combining a CNN and
LSTM was employed to predict the water level and water quality in the Nakdong River
Basin [27]. A hybrid deep learning model that used a CNN and LSTM was compared with
machine-learning models, such as the random forest and support vector regression [28].

LSTM was compared with an ANN in rainfall-runoff simulations using hydrological
sequence time-series predictions [29]. The results obtained with LSTM were compared
with the results of the Sacramento Soil Moisture Accounting Model in rainfall-runoff
modeling [30]. LSTM was used to predict the water-level time series of the Jamsu Bridge in
Seoul, Korea [31]. LSTM and an antlion optimizer were used to conduct monthly runoff
forecasting [32]. Reservoir operations using an ANN, support vector regression, and LSTM
were conducted to assist in decision-making [33]. An integrated LSTM with a reduced-
order model was suggested for spatiotemporal prediction [34]. A genetic algorithm-based
nonlinear autoregressive model with exogenous input was applied to simulate reservoir
operations [35]. Global hydrological models have been improved by applying LSTM [36].
LSTM was applied to predict streamflow in the Brazilian River basin in Texas, USA [37].
Sacramento Soil Moisture Accounting and NOAA National Water Model reanalysis were
compared with LSTM using 15 years of daily data [38]. The autoregressive model and LSTM
were used to simulate and predict hydrological time series [39]. A data-drive approach
involving an entity-aware LSTM model with the CAMELS dataset has been suggested [40].
A 3 h mean real precipitation forecast corrected by LSTM was applied to a coupled 1D/2D
urban hydrological model [41]. The LSTM-based encoder–decoder framework was used
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to model multi-step-ahead flood forecasting [42]. Rainfall-runoff modeling in the Clear
Creek and Upper Wapsipinicon River of Iowa in the U.S. was conducted using LSTM and
a sequence-to-sequence model [43]. A decomposition ensemble model with LSTM and
variational mode decomposition was suggested for streamflow forecasting [44]. An LSTM
model with a Gaussian process was applied to forecast the streamflow in the upper Yangtze
River, China [45].

Several different deep learning models have been proposed. Streamflow and rainfall
forecasting were conducted using convolutional LSTM and wavelet LSTM [46]. A feature-
enhanced regression model with a combined stack autoencoder and LSTM was proposed
to forecast the short-term streamflow of the Yangtze River in China [47]. RNN trained
with back propagation through time, and LSTM were applied to forecast the water level in
the Trinity River of Texas, U.S. [48]. Monthly rainfall forecasting with an RNN and LSTM
was conducted using monthly average precipitation data [49]. Heavy rain damage was
predicted by applying a DNN, a CNN, and an RNN [50].

Studies using methods other than those mentioned above have also been conducted.
Probabilistic flood forecasting for a real-time framework using an Elman neural network
with different lead times was applied to the Huai River in eastern China [51]. A wavelet-
based ANN, support vector regression, and deep belief networks were used to forecast
multi-step-ahead streamflow in the U.K. [52]. The urban flood depth under various rainfall
conditions was predicted using the gradient boosting decision tree and data warehouse [53].
The SVM, KNN, and naïve Bayes classifiers (trained by weather parameters) were used to
predict floods [12].

Studies combining deep learning techniques with meta-heuristic optimization have
been proposed to forecast rainfall, rainfall-runoff, and water depth. An ANN with a
structure of multi-layer perceptron (MLP) using a real-coded genetic algorithm (RCGA)
was developed to overcome the limitations of the rainfall-runoff model using an existing
ANN [54]. The evolved neural network, a kind of MLP using RCGA was suggested to
forecast daily rainfall-runoff [55]. The optimized scenario generated by genetic algorithm
(GA) combined with ANN (MLP) was used to forecast rainfall [56]. A hybrid ANN model
(MLP) and genetic algorithm using precipitation and stage data were developed [57].

Various deep learning techniques have been applied to rainfall, rainfall-runoff, and
water level prediction, but the effects of various hydraulic structures, such as pump stations
in urban areas, were not considered. Additionally, the harmony search (HS) has been
applied to improve the existing optimizers of deep learning techniques, including the MLP.
The MLP was suggested to solve the XOR problem, which could not be solved with a
single-layer perceptron (Minsky M. L. and Papert S. A. 1969. Perceptrons. Cambridge, MA:
MIT Press). The HS is a meta-heuristic optimization technique motivated by harmony [58].
The HS was applied to various studies including computer science, mathematics, and civil
engineering [59]. In hydrology, hydraulics and water resources problems, including the
optimal design of water supply network, showed good results under HS [60]. Additionally,
the guidance was provided to produce useful and relevant results by reusing data and
model [61]. The application of HS was classified as data mining, medical system, agri-
culture, scheduling, power engineering, image processing, communication system, water
resource management, astronomy, health care, and manufacturing/design [62]. The HS
was compared with various meta-heuristic optimization algorithm such as evolutionary
algorithm (EA), simulated annealing (SA), ant colony optimization (ACO), particle swarm
optimization (PSO), and firefly algorithm (FA) [63].

The data used to predict flood and water levels in urban areas, such as the water
level and runoff, are limited. To overcome this limitation, in this study, the runoff of urban
streams was predicted based on the discharge of pump stations in urban streams. The peak
value of the data for each year is different, which adversely affects learning. In order to
overcome this shortcoming, normalized data that had been applied in various studies and
showed good performance were used as an MLP optimizer for combining MLP and HS. A
multi-layer perceptron combined with the HS (MLPHS) was used to predict the runoff of
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urban streams. The results predicted using multi-layer perceptron models combined with
the HS were compared with the results obtained using a multi-layer perceptron coupled
with existing optimizers and the RCGA.

2. Methodology
2.1. Overview

The study was divided into three steps:

1. The observed rainfall data, the discharge of each pump station, and the runoff of the
urban stream were collected.

2. The structures of MLPHS were generated to predict the runoff of urban streams.
3. The MLPHS results were compared with the results of the MLP with existing optimiz-

ers and the RCGA.

Figure 1 illustrates the steps followed in this study to predict the runoff of urban stream.
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Figure 1. Application process followed to predict the runoff of urban stream.

2.2. Study Area

The Han River, which penetrates Seoul (the capital of South Korea), has various trib-
utaries such as the Anyang and Hongje streams, and the Anyang Stream has tributaries
such as the Mokgam and Dorim streams. In the Dorim stream, this study focused on
two tributaries (Daebang and Bongchun streams) and 11 pump stations (Mullae, Dorim2,
Daerim2, Daerim3, Guro1, Guro2, Guro3, Guro4, Sinlim1, Sinlim2, and Sinlim5 pump sta-
tions). The discharged stream of the 11 pump stations is the Dorim Stream. The Daebang
and Bongchun streams had no pump stations. The Dorim stream starts at Seoul National
University, located on Gwanak Mountain, the upstream point, and continues to the down-
stream point of the Anyang Stream junction. The monitoring point for observing the
runoff of the Dorim Stream is located downstream. In addition, an observatory for rainfall
observations was located in the middle of the watershed. The drainage area (A), length
(L), and shape coefficient (A/L2) of the Dorim stream are 41.93 km2, 14.2 km, and 0.21,
respectively. The watershed slope of the Dorim Stream ranges from 0.007 to 0.8598. Figure 2
shows information about the study area.
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The drainage area of the 11 pump stations in the Dorim stream is 8.84 km2, which
is approximately 21% of the total drainage area of the Dorim stream. The length of the
Daebang stream is 7.16 km, and the length of the Bongchun stream is 5.00 km. The Gwanak
detention reservoir is located upstream of the Dorim stream and has a capacity of 65,000 m3.
The drainage area of the 11 pump stations varies from 0.19 km2 to 2.49 km2. The basin of
the Daerim3 pump station, which has the largest drainage area, has a Daerim detention
reservoir for flood reduction. The capacity of the Daerim detention reservoir is 2447 m3.
Table 1 lists the drainage areas of each pump station.

Table 1. Information about drainage areas.

Location Dorim Stream Dorim2
Pump Station

Daerim2
Pump Station

Daerim3
Pump Station

Guro1
Pump Station

Guro2
Pump Station

Drainage area (km2) 41.93 1.50 0.19 2.49 1.36 0.47

Location Guro3
Pump Station

Guro4
Pump Station

Mullae
Pump Station

Sinlim1
Pump Station

Sinlim2
Pump Station

Sinlim5
Pump Station

Drainage area (km2) 0.45 0.27 0.82 0.56 0.46 0.27

In Table 1, the Daerim3 pump station had the largest drainage area of 2.49 km2,
whereas the Daerim2 pump station had the smallest drainage area of 0.19 km2. Pump
stations are drained naturally through a sluice gate or drained through drainage pumps.
A detention reservoir was constructed in the drainage area of the Daerim3 pump station,
which has the largest drainage area.
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2.3. Preparation of Data for the MLPHS

Prior to being applied to the MLPHS, data from 2010, 2011, 2012, 2013, 2014, 2016,
2018, and 2019, when rainfall occurred most recently in the study area, were prepared.
The interval of the observed runoff in the Dorim stream was 10 min. During the rest of the
period, it is difficult to construct appropriate learning data as the pumps at each pump
station did not operate. If the data of each pump station when the pumps were not operated
is used as the learning data, the learning may not work properly. Since the data for each
year are different, it is difficult to guarantee accurate prediction results when the raw data is
used at it is. To compensate such shortcomings using raw data, in this study, the prediction
accuracy was improved by using normalization. Figure 3 shows the observed rainfall and
runoff data from 2010 to 2019.
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Figure 3. Observed rainfall and runoff data in Dorim stream.

Data from 2010 to 2018 were used as the learning dataset for the MLP, and data from
2019 were used for making predictions. In addition to these data, records of rainfall received
in the study area were used; however, data from pump stations that were not operated due
to the low water level of the stream were excluded.

For efficient learning of the MLP, normalization was conducted to represent each data
set as a value between 0 and 1. The normalization is shown in Equation (1).

yi =
xi − xmin

xmax − xmin
(1)
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where yi is the normalized value, and xi is the real value. xmax is the maximum real value,
and xmin is the minimum real value. To compare the results of each MLP, the square
value-based root mean square error (RMSE) and absolute value-based mean absolute error
(MAE) and R-squared (R2) were applied. The RMSE, MAE, and R2 equations are given by
Equation (A1), Equation (A2), and Equation (A3), respectively in Appendix A.

2.4. Multi-Layer Perceptron Combined with the Harmony Search

Machine learning techniques, including multi-layer perceptrons, are used to predict or
classify data. For example, a computer cannot distinguish a dog from a cat using only a
picture; however, humans can easily distinguish between dogs and cats. For this purpose, a
machine learning method was developed. With machine learning, a large amount of data is
inputted into a computer and then used to classify similar data. When a picture similar to a
stored picture of a dog is input, the computer classifies the picture as a dog. Many machine
learning algorithms have been developed to classify data. Representative examples include
decision trees, Bayesian networks, SVMs, and ANNs. Among them, deep learning methods
are the descendants of ANNs.

A perceptron was proposed as a type of ANN [1]. A single-layer perceptron can
predict linearly separable things; however, the calculation of XOR is not possible. A multi-
layer perceptron has been proposed to overcome the limitation of a single-layer perceptron.
As it can predict non-linearly separable things, it can be used to calculate XOR. Linear
separation is possible with a single neuron in a single-layer perceptron. In a multi-layer
perceptron, the number of neurons is higher than that in a single-layer perceptron, and
layers are added to create a complex decision boundary structure.

In the MLP, the optimizer is a tool applied to the gradient descent using differentiation
to consider the optimization of correlations between neurons. As the use of ANNs, includ-
ing multi-layer perceptrons, has become more widespread, the importance of optimizers
that can efficiently find optimal correlations has increased. The optimizers commonly
used in ANNs are the gradient descent (GD), stochastic gradient descent (SGD), adaptive
gradient (Adagrad), root mean squared propagation (RMSprop), adaptive delta (AdaDelta),
adaptive moment (Adam), and Nesterov-accelerated adaptive moment (Nadam). Existing
optimizers, including the GD, SGD, Adagrad, RMSprop, AdaDelta, Adam, and Nadam
depend entirely on the shape of the error surface and the weights and biases that are
initially created. There is a possibility of convergence to the local optimum as new weights
and biases are generated using the numerical derivative. To overcome the shortcomings of
the existing optimizers, the MLP was improved by applying a meta-heuristic optimization
algorithm that can consider global and local searches.

The HS is a meta-heuristic optimization algorithm motivated by the improvisation
of musicians. The parameters of the HS are the harmony memory size (HMS), harmony
memory considering rate (HMCR), pitch adjustment rate (PAR), and bandwidth (BW).
The HMS is the size of the HM. The number of initially randomly generated solutions was
determined according to the HMS. The HMCR is the probability of choosing a decision
variable within the HM. The process used to create a new decision variable by randomly
combining the decision variables in the current HM is similar to the operation process
of the GA. However, the GA always creates a new decision variable from two decision
variables. The HS, on the other hand, can create a new decision variable from two or
more decision variables as well as the HMS. Additionally, the GA cannot consider decision
variables independently as it should maintain the genetic structure; however, the HS can
select each decision variable independently when generating a new solution. The PAR
is the probability of selecting a new decision variable adjacent to the previously selected
decision variable through the HMCR while considering the BW. To compare the results of
MLP using the existing optimizers, MLP using the RCGA and MLPHS, the structure of
MLP was set to five hidden layers, and ten nodes in each hidden layer were set. Figure 4
shows the calculation flow of the MLPHS used in this study.
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3. Application and Results
Comparison of Results

Data from 2010 to 2018 were used to train the MLP model. Data from 2019 were used
to predict the runoff and rainfall information. A rectified linear unit (ReLU) was used as the
activation function in the MLP using existing optimizers, MLP using RCGA, and MLPHS.
Each MLP learned 100,000 epochs of data from 2010 to 2018 and then predicted the results
of 2019. The results obtained using each MLP were then compared. Among the parameters
of the RCGA, the population was set to 50, and the mutation rate was set to 0.15. HMS,
HMCR, PAR, and BW in the HS were set to 50, 0.85, 0.4, and 0.0003, respectively. In the
GA and HS, the searching range of weights and biases was set from −15 to 15. Table 2
shows the results obtained with MLP using existing optimizers, MLP using the RCGA, and
MLPHS.

Table 2. Results obtained with each MLP.

Optimizer SGD RMSprop Adagrad AdaDelta Adam Nadam RCGA HS(MLPHS)

RMSE (m3/s) 20.375 20.152 19.290 19.072 21.251 21.245 17.862 17.061
MAE (m3/s) 7.910 7.208 7.784 7.817 8.097 7.797 7.634 6.404

R2 0.253 0.268 0.268 0.322 0.315 0.336 0.445 0.541

Among the existing optimizers, the AdaDelta was the best for the RMSE and RMSprop
was the best for the MAE, and Nadam showed the highest R2. However, in all the results
including MLP using the RCGA and MLPHS, RMSE and MAE of MLPHS were the lowest,
and MLPHS showed the highest value in R2. The results of the AdaDelta and RMSprop,
which gave good results among the applied optimizers, for each time period were compared
with those obtained with the MLPHS. Figure 5 shows a comparison of the results obtained
with the AdaDelta, RMSprop, and HS (MLPHS).

Additionally, notable results occurred at the peak value of the observed runoff. RM-
Sprop showed a difference of 104.139 m3/s from the peak value of the observed runoff, and
AdaDelta showed a difference of 140.856 m3/s from the peak value of the observed runoff.
On the other hand, the MLPHS showed a difference of 39.804 m3/s from the peak value
of the observed runoff. The MLPHS showed better results than the existing optimizers
in terms of both overall and peak results. The results of the MLP using the RCGA were
compared with those of the MLPHS. Figure 6 shows a comparison of the results obtained
with the MLP using the RCGA and the HS (MLPHS).
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Figure 6. Comparison of the results obtained with the MLP using RCGA and the HS (MLPHS).

The MLP using the RCGA showed a difference of 26.398 m3/s from the peak value of
the observed runoff, and the MLPHS showed a difference of 39.804 m3/s from the peak
value of the observed runoff. At the peak value of the observed runoff, the MLP using the
RCGA showed better results than the MLPHS. However, in the observed runoff near the
peak value, the MLP using the RCGA showed a larger error than the MLPHS. Considering
the overall results, the MLPHS provided the most accurate prediction among all the applied
optimizers. Figure 7 shows the R2 for the observed and predicted data of MLP using the
existing optimizers, MLP using RCGA, and MLPHS.
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4. Discussion

In general, in most studies, the results of the new study were compared with those
of previous studies. However, since there are no results obtained in previous studies, the
learning time required for MLP using the existing optimizers, MLP using RCGA, and
MLPHS, was compared. To compare the required time, only data from 2010 was used, and
the epochs were set to 1000. In addition, the learning of each MLP was repeated 50 times to
calculate the average value.

The time required according to the number of nodes was simulated by setting the
hidden layer to one and the number of nodes from one to five. Additionally, the time
required according to the number of hidden layers was simulated with three nodes and
one to five hidden layers. Table 3 showed the average time required for each optimizer
according to the number of nodes.
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Table 3. Average time required for each optimizer according to the number of nodes.

Number of Nodes 1 2 3 4 5

SGD 5.087 s 4.994 s 4.937 s 5.112 s 5.088 s
RMSprop 5.263 s 5.349 s 5.331 s 5.367 s 5.254 s
Adagrad 5.091 s 5.020 s 5.264 s 5.167 s 5.156 s
AdaDelta 5.316 s 5.392 s 5.338 s 5.189 s 5.144 s

Adam 5.199 s 5.242 s 5.286 s 5.361 s 5.127 s
Nadam 5.761 s 5.775 s 5.681 s 5.652 s 5.622 s
RCGA 1.108 s 1.117 s 1.164 s 1.088 s 1.065 s

MLPHS 1.596 s 1.683 s 1.929 s 2.037 s 2.179 s

Figure 8 shows the comparison of the average time required for each optimizer accord-
ing to the number of nodes.
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According to the results of Table 3 and Figure 8, MLP using the RCGA showed the
shortest average time required for the number of nodes from one to five, and MLPHS
showed the second shortest average time. Table 4 shows the average time required for each
optimizer according to the number of hidden layers.

Table 4. Average time required for each optimizer according to the number of hidden layers.

Number of Hidden Layers 1 2 3 4 5

SGD 4.937 s 5.185 s 5.319 s 5.318 s 5.387 s
RMSprop 5.331 s 5.096 s 5.165 s 5.371 s 5.346 s
Adagrad 5.264 s 5.293 s 5.428 s 5.805 s 5.571 s
AdaDelta 5.338 s 5.384 s 5.597 s 6.371 s 6.841 s

Adam 5.286 s 5.311 s 5.762 s 6.317 s 7.120 s
Nadam 5.681 s 5.342 s 5.675 s 6.219 s 7.226 s
RCGA 1.164 s 1.119 s 1.576 s 1.138 s 1.409 s

MLPHS 1.929 s 2.263 s 2.218 s 1.994 s 3.062 s

Figure 9 shows the comparison of the average time required for each optimizer accord-
ing to the number of hidden layers.
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According to the results of Table 4 and Figure 9, MLP using the RCGA showed the
shortest average time required for the number of nodes from one to five, and MLPHS
showed the second shortest average time. These results were similar to the average time
required for each optimizer according to the number of nodes. The existing optimizer finds
a new solution by updating the weight and bias of the existing solution position using
differentiation. However, meta-heuristic optimization algorithms such as RCGA and HS
find a new solution through a combination of existing solutions, fine-tuning, or random
selection in the search range. The reason the amount of time required for MLP using the
meta-heuristic optimization algorithm was shorter than that of MLP using the existing
optimizers is due to the difference in the search method for a new solution. Additionally,
the average time required was longest when the number of hidden layers was five and
the number of nodes was three. Therefore, the average time required is long when the
calculation process is long due to the large number of weights and biases.

5. Conclusions

The MLP using existing optimizers, MLP using RCGA, and MLPHS, were applied
to predict urban stream runoff, and discharge from each pump station was used as the
learning data. The data from 2010 to 2018 were used as the learning data, and the predicted
results for 2019 obtained with the MLPHS were more accurate than the results obtained
with the MLP using existing optimizers and MLP using RCGA. Among the results of the
MLP using existing optimizers, those obtained with the MLP using AdaDelta exhibited the
smallest RMSE, and those obtained with the MLP using RMSprop exhibited the smallest
MAE. In addition, MLP using Nadam among MLP using the existing optimizers showed
the highest R2.

The results of the study revealed that the discharge of pump stations in urban areas
can be used to predict the runoff of urban streams. Pump stations have been constructed in
urban areas to prevent urban flooding. The results revealed that the discharge of pump
stations directly affects the amount of runoff from urban streams as pump stations discharge
water from the inland to urban streams.

The results of the study revealed that the MLPHS can be applied to reduce the error
between the observed and simulated runoff. The optimizer of the MLP is a very important
component of the learning process. As the optimizer greatly influences the weights and
biases in the MLP, studying how the optimizer can be improved is very important. In this
study, learning was conducted by replacing the optimizer used in the MLP with the HS, a
well-known metaheuristic optimization algorithm.

A limitation of this study is that the observation data consisted of only the runoff
from each pump station and rainfall. In future studies, more accurate runoff predictions
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would be possible if the water level or runoff observation data at the upstream point
were added. Additionally, it is possible to increase usability by applying a self-adaptive
meta-heuristic optimization algorithm. Learning using the MLP can be conducted if an
automatic optimization of the MLP structure can be performed.
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MLP Multi-layer perceptron
MLPHS Multi-layer perceptron using harmony search
RCGA Real coded genetic algorithm
ANN Artificial neural network
SOM Self-organizing map
CNN Convolutional neural network
RNN Recurrent neural network
LSTM Long short-term memory
GRU Gated recurrent unit
DNN Deep neural network
SVM Support vector machine
KNN K-nearest neighbor
EA Evolutionary algorithms
SA Simulated annealing
ACO Ant colony optimization
PSO Particle swarm optimization
FA Firefly algorithm
GA Genetic algorithm
HS Harmony search
RMSE Root mean square error
MAE Mean absolute error
R2 R-squared
GD Gradient descent
SGD Stochastic gradient descent
Adagrad Adaptive gradient
RMSprop Root mean squared propagation
AdaDelta Adaptive delta
Adam Adaptive moment
Nadam Nesterov-accelerated adaptive moment
HMS Harmony memory size
HMCR Harmony memory considering rate
PAR Pitch adjustment rate
BW Bandwidth
ReLU Rectified linear unit
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Appendix A

To compare the results of each MLP, the square value-based root mean square error
(RMSE) and absolute value-based mean absolute error (MAE) were applied. The RMSE
equation is given by Equation (A1).

RMSE =

√
∑n

i=1(yo − ys)
2

n
(A1)

where yo is the observed value, ys is the simulated value, and n is the number of data points.
The MAE equation is shown in Equation (A2).

MAE =
1
n

n

∑
i=1
|yo − ys| (A2)

where yo is the observed value, ys is the simulated value, and n is the number of data points.
The equation of R2 is shown in Equation (A3).

R2 =
∑n

i=1(ys − y)2

∑n
i=1(yo − y)2 (A3)

where y is the average of the observed value.
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