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Abstract: Winery wastewater represents the largest waste stream in the wine industry. This deals with
the mineralization of the organic matter present in winery wastewater using anodic oxidation and
two types of anodes—namely, a boron-doped diamond electrode (BDD) and two mixed metal oxides
(MMO), one with the nominal composition Ti/Ru0.3Ti0.7O2 and the other with Ti/Ir0.45Ta0.55O2. To
conduct the study, the variability of different quality parameters for winery wastewater from the
Chilean industry was measured during eight months. A composite sample was treated using anodic
oxidation without the addition of supporting electrolyte, and the experiments were conducted at the
natural pH of the industrial wastewater. The results show that this effluent has a high content of
organic matter (up to 3025 ± 19 mg/L of total organic carbon (TOC)), which depends on the time
of the year and the level of wine production. With MMO electrodes, TOC decreased by 2.52% on
average after 540 min, which may be attributed to the presence of intermediate species that could not
be mineralized. However, when using a BDD electrode, 85% mineralization was achieved due to
the higher generation of hydroxyl radicals. The electrolyzed sample contained oxamic, acetic, and
propionic acid as well as different ions such as sulfate, chloride, nitrate, and phosphate. These ions
can contribute to the formation of different species such as active species of chlorine, persulfate, and
perphosphate, which can improve the oxidative power of the system.

Keywords: winery wastewater; anodic oxidation; BDD and MMO electrodes; hydroxyl radicals; ions

1. Introduction

Winery wastewater is mainly the result of a series of activities such as the cleaning of
barrels and tanks, washing of transfer lines and floors, wine loss and extraction, and pro-
cesses in filtration units and water drains from the wastewater management system [1–3].
Therefore, depending on factors that range from the size of the facility to production and
cleaning methods, between one and four liters of residual water are generated per liter of
wine produced [4,5].

In general, this industrial effluent has a high organic load that may lead to contamina-
tion if not treated correctly [6]. In addition, winery wastewater has a high concentration of
suspended solids, low content of nutrients, and recalcitrant high molecular weight com-
pounds such as polyphenols, fertilizers, and pesticides [7–10]. These compounds are not
easily removed by the biological processes normally used to treat this type of wastewater,
which makes it difficult to achieve a high removal of organic matter [11,12]. In order to
efficiently eliminate these compounds, some authors have used advanced oxidation pro-
cesses (AOPs) in which highly reactive oxygen species are generated in situ [7,13]. AOPs
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based on electrochemical technology, known as electrochemical advanced oxidation pro-
cesses (EAOPs), are a powerful tool for effectively removing organic matter from industrial
wastewater [14].

EAOPs are environmentally friendly due to their low reagent requirements. Further-
more, they have high energy efficiency and low operating costs, provide rapid kinetics in
the decomposition of different pollutants, and are safe under working conditions [15–18].
Among EAOPs, one of the most widely proposed and used has been anodic oxidation
(AO) [14,19–23] due to its versatility, simplicity, and easy scalability [24]. According to
Espinoza, et al. [25], this process can be implemented alone or as a pre- or post-treatment
for other physicochemical and biological processes. In this way, it is possible to increase
the electrode yield, reduce energy demand, and decrease water toxicity. In the AO pro-
cess, the oxidation of organic contaminants can occur directly or indirectly depending
on the nature of the anode [21,26]. In this sense, Comninellis and Chen [27] define two
types of anode surfaces: (i) active and (ii) non-active. In both cases, the electrochemical
discharge of water occurs on the surface of the anode (M), generating hydroxyl radicals
(•OH, E◦ = 2.80 V/SHE) that remain physisorbed on the surface of the anode (reaction
(1)). Nevertheless, active anodes have low overpotential for oxygen evolution and high
adsorption enthalpies; therefore, the •OH formed can strongly interact with the anode
surface, forming metal oxides (MO) or higher state superoxide by means of reaction (2).
Subsequently, the redox couple (MO/M) acts as a mediator in the partial oxidation of
organic pollutants (R), regenerating the metallic surface M by reaction (3). On the contrary,
non-active anodes are characterized by high overpotentials for oxygen evolution and low
adsorption enthalpies, which leads to •OH weakly adhering to the anode surface. In this
case, •OH reacts with the organic compounds until their complete mineralization to carbon
dioxide (CO2), water (H2O), and inorganic ions (reaction (4)).

M + H2O→M(•OH) + H+ + e− (1)

M(•OH)→MO + H+ + e− (2)

MO + R→ RO + M (3)

aM(•OH) + R→ aM + mCO2 + nH2O + xH+ + ye− (4)

Among active anodes, mixed metal oxides (MMO) stand out. These anodes are based
on mixed metal oxides of ruthenium (Ru), titanium (Ti), tantalum (Ta), antimony (Sb), or
tin (Sn) in different proportions and supported on a Ti sheet [15,19]. They exhibit high
stability, activity, excellent durability, and are easy to scale for industrial purposes [20,26,28].
In contrast, boron-doped diamond (BDD) thin-film electrodes are considered non-active
anodes. These anodes have high corrosion stability and therefore can be used in strongly
acidic environments. In addition, the weak interaction between •OH and its surface,
together with its high overpotential for oxygen evolution, is favorable for the generation of
greater amounts of M(•OH) with the capacity to mineralize persistent organic compounds
in water [17,29,30].

It is known that the AO process does not present restrictions in terms of pH [18] and
that it is not easily influenced by temperature [31]. However, in many cases, the addition
of a supporting electrolyte is required [32] to improve the conductivity of the solution
and contribute to reducing the cost of energy. In this sense, several types of industrial
wastewater contain sulfates, chlorides, phosphates, and oxygen, which contribute to the
formation of oxidants such as persulfate (S2O8

2−), active chlorine species (Cl2, HClO,
ClO−), perphosphate (P2O8

4−), and hydrogen peroxide (H2O2), respectively [31]. This
indicates that the use of agents present in the solution to be treated could be sufficient to
improve conductivity and promote the generation of oxidizing species, simplifying the AO
process by not having to add salts, which can also make the process more expensive.

There is a limited number of reports that have compared the efficiency of different
electrocatalytic materials during the AO process in different electrolytic media [21,33–36].
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Nevertheless, there are no studies in which the efficiency of different electrocatalytic mate-
rials is compared in the AO of real winery water and without the addition of supporting
electrolytes. Therefore, the objective of this work is to study the electrochemical mineral-
ization of a sample composed of real winery wastewater containing 1349 ± 25.24 mg/L
of total organic carbon (TOC) under electrolysis at constant current density without the
addition of a supporting electrolyte and using three anodic materials (BDD, MMO-Cl2, and
MMO-O2). Moreover, the winery wastewater of a Chilean industry was monitored in order
to find a representative sample to conduct the electrochemical experiments. Degradation of
the organic compounds present in the wastewater was followed by spectrophotometric
(decrease in maximum absorbance, turbidity) and chromatographic techniques (decay of
specific pollutants present in the wastewater), while mineralization was measured through
TOC decay. This study contributes with the application of AO for the treatment of real
industrial wastewater, making the process simpler and more competitive, as it would not
be necessary to adjust pH or add a supporting electrolyte.

2. Materials and Methods
2.1. Winery Wastewater

Winery wastewater was obtained between April and November 2018 from a Chilean
wine industry located in Santiago de Chile. This period includes the vintage and the non-
vintage stages; therefore, it allows studying the behavior of the industry and its wastewater
under different real parameters (high and low polluting loads). The 22 samples were
collected before the aerobic biological process in the industrial wastewater treatment plant
and refrigerated at 4 ◦C for further characterization.

To carry out the electrochemical experiments, a composite sample made from the
samples collected during October and November was employed. The results of the charac-
terization of the composite sample (used in the electrochemical treatment) are shown in
Table 1. In general, the sample shows a high content of organic matter, low concentrations
of nitrogen and phosphorus compounds, low pH, and an unpleasant odor. In addition, it
should be noted that although the initial turbidity of the sample was 321 ± 0.20 NTU, this
parameter was reduced by approximately 96% after centrifuging the sample.

Table 1. Parameters of composite sample.

Parameters Results

Color Light red
Odor Intense
pH 4.28 ± 0.16

Conductivity (mS) 2.60 ± 0.04 (T = 25.80 ◦C)
Turbidity (NTU) 12.30 ± 1.50

Total organic carbon (mg/L) 1349 ± 25.24
Soluble chemical oxygen demand (mg/L) 4140 ± 28.28

Biochemical oxygen demand (mg/L) 2678 ± 20.16
Absorbance at 254 nm (U.A) 0.65 ± 0.01

Nitrate (mg NO3
−/L) 0.40 ± 0.05

Phosphate (mg PO4
3−/L) 24 ± 2.46

Chloride (mg Cl−/L) 364 ± 1.73
Sulfate (mg SO4

2−/L) 142 ± 2.92
Acetic acid (mg/L) 2463 ± 69.64

Propionic acid (mg/L) 356 ± 22.24
Fecal Coliforms Lecture (NMP/100 mL) ≥1.60 × 104

2.2. Experimental Procedure

Winery wastewater was treated through the AO process without the addition of salts
as a supporting electrolyte at the original pH value and at room temperature. Electrolysis
was performed in an undivided 0.10 L open cell by vigorously stirring in order to ensure
mass transfer (Figure 1). Three different electrodes were used as anodes: (1) a boron-doped
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diamond (BDD) electrode supplied by Adamant Technologies, which had a 2.75-thick
diamond layer doped with a concentration of 500 ppm of boron, (2) a mixed metal oxide
(MMO-Cl2 type: nominal composition Ti/Ru0.3Ti0.7O2), and (3) a mixed metal oxide (MMO-
O2 type: nominal composition Ti/Ir0.45Ta0.55O2) both from NMT Electrodes PTY LTD
(Pinetown, South Africa). A stainless-steel plate (AISI 304) was used as the cathode for each
electrolysis. The electrodes had a geometric area of 5 cm2, with an inter-electrode gap of
1 cm. All the experiments were performed twice applying a current density of 30 mA/cm2.
To remove impurities from the surfaces of the cathode and anode, the electrodes were
previously polarized in a 0.50 M of H2SO4 solution at 50 mA/cm2 for 40 min.
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2.3. Apparatus and Analytical Procedures

The winery wastewater samples were centrifuged in order to reduce the solids in
suspension. Electrolyses were performed using an MCP model M10-QD305 power supply,
which provides the constant current to conduct electrolysis in galvanostatic mode and to
deliver a potential difference between anode and cathode. During electrolysis, samples
were always withdrawn from the same solution kept in the cell at regular time intervals and
then refrigerated at 4 ◦C until analysis. The degradation of the organic compounds present
in the wastewater was followed by spectrophotometric techniques, and mineralization was
studied through TOC removal. This parameter was obtained using a Shimadzu model
TOC-L analyzer.

Soluble chemical oxygen demand (sCOD) was measured using reactive HANNA COD
tube tests HI 93754B-25 (range 0–1500 mg/L). The samples were chemically digested for 2 h
at 150 ± 1 ◦C in a HANNA Instruments HI 839800 digestor and analyzed in a photometer
HANNA Instruments HI 83214.

Total suspended solids (TSS), volatile suspended solids (VSS), and alkalinity were
also measured according to the Standard Methods for the Examination of Water and
Wastewater [37], as well as the 5-day biochemical oxygen demand (BOD5), for which a
dissolved oxygen meter analyzer Milwaukee, MW 600 model, was employed.

Absorbance decay at 254 nm was monitored in an Agilent model 8453 spectrophotome-
ter. Water turbidity expressed as NTU (nephelometric units of turbidity) was measured
using an HI 98703 Turbidimeter. A Lutron model pH-222 pH-meter was used to calculate
pH. Conductivity was measured using a HANNA Instruments HI 98312 Multiparameter
Meter. The presence of fecal coliforms was quantified through the NMP procedure and
using the A-1 method [38].

Carboxylic acids were identified and quantified by ion exclusion chromatography.
Aliquots were analyzed on a Shimadzu LC-20AD UFLC with a Shimadzu SPD-M20A diode
array detector, which was equipped with a BIO-RAD Aminex HPX-87H 300 mm × 7.8 mm
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(i.d) ion exclusion column. The wavelength was set at 210 nm, and 4 mM H2SO4 was used
as a mobile phase with a flow of 0.60 mL/min at 35 ◦C.

Inorganic ions (Cl−, PO4
3−, SO4

2−, NO3
−) were determined by ion chromatography

using a 930 Compact IC Flex-Metrohm after filtering the samples through 0.22 µm MLC
disposable syringe filter. A Metrosep A Supp 5-250/4.0 column was used with 3.20 mM of
sodium carbonate as eluent in a flow of 0.70 mL/min. The total ammonia nitrogen content,
expressed as mg N-NH4

+/L, was quantified using a QuikChem 8500 Series 2 FIA system.
In order to compare the experimental data, t-test Two Sample Assuming Equal Vari-

ances were carried out using Excel 2110.

3. Results and Discussion
3.1. Characterization of Real Winery Wastewater in a Long Period

Figure 2 shows the results of the characterization obtained during the months of
monitoring in terms of organic matter (sCOD, BOD5, and TOC) and solids. sCOD, BOD5,
and TOC show the high content of organic matter that is typical for this type of wastewa-
ter [39]. The BOD5/sCOD ratio for winery wastewater was in the order of 0.54 to 0.73. This
result demonstrates the high biodegradability of these waters and agrees with other values
reported in the literature [40,41].
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Figure 2a shows that the highest sCOD, BOD5, and TOC concentrations were obtained
between April and June (Months 1–3), with values as high as 7863 ± 50 mg/L in the case of
sCOD, 5720 ± 11 mg/L for BOD5, and 2405 ± 19 mg/L in the case of TOC. Subsequently,
the values of sCOD, BOD5, and TOC decreased by approximately 4361 mg/L, 2649 mg/L,
and 1574 mg/L, on average, respectively. This indicates that during and immediately after
vintage, wastewater contains the highest concentration of organic matter. However, it
should be noted that sometimes, a slight increase in organic load may occur sporadically
(as in the sample collected in August (Month 5)). According to [42], this is related to the
pressing and refiltration of newly fermented wine.

Regarding the presence of solids in wastewater, the situation was different (Figure 2b).
Solids concentration did not show a special high value around vintage. Indeed, the average
values of TSS and VSS were 827 mg/L and 602 mg/L, respectively, between April and June
(Months 1–3), while between July and November (Months 4–8), the average values of TSS
and VSS were 1319 mg/L and 744 mg/L. The highest solid concentration was observed in
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September (1998 ± 0.05 mg/L, month 6), during the non-vintage period, with a VSS/TSS
ratio equal to 0.59.

According to these analyses, winery wastewater presents variable concentrations of
sCOD between 3560± 94 and 7863± 50 mg/L, as well as TOC (957± 20 and 2405 ± 19 mg/L),
and a high content of easily biodegradable organic matter (BDO5 between 1760 ± 2 and
5720 ± 11 mg/L). In addition, regarding the concentration of solids, it is noteworthy that
the samples were collected after three physical filtration units that reduced most of the
suspended solids.

These results demonstrate the seasonality of this type of wastewater, which is directly
related to the period of work (vintage or non-vintage period) and the type of wine produced
(red, white, sparkling, special wines, etc.) [39]. In this sense, wastewater generated during
vintage has a higher flow rate and organic content than the water produced during the rest
of the year [4,43]. Regarding the type of wine, Montalvo, et al. [44] found that wastewater
from the production of red wine usually contains ethanol, carbohydrates, organic acids, and
polyphenols, while wastewater from tropical fruits wine has a high sugar content and sulfur
compounds. Likewise, Braz, et al. [45] studied the characterization of winery wastewater
from two Portuguese wineries and found that wastewaters from the production of red
wine present a greater amount of organic matter and suspended solids than wastewaters
from the production of white wine. As it may be seen, this variability causes significant
fluctuations in the quantity and quality of this effluent. Therefore, several authors currently
propose EAPOs to treat winery wastewater [8,14,40].

Table 2 shows the behavior of other wastewater parameters measured over time. The
samples presented color differences, which is related to the type of wine produced and
mostly due to the natural colors of grapes [12]. In this sense, the spectrum exhibited a
band at 254 nm, which might correspond to different organic compounds that absorb
in this wavelength region. Candia-Onfray, et al. [14] observed a characteristic band at
280 nm, which they associated mainly with the presence of polyphenols but also with other
organic compounds such as acetic acid, butyl ester, ethylbenzene, cyclohexanol, ethanol,
and isopropyl stearate, among others.

Table 2. Parameters monitored in winery wastewater over time.

Parameters April May Jun July August September October November

Color Light red Orange Yellow Orange Brown Brown Brown Brown
Odor Intense Intense Intense Intense Intense Intense Intense Intense
pH 6.30 9.30 6.95 9.23 9.38 8.10 8.42 11.34

Total alkalinity (mg
CaCO3/L) 493 1534 817 2257 1091 998 468 2309

Partial alkalinity (mg
CaCO3/L) 240 934 501 1619 715 583 319 1887

Turbidity (NTU) 234 463 500 286 555 821 317 782
Absorbance at 254 nm

(U.A) 1.20 2 0.79 1.39 0.76 0.60 1.31 0.87

Conductivity (mS) 1.98 4.16 2.95 4 3.21 3.54 3.24 2.38
Total ammonia nitrogen

(mg N-NH4
+/L) 1.02 3.94 1.09 1.20 0.63 2.41 3.07 1.57

Nitrate (mg NO3
−/L) 4.20 3.01 2.08 6 1.47 3.93 4.33 2

Phosphate (mg
PO4

3−/L) 15.60 20.54 14.73 27.73 27.20 27.60 27.08 26.42

Chloride (mg Cl−/L) 350 919 388 832 1020 968 927 861
Fecal Coliforms Lecture

NMP/100 mL ≥1.60 × 103 >6 × 104 >9 × 103 7 × 104 2.90 × 104 1.05 × 105 4 × 104 1.60 × 105

Specification: the values of the parameters correspond to the average value of the parameter according to the
samples collected in each month.

Winery wastewater also presented a strong smell attributed to the production process
and the presence of fecal coliforms (≥1.60 × 103 NMP/100 mL). These microorganisms
may originate from dirty grapes and water used for floor cleaning.

The concentrations of CaCO3 varied between 468 and 2309 mg/L, displaying the
highest values in May, July, and November. The values obtained for pH are within the
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established range for this type of effluent [39], with the lowest values during vintage.
Conversely, the highest values are reported during the non-vintage period, which is related
to cleanings carried out with sodium hydroxide (NaOH). These results are in accordance
with those obtained by Milani, et al. [46] in Italian wineries.

Turbidity showed values between 234 and 821 NTU. This parameter is associated
with the presence of suspended and dissolved particles [14]. In this sense, the turbidity
values obtained are consistent with the concentration of suspended solids, where the higher
concentration of TSS (1998 ± 0.05 mg/L) is related to higher turbidity (821 NTU).

The conductivity values were associated with the presence of NH4
+, NO3

−, SO4
2−,

PO4
3−, Cl−, and other elements in wastewater. Table 2 shows that all the samples contain

high concentrations of chloride, but it is evident that this type of water presents a deficit of
nutrients (especially nitrate), which is consistent with other studies [47].

3.2. Anodic Oxidation of Winery Wastewater

Several electrolyses were performed to treat 0.10 L of winery wastewater containing
1349 ± 25.24 mg/L of TOC using an open cell with constant agitation. In order to study
the effect of the anode material on the degradation of the organic pollutants present in
the wastewater, three electrodes were used in different experiments, namely MMO-Cl2,
MMO-O2, and BDD. All the tests were carried out at room temperature, with an initial pH
of 4.28 ± 0.16, without the addition of electrolyte support and applying a current density
of 30 mA/cm2. Each electrolysis took 540 min (min.).

Figure 3 shows that when MMO electrodes were used as anodes, only a degradation of
organic matter of 1.70% and 3.34% was achieved for MMO-Cl2 and MMO-O2, respectively.
Similar results were obtained by Ribeiro, et al. [35]. The researchers used the MMO-Cl2
and MMO-O2 electrodes as anodes to study the electrochemical degradation of 50 mg/L of
the Ponceau 2R dye with NaClO4 as a supporting electrolyte at different values of current
density and at room temperature. The results obtained showed that organic matter fails to
be removed when applying 25 mA/cm2. Furthermore, it is only possible to reduce TOC
up to 7% and 11% in the case of the MMO-O2 and MMO-Cl2 anodes, respectively, when
200 mA/cm2 is applied. This poor decrease in TOC was attributed to the formation of
intermediates and the catalytic effect on the oxygen evolution reaction, which leads to the
lower efficiency of these electrodes.
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Conversely, when working with the BDD electrode, 85% of the organic matter is
removed without the addition of a supporting electrolyte. This may be because, since
BDD is a non-active anode, the weak interaction of BDD - •OH, together with its high
overpotential for oxygen evolution, generates higher amounts of reactive physisorbed
BDD(•OH) radicals that mineralize more effectively the contaminants present in the wa-
ter [22,34]. Another key factor in this result may also be the formation of active chlorine
species (Cl2, HClO, ClO−) that can oxidize organic contaminants [15,24]. These species can
be generated from the direct oxidation of the chloride ion on the anode surface to soluble
chlorine (Cl2aq) (reaction (5)) [14,24,32]. According to Brillas and Martínez-Huitle [15], if the
local concentration of dissolved chlorine exceeds its solubility, supersaturation propels the
generation of bubbles of chlorine gas. The electrogenerated Cl2 can react with the chloride
ion to form the trichloride ion (reaction (6)) or can be hydrolyzed to allow for the formation
of hypochlorous acid (HClO) (reaction (7)), being in equilibrium with the hypochlorite ion
(ClO−) in the bulk solution (reaction (8)).

2Cl− → Cl2(aq) + 2e− (5)

Cl2(aq) + Cl−
 Cl3− (6)

Cl2(aq) + H2O
 HClO + H+ + Cl− (7)

HClO
 ClO− + H+ (8)

Figure 4a shows the variation of maximum absorbance over time, which was measured
at 254 nm. The absorbance decay of the solution is dependent on the anode material
used. In addition, absorbance decay reaches 60% and 65% with the MMO-Cl2 and MMO-
O2 electrodes, respectively. This indicates a decrease in compounds that absorb at that
wavelength, for example, polyphenols. In the case of BDD, an increase in maximum
absorbance is observed during the first 180 min. This increase could have been caused
by the formation of reaction intermediates. However, at the end of the process, an 85%
decrease in absorbance is observed. This is a result of the higher generation of •OH when
using a BDD electrode, which attacks the contaminants in the solution, causing a more
pronounced decay than MMO electrodes. A similar trend to that obtained in this work
when the BDD electrode is used was reported by Collivignarelli, et al. [48] in a study on the
discoloration of a real effluent from the pharmaceutical industry.
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Figure 4b shows a decrease in turbidity in all three cases. However, statistically
significant differences were found in experiments using BDD as an anode compared to
experiments employing MMO (value; p < 0.05). In this sense, values are better for BDD,
in whose case turbidity is reduced to 5.03 NTU. This result agrees with that reported by
Candia-Onfray, et al. [14], who only achieved complete elimination of turbidity when
using a current density of 60 mA/cm2. This indicates that increasing the density current
promotes the hydrolysis of solids, which is possibly due to an increase in the amount
of •OH generated. At this point, it is important to mention that when working with a
higher density current, higher energy expenditure can occur; therefore, in this study, it was
decided to work with 30 mA/cm2 to maintain a balance between both factors.

Figure 5a shows the behavior of pH over time for each electrolysis. An increase in
pH is expected in all cases due to the possible decrease in the concentration of protons in
the medium as a result of the reduction of these on the stainless-steel cathode to produce
H2. In this context, when MMO anodes were used, a small increase in pH was observed,
being 4.45 ± 0.16 and 4.36 ± 0.13 the final pH when working with MMO-Cl2 and MMO-O2,
respectively. No statistically significant differences were found between experiments with
MMO as anode (value-p > 0.05). However, in the case of BDD, pH increased to 8.15 ± 0.10.
In this case, statistically significant differences were found in the experiments with BDD as
an anode compared to the experiments with MMO (value-p < 0.05). This may be related
to the electrocatalytic effect on the evolution of chloride and the active chlorine species
present in wastewater, i.e., BDD forms more •OH than the MMO electrodes, as it has a
higher overpotential for oxygen evolution. These radicals react with the chlorides present
in the medium and form chlorine oxides and active chlorine species, which increase pH.
This result promotes a further expansion of wastewater treatment technologies because it
would not be necessary to add any chemical compound to adjust pH.
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The variation in conductivity over time is shown in Figure 5b. In general, there was
no significant changes in this parameter in any of the three cases. The lowest conductivity
occurred when the BDD electrode was used; however, after two hours, conductivity
increases until 2.86 ± 0.02 mS. In the case of the MMO electrodes, statistically significant
differences were found (value-p > 0.05). Conductivity varied between 2.60 ± 0.04 and
2.57 ± 0.01 mS (MMO-Cl2) and 2.60 ± 0.04 and 2.66 ± 0.02 (MMO-O2). These variations in
conductivity are associated with the variation of the ions in the medium (as discussed in
Section 3.3).
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3.3. Evolution of Carboxylic Acids and Ions during Electrolysis

Figure 6 shows the changes in the concentration of carboxylic acids during elec-
trolysis. Ion exclusion chromatography reveals the presence of oxamic (rt = 8.53 min),
acetic (rt = 14.31 min), and propionic acid (rt = 17.65 min) in the electrolyzed samples.
Oxamic acid is often one of the main intermediates of the degradation of N-aromatics by
EAOPs [19,49]. Furthermore, it is one of the ultimate carboxylic acids, since it is directly
oxidized to CO2 [21,50,51]. Figure 6 shows that the oxamic acid concentration did not ex-
ceed 4.59 mg/L, being rapidly degraded when using MMO electrodes (Figure 6a,b). In this
case, there are no statistically significant differences between the experiments where these
electrodes are used as anodes (value-p > 0.05). However, statistically significant differences
were found in the experiments with BDD as an anode compared to the experiments with
MMO (value-p < 0.05).
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ClO− + 2HClO → ClO3− + 2Cl− + 2H+ (9)

6ClO− + 3H2O → 2ClO3− + 4Cl− + 6H+ + 3/2O2 + 6e− (10)

It is noteworthy that in this work, chlorite (ClO2−) was not observed in any case. Ac-
cording to Espinoza, et al. [19], this may be because ClO2− is an intermediate in the for-
mation of ClO3− (reaction (11)) and therefore can be consumed quickly. 

ClO2− + ●OH → ClO3− + H+ + e− (11)

Concerning the ClO− ion, in Figure 7c, when working with the BDD electrode, ClO− 
concentration reached its maximum value at 60 min (769 ± 23.70 mg/L), which later de-
creased to 36 ± 0.13 mg/L at 480 min. In the case of MMO electrodes, the maximum con-
centration of the ClO− ion was obtained at 30 min, being 247 ± 0.24 mg/L and 318 ± 25.14 
mg/L for MMO-Cl2 and MMO-O2, respectively. This ion completely disappeared at 240 
min when working with the MMO electrodes; however, when the BDD electrode was 
used, ClO− disappeared at the end of electrolysis (540 min). This result indicates that when 
a BDD electrode is used, because more ●OH is formed than in MMO electrodes, ●OH can 
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Figure 6. Evolution of carboxylic acid during electrolysis without the addition of electrolyte support
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Acetic acid is characteristic of winery wastewater [12,40]. Figure 6c shows that acetic
acid is removed after 480 min only when using BDD as an anode. Conversely, with the
MMO-Cl2 and MMO-O2 electrodes, the concentration of acetic acid increased by 27% and
3%, respectively (Figure 6a,b). Regarding the concentration of propionic acid, a varia-
tion was found between 239 ± 11.24 and 448 ± 8.36 mg/L. When using the BDD and
MMO-O2 electrodes, a mineralization percentage of 14% and 33% is obtained, respec-
tively (Figure 6b,c). However, when using MMO-Cl2, the concentration of propionic acid
increased by 16% (Figure 6a). It should be noted that propionic acid is also part of the
composition of winery wastewater [52]; however, this can be generated as an intermediate
product of the action of •OH.
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Both in the measurement of acetic and propionic acid, statistically significant dif-
ferences were found in all experiments. The low mineralization of organic matter when
working with MMO electrodes may be related to the presence of these acids that could not
be mineralized.

Another important factor to consider in the mineralization process is the change in the
concentration of inorganic ions. Figure 7 shows the variation of the concentration of the
six ions detected by ion chromatography: chloride (Cl−), chlorate (ClO3

−), hypochlorite
(ClO−), nitrate (NO3

−), phosphate (PO4
3−), and sulfate (SO4

2−).
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Figure 7. Monitoring of ion concentration during each electrolysis without the addition of electrolyte
support at 25 ◦C and pH 4.28 applying 30 mA/cm2. (a) Chloride, (b) Chlorate, (c) Hypochlorite,
(d) Nitrate, (e) Phosphate, (f) Sulfate. (�) MMO-Cl2, (∆) MMO-O2, (•) BDD. Samples tested: 11.
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The concentration of the Cl− ion decreased over time (Figure 7a), specifically from
364 ± 1.73 mg/L to 295 ± 0.51, 194 ± 0.85, and 283 ± 0.68 mg/L when using MMO-Cl2,
BDD, and MMO-O2, respectively. This decrease is due to the continuous oxidation of the
Cl− ion on the anode, which produces active chlorine species [53].

Figure 7b shows that after 540 min, there is an increase of approximately 9.40 times
in ClO3

− ion concentration when the BDD electrode is used. In the case of the MMO
electrodes, the generation of ClO3

− ion was low, which is revealed by the low decrease
in Cl−.

The ClO3
− ion can be formed by the chemical reaction between the ClO− ion and

the hypochlorous acid (HClO) (reaction (9)) or by direct oxidation of the ClO− ion on the
electrode without the action of the hydroxyl radicals (•OH) (reaction (10)).

ClO− + 2HClO→ ClO3
− + 2Cl− + 2H+ (9)

6ClO− + 3H2O→ 2ClO3
− + 4Cl− + 6H+ + 3/2O2 + 6e− (10)

It is noteworthy that in this work, chlorite (ClO2
−) was not observed in any case.

According to Espinoza, et al. [19], this may be because ClO2
− is an intermediate in the

formation of ClO3
− (reaction (11)) and therefore can be consumed quickly.

ClO2
− + •OH→ ClO3

− + H+ + e− (11)

Concerning the ClO− ion, in Figure 7c, when working with the BDD electrode, ClO−

concentration reached its maximum value at 60 min (769 ± 23.70 mg/L), which later
decreased to 36 ± 0.13 mg/L at 480 min. In the case of MMO electrodes, the maxi-
mum concentration of the ClO− ion was obtained at 30 min, being 247 ± 0.24 mg/L
and 318 ± 25.14 mg/L for MMO-Cl2 and MMO-O2, respectively. This ion completely dis-
appeared at 240 min when working with the MMO electrodes; however, when the BDD
electrode was used, ClO− disappeared at the end of electrolysis (540 min). This result
indicates that when a BDD electrode is used, because more •OH is formed than in MMO
electrodes, •OH can react with the chlorides present in the water, producing a greater
quantity of active chlorine species such as ClO−, as shown in reaction (12). Reaction (8)
shows another way of obtaining ClO− ion.

Cl− + •OH→ ClO− + H+ + e− (12)

It should be noted that since the final concentration of the chlorine species is lower than
the initial concentration of Cl−, there could be a risk that halogenated organic compounds
have been formed [54], which could explain the low mineralization of organic matter when
MMO electrodes are used.

Regarding NO3
− ions (Figure 7d), they totally disappeared after 30 min when working

with the MMO electrodes, whereas an increase of 23 times was observed with the BDD
electrode compared to the initial value at 540 min, which is associated with the decomposi-
tion of organic compounds that present atoms of nitrogen [40]. Nevertheless, this value
(9.28 mg/L) is within the values accepted by Chilean regulations. No other nitrogenated
ions such as ammonium (NH4

+) or nitrite (NO2
−) were detected.

In Figure 7e, the PO4
3− ions decreased in all three cases. When working with the

MMO electrodes, decreases of 17% and 29% were obtained for MMO-Cl2 and MMO-O2,
respectively. In the case of the BDD electrode, the PO4

3− ion disappears after 480 min.
According to [54], this decrease can be attributed to scaling in the electrolysis cell.

The concentration of SO4
2− ions increased by 8% and 6% when working with MMO-

Cl2 and MMO-O2, respectively (Figure 7f). In the case of BDD, the sulfate ion concentration
increased by 20% at the end of electrolysis (540 min) compared to the initial value. This
increase can be attributed to the degradation of organic compounds containing sulfur
atoms [24,40,54].
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It is noteworthy that depending on the salts dissolved in the wastewater, other oxi-
dants can be produced that, despite having a lower oxidation power than •OH, can also
improve the oxidation power of the system. Among these oxidants that are formed in the
solution when current is applied are P2O8

4− and S2O8
2−. The formation of these oxidants

occurs when •OH reacts with the phosphate and sulfate salt dissolved on the anode sur-
face [18], with the subsequent formation of radical species (reactions 13 and 14) that are
then combined as shown in reactions 15 and 16.

PO4
3− + •OH→ (PO4

2−)• + e− (13)

SO4
2− + •OH→ (SO4

−)• + e− (14)

(PO4
2−)• + (PO4

2−)• → P2O8
4− (15)

(SO4−)• + (SO4−)• → S2O8
2− (16)

These results demonstrate the importance of inorganic ions in the formation of different
species that can improve the oxidative power of the system.

4. Conclusions

The monitoring of different parameters in the winery wastewater of a Chilean industry
confirmed the presence of a high content of easily biodegradable organic matter and great
seasonality. This work demonstrated that the effectiveness of the anodic oxidation process
is directly related to the type of anodic material used. In this sense, only with the use of
a BDD anode, 85% of the organic matter present in the winery wastewater was removed
without the need of modifying the initial characteristics of the sample or adding a support
electrolyte. In addition, using the BDD anode, the highest percentage of decrease in
absorbance and turbidity was achieved, which were 85% and 59%, respectively. These
results demonstrate the greater oxidative power exhibited by the BDD anode by forming
more hydroxyl radicals than the MMO electrodes. The presence of carboxylic acids such
as acetic and propionic acid was found, which could not be removed when working
with the MMO electrodes. The monitoring of ions during electrolysis demonstrated the
importance of inorganic ions already in the water to the formation of different species that
can improve the oxidative power of the system. These results may contribute to the future
implementation of the technology at an industrial level.
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