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Abstract: The development of advanced and efficient methods for mapping and monitoring wetland
regions is essential for wetland resources conservation, management, and sustainable development.
Although remote sensing technology has been widely used for detecting wetlands information, it
remains a challenge for wetlands classification due to the extremely complex spatial patterns and
fuzzy boundaries. This study aims to implement a comprehensive and effective classification scheme
for wetland land covers. To achieve this goal, a novel object-based multigrained cascade forest
(OGCF) method with multisensor data (including Sentinel-2 and Radarsat-2 remote sensing imagery)
was proposed to classify the wetlands and their adjacent land cover classes in the wetland National
Natural Reserve. Moreover, a hybrid selection method (ReliefF-RF) was proposed to optimize the
feature set in which the spectral and polarimetric decomposition features are contained. We obtained
six spectral features from visible and shortwave infrared bands and 10 polarimetric decomposition
features from the H/A/Alpha, Pauli, and Krogager decomposition methods. The experimental results
showed that the OGCF method with multisource features for land cover classification in wetland
regions achieved the overall accuracy and kappa coefficient of 88.20% and 0.86, respectively, which
outperformed the support vector machine (SVM), extreme gradient boosting (XGBoost), random
forest (RF), and deep neural network (DNN). The accuracy of the wetland classes ranged from 75.00%
to 97.53%. The proposed OGCF method exhibits a good application potential for wetland land cover
classification. The classification scheme in this study will make a positive contribution to wetland
inventory and monitoring and be able to provide technical support for protecting and developing
natural resources.

Keywords: object-based multigrained cascade forest; wetland classification; feature selection; Sentinel-2;
Radarsat-2

1. Introduction

Wetlands are regions that are shallow open waters (lakes, ponds, rivers, and coastal
fringes) and any land that is regularly or intermittently covered or saturated by water
(marshes, bogs, swamps, and flood plains) [1–4]. Wetlands play a significant role in
ecological systems, which can adjust the regional climate, supply an abundant water
resource, regulate hydrographic and carbon cycles, filter contaminants and sediment to
improve the water quality, and provide habitats for wildlife [5–7]. Moreover, wetlands are
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viewed as worthy places to carry out anthropogenic activities, such as agricultural irrigation,
hydropower, and industrial production [7–9]. Nevertheless, with rapid urban development
and intensive human activities, in addition to the climate change, the fragile natural
ecosystem of wetlands has been threatened by a shrinkage of their area and distribution and,
hence, reduction in their environmental quality [10–12]. Many precious plants and animals,
dependent on wetlands, are disappearing with them [13–15]. Given these serious situations,
several notable efforts to perform national and regional comprehensive wetland inventories
have been successfully conducted, such as the Canadian Wetland Inventory (CWI) and
the National Wetlands Inventory (NWI) by the U.S. Fish and Wildlife Service [16–19].
The Ramsar Convention was signed by the representatives of 18 nations in 1971 in the
Iranian city of Ramsar to conserve wetland resources on a global scale [4]. Moreover,
various countries have adopted regional policies to protect wetland resources. The Chinese
government always pays attention to wetlands and spares no efforts to take many protective
measures, such as establishing nature conservation areas, regularly monitoring wetland
environments and proposing many policies and regulations to restrict frequent human
activities. Therefore, to reinforce the conservation and management of wetland resources,
the use of advanced technology for a regular status survey is significantly essential.

Compared to field surveys, which are time-consuming and have a limited ability to
capture the spatial distribution and temporal variation of wetland resources, remote sensing
is a promising technology that can rapidly, dynamically, effectively, and cost-efficiently
monitor wetlands for large-scale applications and long-term trending analyses [20,21].
Images acquired from various remote sensing satellites sensors are major data resources
for wetlands research. Optical sensors acquire abundant spectral information in visible
and infrared bands that reflect the characteristics of different wetland types. Remote
sensing imagery with low and medium resolutions, such as Aqua/Terra MODIS (Moderate
Resolution Imaging Spectroradiometer); NOAA AVHRR (Advanced Very High-Resolution
Radiometer); Landsat (including MSS (Multispectral Scanner), TM (Thematic Mapper),
ETM+ (Enhanced Thematic Mapper Plus), and OLI (Operational Land Imager) sensors);
and SPOT HRV (High-Resolution Visible), have been widely investigated for wetland
mapping [20,22–26]. Commercial satellites with high spatial resolution, such as IKONOS,
Quickbird, WorldView, and GeoEye, are used to obtain accurate fine spatial resolution
maps [27–29]. Moreover, Sentinel-2 MSI (Multispectral Instrument) multispectral data
used as the focused remote sensing data source in recent years are characterized by fine
spatial resolution and the newly added red edge bands. The data have the possibility of
providing detailed geometry and texture image features and new spectral information for
wetlands [30]. Thus, the applicability of Sentinel-2 data on wetlands information extraction
is necessarily examined.

Compared to the optical sensors, radar, as an active remote sensor, is capable of strong
penetration that might still obtain clear images of the ground surface in cloudy and light
rain weather. SAR sensors acquire microwave scattering information that is obviously
different from the visible–infrared spectral information [30]. Some studies have shown
that short-wavelength (e.g., C-band) radar has advantages in detecting herbaceous wet-
lands, such as bog, fen, and marshes, whereas the long-wavelength radar (e.g., L-band
and P-band) is helpful for identifying tree-covered wetlands, such as swamps [10,21,31].
Furthermore, the quad-polarimetric SAR with cross-polarization (HV and VH) and co-
polarization (HH and VV) modes can obtain more abundant surface information by using
various polarimetric decomposition algorithms based on scattering mechanisms, which
may extract different polarimetric features [32,33]. Most studies have successfully used
one decomposition technology in wetlands mapping and monitoring [7,34,35]. One or a
few polarimetric decomposition features, however, may restrict the provision of sufficient
information to achieve high identification accuracy for the wetlands and their surrounding
objects [36,37]. Therefore, it is necessary to search some suitable decomposition methods
and extract and integrate multiple polarimetric features to improve the ability to deter-
mine the heterogeneity of the objects. Several studies have shown that both optical and
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radar remote sensing are able to be satisfactorily used for wetlands identification and
mapping [20,30,31,38–40]. Due to the different remote sensing modes of optical and radar
sensors, the image characteristics have obvious discrimination. A multisensor data fusion
technique that can combine the advantages of each type of data is likely to be more useful
and promising for high accuracy measurement and identification [41,42]. The application
potential of multisensor data fusion in wetlands land cover classification should, therefore,
be investigated for deep analysis and evaluation.

Besides the effective utilization of multisource data, it is crucial to develop efficient
and robust methods for accurately identifying and mapping wetlands and their adjacent
areas. The classification methods for wetlands can be grouped into two categories based
on the minimum spatial unit for classification (i.e., pixel and object) [43]. The pixel-based
methods just analyze the spectral characteristics of each pixel in an image and may be easily
affected by isolated pixels, so that the classification results may appear fragmented and
discontinuous in their spatial distribution [44]. By contrast, object-based image analysis
(OBIA) methods segment the image into numerous homogeneous objects [20,21,37]. The
classification accuracy may increase by applying OBIA methods due to the spatial relation
features of adjacent objects and the spectral, textural, and geometrical features of individual
objects that are used for identifying different land covers [44–46].

Recently, machine learning algorithms have become the major classification methods
due to their good generalization capability and robustness. Several machine learning
algorithms, such as support vector machine (SVM), extreme learning machine (ELM),
back-propagation neural network (BP), decision tree (DT), random forest (RF), and extreme
gradient boosting (XGBoost), have successfully and widely used in wetland classifica-
tion [42,47–57]. RF and XGBoost as tree-based ensemble methods have shown outstanding
performance among these methods, as they are less affected by noisy data and can extract
potential characteristics from high-dimensional data. The ensemble methods combine
the predictions of several base estimators to improve the performance and accuracy over
a single estimator [58–60]. Recently, another new ensemble approach, the multigrained
cascade forest (gcForest) method, was proposed by Zhou [61]. This method stacks several
different base estimators to generate a layer-by-layer deep forest. The structure of this
estimator that consists of multigrained scanning and cascade forest enhances the depth
and diversity of the traditional forest model. This method with fewer hyperparameters can
automatically determine the model complexity by using input data [62,63]. The gcForest
can be able to achieve satisfactory results with small-scale training data in image classifi-
cation and target identification [64–68]. The potential application ability of gcForest for
wetland land cover classification, however, has a shortage of evaluation. If this method can
be successfully applied in wetland-type identification, it may provide a new technology for
wetland classification.

Wetlands as an important natural resource are characterized by its multiple types,
complex spatial patterns, and fuzzy boundaries, which may bring many challenges in
classification tasks. To solve the problems and develop newly reliable and efficient methods
for wetlands classification, in this paper, we proposed an object-based gcForest method
with multisensor data (Sentinel-2 and Radarsat-2 imagery) to identify the wetlands and
their adjacent land cover classes in the Wuyuer River Wetland National Natural Reserve.
Furthermore, a hybrid feature selection method, ReliefF-RF, was also proposed to optimize
the feature set that consisted of several spectral and polarimetric decomposition features
extracted from Sentinel-2 and Radarsat-2 data. The main research objectives of this study
are to: (1) search the more effective features for wetland classification using optical and
radar data, (2) assess the application effect of multisensor fusion data in wetland clas-
sification, and (3) evaluate the performance of object-based gcForest for wetland land
cover classification.
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2. Materials and Methods
2.1. Study Area

The study area is located at the middle and lower reaches of Wuyuer River in the
Northeast Songnen Plain, Heilongjiang Province, China (Latitude: 47◦34′ N–47◦51′ N,
Longitude: 124◦23′ E–124◦48′ E), covering an area of 782.32 km2 (Figure 1). Wuyuer River,
which is the second-largest inland river in China, originates from the west of the Lesser
Khingan Mountains to the north of Songnen Plain and travels a total length of 587 km [69].
Extensive wetlands have developed due to the low elevation and the poor drainage of
the sluggish river. The government reinforces the management of human activities and
proposes to establish natural reserves to protect the fragile wetland ecosystems. The
Wuyuer River Wetland National Natural Reserve formally established in 2013 has played
an important role in nature resources conservation. This region is characterized by a
typical semi-humid monsoon climate and four distinct seasons. The annual average
temperature ranges 3.2–4.4 ◦C, and the annual average precipitation approximately ranges
369–440 mm [70]. Marsh; paddy field; and surface water (rivers, lakes, and reservoir) are
the primary wetland land cover types in the Wuyuer River Wetland National Natural
Reserve. Phragmites australis and Carex (Carex pseudocuraica, Carex meyeriana, Carex enervis,
etc.) are the major plant types in the wetland, and some hydrophilous vegetation may also
exist [71]. Moreover, our study area also includes the surrounding area of the Wuyuer River
Wetland National Natural Reserve that is the main area of frequent human activity in the
region, of which the non-wetland types are upland field, meadow, forest, residential area,
and road.
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Figure 1. The location of the study area in the Wuyuer River Wetland National Natural Reserve.

2.2. Datasets
2.2.1. Remote Sensing Satellite Imagery

Sentinel-2 and Radarsat-2 remote sensing data were both used for land cover classifi-
cation over the study area, which can provide visible, infrared, and microwave electromag-
netic spectrum information. The Copernicus Sentinel-2 mission provides a global coverage
of Earth’s land surface to monitoring the environment condition changes by a constellation
of Sentinel-2A and Sentinel-2B. The multispectral instrument contains 13 spectral bands
with the central wavelength ranging from 0.443 µm to 2.190 µm (Band 1 (443 nm), Band 2
(490 nm), Band 3 (560 nm), Band 4 (665 nm), Band 5 (705 nm), Band 6 (740 nm), Band 7
(783 nm), Band 8 (842 nm), Band 8A (865 nm), Band 9 (945 nm), Band 10 (1375 nm), Band
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11 (1610 nm), and Band 12 (2190 nm)). The Sentinel-2 sensor features three spatial resolu-
tions (10 m, 20 m, and 60 m) on different bands. Level-1C Sentinel-2 TOA products with
UTM/WGS84 projection information are freely accessible for global users, which can be
downloaded from Sentinel’s Scientific Data Hub (https://scihub.copernicus.eu/, accessed
on 9 December 2021).

Radarsat-2 is an advanced commercial C-band (5.405 GHz) SAR satellite that was
launched by the Canadian Space Agency (CSA) and MacDonald, Dettwiler and Associates
Ltd. (MDA) in December 2007 [33]. The SAR sensor is designed with a multipolarization
mode (HH, VV, HV, and VH), which can improve the discrimination among land cover
types due to the different sensitivities of each scattering mode to various surface charac-
teristics. Radarsat-2 Fine Quad-Pol images (Single Look Complex, SLC) with a resolution
of 4.7 m × 5.1 m and an incidence angle of 45.41◦ were used for land cover classification
in this study [32]. In this study, the Sentinel-2 and Radarsat-2 images were acquired on
9 September 2017 and 27 August 2017, respectively, which were collected in accordance
with the dates of the field surveys.

2.2.2. Field Survey Data

The field survey was conducted to collect the field reference samples of different land
cover types during September 2017 in the study area. Sentinel-2, Radarsat-2, and high-
resolution Google Earth images were used as a reference map to facilitate the collection of
ground truth and remote sensing imagery characteristics. In the field investigations, prop-
erties of the land cover classes (names, type characteristics, and surrounding description)
were recorded in a notebook, and the ground coverage was recorded photographically. The
geographical coordinates of the sampling stations were recorded using a Trimble PXRS
(Trimble Navigation Inc., Sunnyvale, CA, USA) global positioning system (GPS). During
the field survey, a total number of 500 ground truth field plots were collected.

2.3. Image Preprocessing

Sen2cor is a prototype processor that performs Atmospheric Correction (AC, including
Cirrus clouds and terrain correction) for Sentinel-2 MSI products. A Level-1C (L1C) Top-
of-Atmosphere (TOA) image was converted into an orthoimage Level-2A (L2A) Bottom-
of-Atmosphere (BOA) reflectance product by executing the Sen2cor via the windows
command line [72]. The generated L2A image was resampled with 10-m spatial resolution
for Band 2-Band 8A and Band 11-Band 12 using the Sentinel-2 Toolbox (Sentinel Application
Platform, SNAP). The Aerosols Band 1, Water vapor Band 9, and Cirrus Band 10 with 60-m
spatial resolution was omitted due to the insignificant information of the ground coverage.
The spectral reflectance data extracted from Sentinel-2 L2A resampled imagery was used
as variables for the machine learning modeling.

The Radarsat-2 image was preprocessed by using PolSARpro v5.0 software, which
was developed by the European Space Agency (ESA) for polarimetric SAR data scientific
analysis. This software provided a series of professional data processing procedures, which
we implemented on the Radarsat-2 image, including radiation calibration, filtering, and
polarimetric decomposition. The original data were converted into backscattering intensity
data in dB format by radiometric calibration. A polarimetric coherency (T3) matrix was
extracted from the scattering matrices for polarimetric decomposition. A 5 × 5 filtering
window was applied to reduce the effects of speckle through the Lee-Sigma filtering
method [32]. Several polarimetric decomposition methods were applied to extract the radar
polarimetric information.

Finally, in order to unify the geographical spatial coordinate reference of two kinds of
satellite imagery, the Sentinel-2 image was used as a reference map to correct the Radarsat-2
image. The geometric correction was carried out by the quadratic polynomial method in
ENVI 5.1 software (Exelis Visual Information Solutions, Inc., Boulder, CO, USA). A total of
200 ground control points (GCPs) assured the correction error within one image pixel. The
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corrected Radarsat-2 image was resampled to 10-m spatial resolution with UTM/WGS84
projection information, which was the same as Sentinel-2.

2.4. Multisource Features Extraction and Selection
2.4.1. Multisource Features Extraction

A large set of multisource features extracted from optical and radar imagery were used
as the original feature set. The spectral features were the spectral reflectance of 10 Sentinel-2
MSI bands (Band 2, Band 3, Band 4, Band 5, Band 6, Band 7, Band 8, Band 8A, Band 11,
and Band 12). The radar features were extracted using several polarimetric decomposition
methods, which were proposed according to the physical scattering mechanisms of ground
surface objects [73]. The scattering (S) matrix was acquired from SAR data by measuring
the amplitude and phase of the backscattering signal in each pixel, which can be expressed
as follows:

S =

[
SHH SHV
SVH SVV

]
(1)

where SHH, SHV, SVH, and SVV represented the complex scattering coefficients of the HH,
HV, VH, and VV polarizations, respectively.

A polarimetric coherency (T3) matrix is converted from the S matrix, which can be
expressed as follows:

T3×3 =
1
2


〈
|SHH + SVV |2

〉 〈
(SHH + SVV)(SHH − SVV)

∗〉 〈
2(SHH + SVV)S∗HV

〉〈
(SHH − SVV)(SHH + SVV)

∗〉 〈
|SHH − SVV |2

〉 〈
2(SHH − SVV)S∗HV

〉〈
2SHV(SHH + SVV)

∗〉 〈
2SHV(SHH − SVV)

∗〉 〈
4|SHV |2

〉
 (2)

where * denotes the conjugate, |·| denotes the module, and 〈 〉 denotes the temporal
scattering matrix and polarimetric coherency or spatial ensemble averaging.

The scattering matrix and polarimetric coherency matrix can be used for extracting po-
larimetric decomposition features [36,74]. These features can provide the geometrical structure,
roughness, and orientation information of different ground targets [32]. Moreover, polarimetric
features from different algorithms have different sensitivities to land covers. In this paper, we
used the Pauli, Huynen, Barnes, Cloude, Holm, Freeman, Van Zyl, Krogager, H/A/Alpha, and
Yamaguchi methods to extract 44 polarimetric decomposition features (Table 1).

Table 1. List of the polarimetric decomposition features extracted from the Radarsat-2 image using
10 decomposition algorithms.

Decomposition Method Polarimetric Decomposition Features Abbreviation Reference

Pauli

Pauli_a Pauli_a

Cloude, S.R. [75]

Pauli_b Pauli_b
Pauli_c Pauli_c

Pauli_T11 Pauli_T11
Pauli_T22 Pauli_T22
Pauli_T33 Pauli_T33

Huynen
Huynen_T11 JRH_T11

Huynen, J.R. [76]Huynen_T22 JRH_T22
Huynen_T33 JRH_T33

Barnes
Barnes_T11 RMB_T11

Barnes, R.M. [77]Barnes_T22 RMB_T22
Barnes_T33 RMB_T33

Cloude
Cloude_T11 SRC_T11

Cloude, S.R. [78]Cloude_T22 SRC_T22
Cloude_T33 SRC_T33
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Table 1. Cont.

Decomposition Method Polarimetric Decomposition Features Abbreviation Reference

Holm
Holm_T11 WAH_T11

Holm, W.A. [79]Holm_T22 WAH_T22
Holm_T33 WAH_T33

Freeman3
Freeman3_Vol FRE3_Vol

Freeman, A. [80]Freeman3_Odd FRE3_Odd
Freeman3_Dbl FRE3_Dbl

Van Zyl3
Van Zyl3_Vol VZ3_Vol

Vanzyl, J.J. [81]Van Zyl3_Odd VZ3_Odd
Van Zyl3_Dbl VZ3_Dbl

Krogager
Krogager_Kd KRO_Kd

Krogager, E. [82]Krogager_Kh KRO_Kh
Krogager_Ks KRO_Ks

H/A/Alpha

H/A/Alpha_T11 HAA1_T11

Pottier, E. [83]

H/A/Alpha_T22 HAA1_T22
H/A/Alpha_T33 HAA1_T33

H/A/Alpha_Alpha HAA2_alp
H/A/Alpha_Anisotropy HAA2_ani

H/A/Alpha_Entropy HAA2_ent
H/A/Alpha_DERD HAA3_DERD
H/A/Alpha_SERD HAA3_SERD
H/A/Alpha_RVI HAA3_RVI

H/A/Alpha_Polarization asymmetry HAA3_PA
H/A/Alpha_Polarization fraction HAA3_PF

H/A/Alpha_Pedestal height HAA3_PH
H/A/Alpha_Shannon entropy HAA3_SE

Yamaguchi4

Yamaguchi4_Vol YAM4_Vol

Yamaguchi, Y. [84]Yamaguchi4_Odd YAM4_Odd
Yamaguchi4_Dbl YAM4_Dbl
Yamaguchi4_Hlx YAM4_Hlx

2.4.2. Multisource Features Selection Method

A large set of multisource features was extracted to comprehensively obtain ground
surface information. However, some features may provide redundant or noise information,
which can confuse the data mining procedure of machine learning algorithms. Therefore, it
is necessary to use some efficient methods to select different features that are sensitive to
various land cover types and provide significant information.

The ReliefF algorithm is a widely used filtering feature selection algorithm, which can
solve multiclass problems [85]. This algorithm is considered as one of the most successful
feature selection algorithms due to its high efficiency and unrestricted data types. The main
principle of ReliefF algorithm is that, given a dataset D, a sample x is randomly selected from
it, and the k-nearest samples H(x) and k-nearest samples M(x) are, respectively, searched
from the same class and different class with sample x. The sum of the distances between
sample x and the k-nearest samples is calculated, and the weight values of the features are
updated according to the distances. The feature weight value is updated as follows:

Wi
f = Wi−1

f + ∑
C 6=class(x)

p(x)
1−p(class(x))

k
∑

j=1
di f f ( f , x, M(x))

m× k
−

k

∑
j=1

di f f ( f , x, H(x))
m× k

(3)

where diff(·) is the distance of different samples on feature f, p(x) is the probability of the
class, H(x) and M(x) are k-nearest samples searched from same class and different class,
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respectively, m is the number of iterations, k is the number of the nearest samples, and i is a
randomly selected sample.

The random forest (RF) algorithm is an ensemble learning algorithm based on multiple
classification and regression tree (CART) integration [86]. The algorithm uses bootstrap
sampling technology to generate multiple training sets from the original data set to train
each CART. During the construction of a CART, each node is split using the features
and threshold that yield the smallest Gini coefficient. The Gini coefficient can be defined
as follows:

Gini(D) = 1−
m

∑
i=1

(
Di

D

)2

(4)

where D is the number of data samples, m is the number of input features, and Di represents
the number of samples for ith feature.

When the RF algorithm randomly shuffles the value of a feature variable, the validation
accuracy will be influenced. The greater the decrease in validation accuracy, the higher
the importance of the feature variable. Thus, RF provides variable importance estimations
for the qualitative analysis of variable contributions, which has an outstanding ability to
screen feature information. The variable importance can be calculated as Equation (5):

V(Xj) = (Acc− Accj)/Acc (5)

where Acc represents the validation accuracy, Accj represents the validation accuracy after
shuffling the jth feature Xj, and V(Xj) is the importance of feature Xj.

In this paper, a hybrid feature selection method (ReliefF-RF) was proposed to combine
the advantages of two feature selection methods. In the first step, the weight values of
total extracted features were calculated by the ReliefF method. The features with weight
values above 0.01 were selected into the initial optimal feature set. The features that had a
low correlational relationship with different land cover types were effectively removed. In
the second step, the feature set optimized by ReliefF was put into the RF algorithm, and
the feature importance was calculated according to the validation accuracy. The features
were rearranged in descending order of importance. In order to filter the features that have
limited potential for increasing the classification accuracy, one feature was added into the
RF model for training per iteration, and the overall accuracy was calculated at the same
time. The iteration stopped until all the features were added into the model. The features
were determined as the final optimal feature set when the accuracy tends to converge.

2.5. Object-Based gcForest (OGCF) Method
2.5.1. Multigrained Cascade Forest

Multigrained cascade forest (gcForest) is a potential ensemble approach that consists
of many base estimators to generate a cascade forest, which was proposed by Zhou’s
research [61]. The cascade forest is a deep and layer-by-layer processing structure that is
similar to the multilayer neural network structure of deep neural networks (DNN) [87].
Besides the part of cascade forest, multigrained scanning is a special part of gcForest to use
for producing new features from the raw image features by sliding windows. Furthermore,
as pointed out in Zhou’s research, the gcForest method with fewer hyperparameters is
more efficient and performs excellent even on small-scale data [61].

As illustrated in Figure 2a, sliding windows are used to scan the input image patches,
which is called multigrained scanning. Suppose the size of input image patches is m × m,
then the k × k sliding window for scanning will produce n2 feature images, in which n
can be computed as in Equation (6). Each base classifier, such as random forest and extra
tree [88], produced n2 s-dimensional class vectors by using n2 feature images. In practice,
these class vectors are the classification probability. The class vectors are concatenated as
transformed features and then input into the cascade forest. The procedure of multigrained
scanning enriches the features and retains the spatial information, which enhances the
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representation ability of cascade forest. In this paper, we used multiscale sliding windows
to increase the feature diversity, with three window sizes applied to scan the image patches.

n =
m− k

d
+ 1 (6)

where m and k represent the size of input image patches and sliding windows, respectively,
and d is the step size of the sliding windows.
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multigrained scanning using three sliding window sizes. (b) Illustrates the structure of cascade forest.
The ensemble classifier of each layer consists of several base classifiers.

As illustrated in Figure 2b, cascade forest employs a layer-by-layer structure. Each
layer of the cascade structure is an ensemble classifier that consists of several different
base classifiers [89]. In this paper, we employed four classifiers, random forest, extra
tree, extreme gradient boosting, and logistic regression, as the base classifier [90]. The
transformed features generated by multigrained scanning are input into the first layer
of cascade forest, and the ensemble classifiers obtain the classification probability as the
output class vectors. These class vectors concatenated with transformed features as new
features are input into the next layer. Similarly, the current layer uses both of the output
class vectors from the previous layer and transformed features from multigrained scanning
as the input features for training. Furthermore, due to the use of multiscale sliding window
to scan image patches, the transformed features have three sizes, and each layer chooses
one size to train the classifiers.

To reduce the risk of overfitting, the class vectors produced by each classier are
generated by k-fold cross-validation. After expanding a new layer, the whole cascade
forest will be estimated on the validation data, and the training procedure will terminate
if the performance has no significant improvement. Therefore, the cascade forest is able
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to adaptively determine the number of layers such that the model complexity can be
automatically adjust.

2.5.2. Image Patches Generation with Segmented Object

An object-based gcForest (OGCF) method is proposed for wetland classification, in
which the labeled image patches were represented by objects derived from image segmenta-
tion. Image segmentation is carried out using the commonly used multiscale segmentation
technology via eCognition Developer software (Trimble Inc., Sunnyvale, CA, USA). This
algorithm is based on bottom-up region merging of pixels to minimize the heterogeneity of
the segmented objects. The main parameters include segmentation scale, spectral hetero-
geneity, and shape heterogeneity. After several experiments, the segmentation scale, shape,
and compactness parameters are set as 60, 0.5, and 0.8, respectively. The final image objects
can distinguish different land cover classes in adjacent positions, and the number of objects
is moderate. Then, all the image objects are converted into vector polygons in a shapefile
using ArcGIS 10.3 software (ESRI Inc., Redlands, CA, USA). The center point of the object
that is automatically generated from one polygon is taken as the center to generate an image
patch with an appropriate window size (Figure 3). We set several different clipping window
sizes (16 × 16, 20 × 20, 24 × 24, 28 × 28, 32 × 32, 36 × 36, 40 × 40, 44 × 44, and 48 × 48) of
the image patches and compare them to find which one is the most appropriate. A total
22,807 image patches are generated for the whole remote sensing image. The generated
image patches contain the spectral information of the objects and the spatial information of
the adjacent object, which are helpful to improve the ability of the model to distinguish
different classes.
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Figure 3. An illustration of image patch generation analysis with the clipping window (yellow
rectangle), the center point of image patch (pink triangle), and the highlighted image object (cyan
polygons). Other image objects are demonstrated as red polygons. The first row and second row
show that the image patch contains a complete and incomplete object, respectively.

2.6. Accuracy Assessment

The widely used confusion matrix is applied to assess the classification accuracy.
Several evaluation indicators that are calculated from the confusion matrix can be used
to comprehensively assess the classification results, including the overall accuracy (OA),
kappa coefficient, user’s accuracy (UA), and producer’s accuracy (PA). The OA represents
the total proportion of correctly classified. The Kappa coefficient reflects the agreement
between classification results and actual reference data [21,91]. The UA describes the
proportion of correctly classified in the classification result of per class. The PA describes
the proportion of correctly classified in the actual reference sites of per class [91]. A total
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number of 750 image patches were randomly selected for classification, of which 564 image
patches were used for model calibration, and 186 image patches were employed to search
the optimal hyperparameters of classifiers for model validation. Furthermore, a total of
500 truth field plots were used to verify the results of the classification. Table 2 shows the
sample number of each land use type in the calibration, validation, and test datasets.

Table 2. Number of collected samples for the land cover classes over the study area.

Class Code Land Cover Classes
Number of Samples

Calibration Validation Test

C1

Wetland

Carex marsh 78 26 50
C2 Phragmites marsh 52 17 40
C3 Paddy field 119 39 81
C4 Surface water 85 29 87
C5

Non-wetland

Residential area 67 22 52
C6 Road 15 5 41
C7 Upland field 95 31 80
C8 Forest 6 2 22
C9 Meadow 47 15 47

Total 564 186 500

3. Results
3.1. Multisource Features Importance and Feature Set Optimization

The hybrid feature selection algorithm (ReliefF-RF) was proposed to optimize the
feature set with 54 multisource features according to the ranking criterion of ReliefF and
RF. As shown in Figure 4a, the number of features selected by the ReliefF method was 28,
of which the number of spectral features and polarimetric decomposition features was
10 and 18, respectively. The features with higher weight values were more capable of
distinguishing the samples. B8A has the highest weight value of 0.076 among the spectral
features, while the KRO_Ks derived from the Krogager decomposition had the lowest
weight value of 0.011. Among all of the polarimetric decomposition features, the feature
variables obtained by Pauli decomposition, H/A/Alpha decomposition, and Krogager
decomposition were selected more frequently.

Though about half of the features were filtered by the ReliefF method, the 28 features
were also slightly large in terms of complexity and efficiency in the OGCF model. Some
features might play a small role in the classification accuracy increase. RF was employed to
further select from the 28 feature variables obtained by ReliefF. Figure 4b shows the feature
importance values derived from the validation accuracy of RF in descending order. The
higher the importance fractions produced, the more important the feature was. B5 exhibited
the highest importance fraction among the spectral features, with the value of 0.026. In
terms of the polarimetric decomposition features, HAA2_alp had the highest importance
value of 0.009. Figure 4c shows the overall accuracy of the RF method in each iteration. The
overall accuracy greatly improved when 11 features with high importance fractions were
used in RF. The accuracy reached the highest value of 85.73% and increased 43.20% than
using B5 alone in the first iteration. After that, the overall accuracy tended to converge
when the number increased to 16. After the 16th feature was added, the accuracy slightly
decreased by about 0.70%. Therefore, the 16 features were selected as the final optimized
feature set used for wetland land cover classification, including six spectral features (B2, B3,
B4, B5, B11, and B12) and 10 polarimetric decomposition features (HAA2_alp, HAA2_ani,
HAA2_ent, HAA3_PA, HAA3_PF, HAA3_PH, HAA3_DERD, KRO_Kd, KRO_Kh, and
Pauli_b).
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the RF model when one feature was added into the model for training per iteration. The red dotted
line represents the position of the final determined features.

3.2. Hyper-Parameters Optimization of OGCF Method
3.2.1. Size of Sliding Window and Image Patch

The sizes of image patch and sliding window jointly affected the generation of features
during the multigrained scanning, which was highly significant for the quality of informa-
tion extraction, model complexity, and model efficiency. We conducted several experiments
to investigate the comprehensive influence of sliding window size and image patch size on
the overall accuracy and time consumption. Table 3 shows the OA in the validation set and
the time consumption when the OGCF model used different combinations of image patch
size and sliding window size. As presented in Table 3, when smaller sliding window sizes
(8 × 8/12 × 12/16 × 16 and 12 × 12/18 × 18/24 × 24) were selected, with the image patch
size increasing, the OA gradually improved and reached the highest values of 85.81% with
a 20 × 20 image patch size and 84.92% with a 32 × 32 image patch size, respectively. After
that, the OA decreased; meanwhile, the time consumption increased significantly. When
using larger sliding window sizes (16× 16/24× 24/32× 32 and 20× 20/30× 30/40× 40),
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the OA reached the highest values of 86.17% with a 32 × 32 image patch size and 85.46%
with a 40 × 40 image patch size, respectively. The OA decreased gradually when the image
patch size increased. When using a fixed image patch size, with the sliding window size
increasing, the OA increased, and the time consumption decreased. Based on integration of
the upwards experiments, we selected the combination of a 32 × 32 image patch size and a
16 × 16/24 × 24/32 × 32 sliding window size with the OA value of 86.17% and the time
consumption of 489 s as the optimal combination in this study.

Table 3. Overall accuracy and time consumption using different combinations of image patch size
and sliding window size.

Image Patch Size

Sliding Window Size

8 × 8/12 × 12/16 × 16 12 × 12/18 × 18/24 × 24 16 × 16/24 × 24/32 × 32 20 × 20/30 × 30/40 × 40

OA (%) Time (s) OA (%) Time (s) OA (%) Time (s) OA (%) Time (s)

16 × 16 83.86 178
20 × 20 85.81 324
24 × 24 84.22 613 82.62 224
28 × 28 82.80 985 83.51 423
32 × 32 81.74 1351 84.92 702 86.17 489
36 × 36 82.62 1875 82.80 1156 85.28 937
40 × 40 79.43 2521 81.03 1715 84.75 1243 85.46 934
44 × 44 80.49 3128 80.14 2304 82.98 1666 84.22 1347
48 × 48 80.32 3353 78.90 2901 80.49 2365 83.86 1972

3.2.2. Base Classifiers

The base classifiers employed in cascade forest can theoretically be any type that
ensured model diversity. Further, the number of base classifiers was another important
hyperparameter that influenced the model performance. As shown in Table 4, we chose four
kinds of base classifiers, including random forest (RF), extra trees (ET), extreme gradient
boosting (XGBoost), and the logistic regression (LR) method. The combinations of image
patch size and sliding window size in the multigrained scanning step were, respectively,
set to 32 × 32 and 16 × 16/24 × 24/32 × 32, which achieved the highest OA in the
previous experiment. Among all the experimental groups, the OA value significantly
improved by using four kinds of base classifiers. The ensemble method with two classifiers
(random forest and extra tree) performed poorly, with the lowest OA value of 76.95%.
The OA value significantly improved with an increase in the kinds of base classifiers, and
the method that consisted of four different base classifiers produced higher OA values
above 85.99% (E1–E3). According to experimental groups 4–6 (E4–E6), the number of each
type of classifier was imbalanced and produced lower OA values (E4, OA = 82.97%; E5,
OA = 83.15%). In addition, the running time was significantly increased with the base
classifier number increasing.

Table 4. Overall accuracy and time consumption using different number of base classifiers. E1–E6
represent the codes of the experimental groups.

Classifier Type Number of Base Classifiers

E1 E2 E3 E4 E5 E6

RF 1 1 1 2 2 2
ET 1 1 1 1 2 2

XGBoost 0 1 1 1 1 2
LR 0 0 1 1 1 2

Overall Accuracy (%) 76.95 84.75 85.99 82.97 83.15 84.04
Time(s) 295 423 502 505 608 735
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3.3. Classification Results
3.3.1. Accuracy Assessment of OGCF Model with Different Feature Sets

Figure 5 shows the overall accuracy, kappa coefficient, and producer’s accuracy calcu-
lated from the confusion matrix, which was obtained from the classification results of the
OGCF model with different feature sets. As shown in Figure 5a, when using individual
types of features for classification, the model with spectral features outperformed the
model with polarimetric decomposition features (OPT: OA = 83.20%, kappa = 0.81; SAR:
OA = 74.60%, kappa = 0.71). The method with multisource features produced the highest
classification accuracy, with the OA value of 88.20% and kappa coefficient of 0.86.
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Figure 5. The classification accuracy of the OGCF model with different feature sets. Note that OPT
represents the spectral feature sets extracted from optical imagery (Sentinel-2), SAR represents the
polarimetric decomposition features extracted from radar imagery (Radarsat-2), and OPT + SAR
represents the hybrid feature sets including spectral and polarimetric decomposition features. (a) The
overall accuracy and kappa coefficient of the OGCF model with different feature sets. (b) The
producer’s accuracy for each land cover by using the OGCF model with different feature sets. C1–C9
are the class codes that represent different land cover classes (see Table 2).

According to Figure 5b, the OGCF model with three feature sets yielded different
PA values of the various land cover classes. The highest PA of four classes (residential
area, upland field, paddy field, and surface water) were close to 100%. The accuracy
insignificantly improved when using different feature sets. The PA value of upland field and
surface water increased by up to 92.50% and 96.55%, respectively, when using multisource
features rather than optical or radar features alone, while the PA value of the residential area
increased to 96.15%. The model with individual spectral features produced the lower PA
for forest and meadow with the values of 40.91% and 65.96%, respectively. The model with
individual polarimetric decomposition features produced the lower PA for Carex marsh and
road with the values of 52.00% and 12.20%, respectively. The accuracy of the phragmites
marsh was lower when using individual features (OPT, PA = 47.50%; SAR, PA = 50.00%).
However, the PA of all of these classes significantly improved using multisource features.
The accuracy of the phragmites marsh improved most obviously by 27.50% and 25.00%,
respectively, compared with using optical and radar features alone, followed by forest
(22.73% and 9.09%) and meadow (19.15% and 2.13%).

3.3.2. The OGCF Model Compared with Different Classification Methods

Figure 6 shows the overall accuracy, kappa coefficient, and producer’s accuracy cal-
culated from the confusion matrix, which was obtained from the classification results of
several classification methods by using a hybrid feature set (including spectral features
and polarimetric decomposition features). The compared methods included support vec-
tor machine (SVM), deep neural network (DNN), extreme gradient boosting (XGBoost),
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random forest (RF), cascade forest (CF), and object-based gcForest (OGCF). SVM and
DNN yielded lower classification accuracies (SVM: OA = 70.00%, kappa = 0.65; DNN:
OA = 78.60%, kappa = 0.75). The classification accuracy obviously increased when using
ensemble methods, including XGBoost, RF, and CF (XGBoost: OA = 83.40%, kappa = 0.81;
RF: OA = 84.80%, kappa = 0.82; CF: OA = 85.60%, kappa = 0.83), and the OGCF achieved
the highest classification accuracy with the OA value of 88.20% and kappa coefficient of
0.86 (Figure 6a).
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Figure 6. The accuracy assessment of several classification methods, including support vector
machine (SVM), deep neural network (DNN), extreme gradient boosting (XGBoost), random forest
(RF), cascade forest (CF), and object-based gcForest (OGCF). (a) The overall accuracy and kappa
coefficient of different classification methods. (b) The producer’s accuracy for each land cover by
using different classification methods. C1–C9 are the class codes that represent different land cover
classes (see Table 2).

As illustrated in Figure 6b, the classification accuracy of each land cover class was
different when using different classification methods. The PA values of the upland field and
paddy field were similar and relatively high among the six methods. The SVM produced
the low PA for forest, meadow, phragmites marsh, and road with the values of 22.73%,
61.70%, 12.50% and 12.20%, respectively. The DNN produced low PA for forest, Carex
marsh, and road with the values of 27.27%, 54.00%, and 48.18%, respectively. The XGBoost
and RF performed well and yielded higher PA for most of land cover classes. A few land
cover classes had low PA, such as Carex marsh with the value of 66.00% in XGBoost and
road with the value of 46.34% in RF. The CF produced a comparatively high PA for each
land cover, except for the phragmites marsh. By contrast, the PA value of the phragmites
marsh was significantly improved by 17.50% by using the OGCF method. Comparing with
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other methods, OGCF produced the highest PA for the residential area, forest, Carex marsh,
and surface water with the values of 96.15%, 63.64%, 82.00%, and 96.55%, respectively. As
for the other five land cover classes, OGCF also produced good results. The accuracy of the
wetland classes ranged from 75.00% to 97.53%.

Furthermore, for visual assessment, three subregions in the study area are presented
in Figure 7, and red circles are used to mark the details of classification maps of different
classification methods. As shown in Figure 7, OGCF achieved the most accurate results and
had the fewest scattered objects in the classification map. Some classes, such as meadow,
field, phragmites marsh, and Carex marsh, had similar textures, geometrical structures,
and adjacent spatial patterns. These easily misclassified classes were identified better by
using the OGCF method, and the class boundaries were smoother and more precise. In
terms of the other classification methods, the meadow was partially misclassified as the
Carex marsh and the upland field mistakenly mixed Carex marsh by XGBoost, RF, and
CF. Moreover, XGBoost and CF could not distinguish phragmites marsh from surface
water well. SVM classified worst, which seriously misclassified phragmites marsh as
upland field and misclassified meadow as Carex marsh. For the other classes, all of the
six methods had satisfactory results for the upland field and paddy field. The residential
area was identified better by the OGCF model, whereas the residential area class patches
were dispersal, boundaries were blurred, and the accuracy results were poorer in other
five classification maps.
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Figure 7. Three subregions (a–c) from remote sensing imagery with the corresponding classification
maps. The first column shows the true color Sentinel-2 image (band 4, band 3, and band 2), and the
following columns illustrate the classification maps obtained by the SVM, DNN, XGBoost, RF, CF,
and OGCF models, respectively; details of the classification maps were labeled with red circles.

3.3.3. Classification Result of OGCF Method

The classification result of the whole study area obtained by the OGCF method is
presented in Figure 8, and the producer’s accuracy, user’s accuracy, overall accuracy, and
kappa coefficient calculated from confusion matrix are provided in Table 5. As shown in
Figure 8, the classification map exhibited smooth results, which remained spatial distri-
bution characteristics and accurate boundaries of land cover classes. The isolate objects
were effectively removed. As shown in Table 5, the OA of the OGCF method was 88.20%,
and the kappa coefficient was 0.86. For wetland classes, the paddy field and surface water
achieved the highest classification accuracy with PA values of 97.53% and 96.55%, respec-
tively, and UA values of 87.78% and 92.31%, respectively. Carex marsh and phragmites
marsh had PA values of 82.00% and 75.00%, respectively, and UA values of 69.49% and
93.78%, respectively. Carex marsh was mainly misclassified into meadow and paddy field,
while phragmites marsh was mainly misclassified into Carex marsh and surface water.
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For non-wetland classes, the residential area and upland field achieved the highest clas-
sification accuracy with PA values of 96.15% and 92.50%, respectively, and UA values of
87.72% and 92.50%, respectively. The PA of meadow was 85.11%, and meadow was mainly
misclassified in Carex marsh. The PA values of forest and road were comparatively low
with values of 63.64% and 70.73%, respectively. Forest was mainly misclassified into upland
field and Carex marsh, while road was misclassified with many other classes.
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Table 5. The confusion matrix of the OGCF classification results. The matrix shows the number
of verification points, producer’s accuracy, user’s accuracy, overall accuracy, and kappa coefficient.
C1–C9 are the class codes that represent different land cover classes (see Table 2).

C1 C2 C3 C4 C5 C6 C7 C8 C9 UA (%)

C1 41 3 1 3 0 0 2 5 5 69.49
C2 0 30 0 1 0 0 0 0 1 93.75
C3 5 0 79 0 0 3 3 0 0 87.78
C4 1 6 0 84 0 0 0 0 0 92.31
C5 0 0 1 0 50 5 0 0 1 87.72
C6 0 0 0 0 1 29 0 0 0 96.67
C7 0 0 0 0 0 3 74 3 0 92.50
C8 0 0 0 0 0 0 1 14 0 93.33
C9 3 1 0 0 1 1 0 0 40 86.96

PA (%) 82.00 75.00 97.53 96.55 96.15 70.73 92.50 63.64 85.11
Overall Accuracy = 88.20%

Kappa Coefficient = 0.86
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4. Discussion
4.1. Multisource Features Analysis

A large set of multisource features were extracted from optical and radar data (Sentinel-2
and Radarsat-2 imagery) and then selected by using a proposed hybrid method (ReliefF-
RF), which combined the advantages of the ReliefF and RF methods. In terms of the
spectral features, the results showed that B5, B11, B12, B3, B2, and B4 were selected and
sorted in descending order of importance. B5 was the red edge band from the Sentinel-2
satellite sensor, which was used to identify the vegetation characteristics. B11 and B12 were
shortwave infrared bands, of which the surface water body reflectivity was close to 0 and
also had an effect on plants. Regarding the marsh wetland, the fine wetland classes were
determined by the dominated vegetation types, such as phragmites marsh and Carex marsh.
The constructed wetland was a paddy field with a high soil moisture content. Moreover,
some non-wetland classes, upland field, forest, and meadow, also had different vegetation
characteristics. The selected spectral bands in the red edge and infrared can efficiently
reflect the characteristics of vegetation and water. B3, B2, and B4 were green, blue, and red
bands that can reflect the visible spectral information of different classes, such as road and
residential area. Due to the prominent differences of the selected spectral features, OGCF
effectively extracted characteristic information and produced good classification results
with an overall accuracy of 83.20%.

In terms of the polarimetric decomposition features, the results showed that HAA2_alp,
HAA3_DERD, HAA2_ani, KRO_Kh, Pauli_b, HAA3_PF, HAA3_PA, HAA3_PH, KRO_Kd,
and HAA2_ent were selected and sorted in descending order of importance. The H/A/Alpha
decomposition method had obvious advantages in feature extraction, which made full
use of the expressed information obtained from the eigenvalues of the coherence matrix.
This algorithm identified the dominant scattering mechanism via extraction of the largest
eigenvalue, which can provide physical interpretation [32,37]. The scattering angle alpha
(HAA2_alp) reflected the dominant scattering mechanism of different classes, such as
surface scattering (surface water), double-bounce scattering (buildings in the residential
area), and volume scattering (the surface objects covered vegetation). Moreover, the en-
tropy of polarized wave states in random media (HAA2_ent) can reflect the depolarizing
performance and polarization anisotropy (HAA2_ani) was supplementary of polarization
entropy, which described the minor scattering mechanism. The combination of scattering
angle alpha, polarization entropy, and polarization anisotropy can more accurately identify
classes [78,92]. Other H/A/Alpha polarimetric features were newly derived from the
coherence matrix, showing that DERE (HAA3_DERD) can describe the surface rough-
ness of ground objects, and the polarization fraction (HAA3_PF), polarization asymmetry
(HAA3_PA), and pedestal height (HAA3_PH) can reflect randomness and depolarization
characteristics [93]. The Pauli and Krogager methods were polarization coherent decompo-
sition methods, which aimed at separating the target returns into an averaged singled target,
and the target scattering matrix was decomposed into three components. Coefficient b
(Pauli_b) for Pauli reflected the contribution of double-bounce scattering, and components
Kd (KRO_Kd) and Kh (KRO_Kh) described that scattering was caused by oriented di-plane
and a right or left wound helix [82]. Therefore, it had advantages in using these polarimetric
decomposition features to distinguish similar wetland classes due to the different physical
scattering mechanisms, just as the results showed that similar wetland classes, such as
Carex marsh and phragmite marsh, were more accurately distinguished when adding
polarimetric features. The dominant vegetation of wetlands with different heights, shapes,
structures, and growth environments may cause different electromagnetic wave scattering.
The classification accuracy obviously improved due to the effective information extraction
of scattering features using the OGCF method. Moreover, the scattering characteristics also
helped to identify non-wetland classes, such as forest and meadow, which both covered
vegetation with different surface roughness.
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The final optimal feature set that was selected by the hybrid method (ReliefF-RF)
can reflect the actual physical characteristics and had certain universality that may be
appropriate for different classifiers. ReliefF efficiently filtered out many of the features
according to the correlations between the features and land cover classes. Besides the
correlation relationship, features were further selected using the variables’ importance in RF,
which can reflect the contribution to classification accuracy. In addition, the improvement
of classification accuracy was also attributed to the utilization of multisource features.
The land cover classes may easily be misclassified by using spectral features alone due
to the similar spectrum with different objects. The classification accuracy may be also
lower by using polarimetric features alone due to the speckle noise of SAR data. Speckle
noise is caused by the coherent superposition of the scattering echo signals and may
hardly be completely remove, even when executing speckle filtering. It may seriously
influence the extraction of polarimetric decomposition features. Therefore, the combined
utilization of spectral and polarimetric decomposition features can significantly improve
the classification accuracy of wetlands and its surrounding non-wetland ground objects.

4.2. Object-Based gcForest Method
4.2.1. Hyperparameter Optimization

The image patch size for input samples, the sliding window size for multigrained
scanning, and the base classifier for cascade forest were the crucial hyperparameters for
the OGCF model. The size of the image patch and sliding window jointly influenced
the classification accuracy, model complexity, and computational efficiency. The image
patch size determined the retention of segmented object. Too small of a size could not
contain complete class characteristics and spatial information with adjacent classes, whereas
too large of a size will produce a lot of useless background information and reduce the
computing efficiency. Similarly, the sliding window size for multigrained scanning directly
influences the size and number of feature images, which can enrich the input features from
raw image features. Small sliding window sizes cause the extracted feature images to be
too scattered and the spatial characteristics to be incoherent. A large number of feature
samples unrelated to the target class will be generated, which may become noise data and
affect the classification accuracy. However, a large sliding window may lead to generating
fewer feature images. It causes feature images to be similar and provides redundant class
characteristics and spatial information. Thus, the features of image patch cannot be fully
extracted. Furthermore, the size of the image patch and sliding window directly influence
the computational complexity and efficiency of a model.

In terms of the base classifier of cascade forest, the OGCF model, which combined four
base classifier types, can enhance the diversity of classifiers and combine the advantages
of various classifiers; thus, the generalization ability was effectively improved. The exper-
imental results indicated that the model performance could be improved by increasing
the number of base classifiers. Moreover, the number of different base classifiers was
better when balanced. Imbalanced base classifiers may lead to increasing the weight of an
individual classifier, which reduces the diversity and model performance. Moreover, the
OGCF model is able to adaptively control the model structure and automatically determine
the model complexity, which can efficiently avoid the risk of overfitting and perform good
generalization and robustness.

4.2.2. Classification Performance Analysis

The proposed objected-based gcForest method was built on segmented objects such
as the classification units and was characterized by the multigrained scanning and a deep
layer-by-layer ensemble structure. The OGCF method creates the input label samples by
incorporating the segmented objects into the two-dimensional image patches. Therefore,
besides the spectral, geometry, and texture characteristics within the segmented object,
this method contains the spatial information of the target classes [61]. The classification
accuracy of the OGCF method ranges from 75.00% to 97.53% for the wetland classes and
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63.64% to 96.15% for non-wetland classes, and this method has fewer mixed objects than
other methods. As the classification results demonstrate, OGCF has a strong capacity for
identifying complex wetland land covers, which reserves the fine spatial details and the
boundary delineation. It can effectively distinguish the wetland classes that have adjacent
spatial patterns and fuzzy boundaries, such as phragmites marsh and Carex marsh. More-
over, multigrained scanning as a peculiar structure for OGCF methods can extract more
detailed features from raw imagery features, and different sliding windows significantly
enhance the diversity of features to improve the classification accuracy. Compared with the
CF without multigrained scanning, the OA value was improved by 2.60%. The experimen-
tal results also revealed that the methods with a layer-by-layer cascade structure (CF and
OGCF) outperformed the other classic methods for wetland classification. This indicated
that the use of a cascade structure can combine the advantages of various classifiers, and the
layer-by-layer structure also provided contextual information to improve the classification
performance [89]. It is worth noting that DNN is a similar layer-by-layer structure method
that can be supposed to extract more characteristic information to improve the accuracy
through the deep network. However, the accuracy results were not better. It may cause by
the use of small-scale data that cannot sufficiently train the model. By contrast, the OGCF
method can perform better even on small-scale data. The classification results showed
that the ensemble method, OGCF, had advantages in wetland classification and could also
distinguish the wetland and non-wetland regions.

5. Conclusions

This study made some efforts to implement a comprehensive, potential, and effective
classification scheme for wetland land covers. We considered the utilization of remote
sensing data resources, extraction, and selection of feature variables and development of
novel classification methods. An object-oriented gcForest (OGCF) method with multisensor
data was proposed and applied to identify the wetlands and their adjacent land covers. A
hybrid feature selection method (ReliefF-RF) was utilized to optimize the feature set ex-
tracted from Sentinel-2 and Radarsat-2 imagery. The optimal multisource features selected
by the ReliefF-RF method made a significant contribution to the improvement of classifica-
tion accuracy and were consistent with the actual physical characteristics. The proposed
OGCF method incorporated the segmented objects into the two-dimensional image patches,
which maintained the spatial information to a great extent, and the mapped the wetland
land covers more continuously and smoothly. The OGCF method was characterized by
multigrained scanning and a cascade forest structure, which can achieve high classification
accuracy for the wetland and non-wetland classes. The research discussed also proved that
classification accuracy can be improved by using appropriate hyperparameters, such as
image patch size, sliding window size, and the number of base classifiers. Meanwhile, the
OGCF method exhibited a good generalization capability and robustness on wetland land
cover classification, with great application potential.
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