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Abstract: Accurately depicting the spatial structure characteristics of Quaternary loose sedimentary
strata is not only of great significance for the research of Quaternary geological evolution, but also
for the analysis of spatial variation characteristics of the inner hydrogeological and engineering
geological attributes of the strata. In this study, an approach for constructing a 3D geological model
of Quaternary loose sedimentary strata is proposed based on global stratigraphical discrete points.
The approach obtains the discrete control point set of each stratum by using limited borehole data
for interpolation and encryption, and the contact relationships and intersection modes of adjacent
strata can be determined via the analysis of stratigraphic sequence; finally, taking these as the
professional basis, the construction of the 3D geological model of Quaternary loose sedimentary
strata can be carried out. This application can not only accurately describe the three-dimensional
spatial distribution characteristics of the Quaternary loose sedimentary strata, it can also be used to
perform a layered simulation of the spatial variation characteristics of the inner geological properties
of the Quaternary loose sedimentary strata, such as lithology, porosity, and water content, by taking
the three-dimensional spatial framework of each stratum as the simulation boundary. Finally, this
study takes the citizen center of Xiong’an new area as an example in order to verify the reliability and
advancement of the 3D geological modeling scheme.

Keywords: quaternary sedimentary strata; stratum structure; global stratigraphic discrete points; 3D
geological modeling; geological simulation

1. Introduction

The Quaternary loose sedimentary stratum is one of the most important places for
human survival [1,2], and its spatial structural variation controls the internal engineer-
ing of geological [3] and hydrogeological [4,5] characteristics which are of great signif-
icance for infrastructure [6,7], prevention of geological disasters [8], and groundwater
safety [9,10]. Therefore, much literature has focused on research related to the spatial struc-
ture, sedimentary genesis, and paleogeographic environment of Quaternary sedimentary
strata, etc., and the main technical methods include Quaternary drilling [11–13], geophys-
ical interpretation [14–16], the isotopic method [17–19], granulometric analysis [20–22],
etc. The Quaternary sedimentary strata have always been one of the key points of urban
geological survey and research [23,24].

However, two issues may arise from technical schemes that directly analyze the sedi-
mentary characteristics of Quaternary loose strata based on locally limited data. The first is
there is never enough data [25,26], especially for large-scale Quaternary geological research;
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the second is that Quaternary loose strata, which include deposits from various sedimen-
tary sources, possess complicated spatial structural characteristics [27,28], especially with
respect to the origin of continental deposits. Hence, directly studying the sedimentary
characteristics of Quaternary loose strata using locally limited data results in a large degree
of uncertainty [29].

3D geological modeling is an ideal solution to these issues [30–32]. Høyer et al. [33]
constructed a 3D geological model using AEM resistivity data; Lau et al. [34] established
a 3D geologic model to research the structure of Quaternary deposits; Chen et al. [35]
constructed a 3D stochastic model to simulate the characterization of the internal attributes
of sedimentary strata; Erharter et al. [36] developed a 3D stochastic model to represent the
sediment bodies; and there are also many technical approaches, such as machine learning,
that have been applied to optimize the construction of 3D geological models, especially
when fractures and fracture networks are involved [37–39]. While the research mentioned
above has presented excellent approaches for determining the spatial structure or inner
attributes of Quaternary loose sedimentary strata, they mainly focused on the 3D visual
interpretation of boreholes [40] and geochemical data [41] (mainly seismic data [42,43]), or
3D simulation on a small scale with a strict hypothesis, and there are few reports on the
relevance of the construction of 3D geological models of Quaternary loose sedimentary
strata based on identifying the spatial distribution in the whole study area by deep mining
little pieces of Quaternary geological field data.

In this study, an approach for constructing a 3D geological model of Quaternary loose
strata on the basis of global stratigraphic discrete points is proposed. Firstly, the global
control point set of each stratum is obtained by establishing the geostatistical model based
on the Quaternary geological field data; then, the contact relationships and intersection
modes of the adjacent strata are determined, which are applied as the professional basis
for the 3D geological modeling via an analysis of stratigraphic sequence; finally a 3D
geological model of Quaternary loose sedimentary strata is constructed using the global
discrete control points of each stratum.

2. Methods
2.1. Global Discrete Point Interpolation and Encryption of Quaternary Loose Sedimentary Stratum

The global discrete points of Quaternary loose sedimentary stratum, which represent
the spatial distribution of each stratum in the whole study area, are obtained via interpola-
tion and encryption using limited field data based on geostatistical theories such as Kriging,
inverse distance weighting, etc. (Figure 1). In essence, global interpolation and encryption
cannot add new stratification information, but it can coordinate the impact of Quaternary
stratification data on other locations without geological data in a more scientific way, so as
to obtain the globally optimal analysis results.
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2.2. Analysis of the Stratigraphic Sequence of Quaternary Loose Sedimentary Strata

The spatial structure characteristics and stratigraphic sequence of Quaternary loose
strata are objective and unique, while the geological information acquired from field
exploration such as drilling or profiling is only representative of local areas, and only
includes fragments of the overall stratigraphic sequence of the study area. Therefore, it
is necessary to integrate all of the field exploration data to determine the synthesized
stratigraphic sequence of the Quaternary loose sedimentary strata in the whole study area
(Figure 2), which can be used as a temporal and spatial framework for stratigraphic spatial
structure analysis and stratigraphic sedimentary evolution.

The stratigraphic sequence determines how the contact relationships between strata
are to be treated, which controls the spatial structure of Quaternary loose sedimentary
strata. The construction of a 3D geological model of Quaternary loose sedimentary strata
requires the synthetic stratigraphic sequence of the study area, which can be obtained by
integrating the internal sequence information of all geological data.
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2.3. Contact Relationships of Quaternary Loose Sedimentary Strata

As shown in Figure 3, the different types of contact relationships of Quaternary
loose sedimentary strata mainly include conformity, disconformity(para-unconformity),
unconformity, erosion, etc. For the construction of a 3D geological model of Quaternary
strata, since the stratigraphic sequence is unique, the treatment of disconformable contact
relationship is similar to the conformity; regarding unconformity contact, its formation is
mainly related to differences in the topography, hydrodynamic conditions, and provenance
characteristics of the deposition process, which results in local angular unconformity
contact relationships between adjacent strata of different depositional origins, and the
stratigraphic sequence is that the old stratum is underneath the new; for erosion contact,
the deposition process takes place when part of the old stratum is denuded by erosion
due to water or wind flow, and then new sediments fill the eroded area, and hence the
stratigraphic sequence is that the new stratum lies beneath the old. The contact relationship
is one of the key factors for determining the spatial pattern of the strata. For 3D geological
modeling based on the global discrete points, it is necessary to use the 4 types of contact
relationships to deal with the intersection modes of adjacent strata.
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The discrete point set of a stratum obtained by interpolation and encryption is evenly
distributed throughout the study area, which results in the control surface generated from
it also being globally distributed. Therefore, it is necessary to topologically cut off the
redundant part of the stratum according to the intersection mode of the adjacent strata,
which is determined by the contact relationship.

As shown in Figure 4, for conformity (disconformity), no special treatment is needed,
and the 3D geological model of the stratum will be automatically constructed by tracking
the stratigraphic boundary; for unconformity, the underlying old stratum is taken as
the basement, and the superfluous parts of the overlying stratum that overlap with the
underlying old stratum are cut off, while retaining the other parts that do not overlap
with the old; conversely, the erosion contact needs to cut out and delete the parts of the
underlying old stratum that overlap with the overlying new one.
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2.4. Techincal Scheme

The technical scheme (Figure 5) of the construction of the 3D geological model of
Quaternary loose sedimentary strata based on global stratigraphic discrete points obtains a
global stratigraphic control point set by applying the geological field data for interpolation
and encryption, and generates a control surface for each sedimentary stratum based on
this; then, the contact relationships and intersection modes of the strata are determined on
the basis of stratigraphic sequence analysis; finally, the construction of the 3D geological
model of the Quaternary loose sedimentary strata can be carried out.
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3. Case Study
3.1. Study Area

The study area is located in the citizen center of Xiong’an new area, with an area of
approximately 500 × 600 m2 (Figure 6). There are huge and thick Quaternary loose strata in
the area, and their origin is very complex, including the alluvial–proluvial deposits of the
Taihang mountains located in the northwest of Xiong’an new area, the floodplain deposits
and shallow lacustrine of Baiyangdian lake, as well as fluvial deposits, etc. The modeling
scope is a depth of 15 m below the surface.

3.2. Modeling Scheme

This study determined the sedimentary facies information of 81 boreholes with a
depth of 15 m via granulometric analysis and stratigraphic sequence analysis, of which 70
were used as the data to construct a 3D geological structure model of Quaternary loose
sedimentary strata, and the other 11 were used as data to verify the model’s accuracy.
This study mainly used DeepInsight software as the modeling platform, and the specific
modeling process was as follows (Figure 7).

(1) Extract the stratification point information of 4 types of sedimentary strata, including
the floodplain, alluvial–proluvial, shallow lacustrine, and fluvial, from the borehole;

(2) Obtain the global discrete points of each sedimentary stratum by establishing the
Kriging interpolation and encryption model based on Geostatistics theory, which
takes the stratification points of each stratum as the sample data;

(3) Generate the constrained surface of each stratum by using the global discrete points;
(4) Determine the contact relationships and intersection modes of the strata by means of

stratigraphic sequence analysis;



Water 2022, 14, 75 6 of 11

(5) Construct the 3D geological model of the Quaternary loose sedimentary strata of
the citizen center by utilizing the contact relationships and intersection modes as the
modeling basis, the constrained surface as the modeling data, and the DeepInsight
software as the modeling platform.
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4. Results

The study area is located at the junction of the margin of the piedmont alluvial
fan of the Taihang mountains and the catchment area of Baiyangdian lake, where the
terrain is relatively flat and tectonic activity has been quite weak since the Holocene of
the Quaternary; hence, there are four types of sedimentary genesis: floodplain, alluvial–
proluvial, shallow lacustrine and fluvial, from top to bottom. The 3D geological model of
the Quaternary loose sedimentary strata of the citizen center is shown in Figure 8.
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According to the results of Quaternary geological exploration, the thickness of the
floodplain sedimentary stratum in the study area was about 5 m, was relatively uniform,
and covered the whole study area; the alluvial–proluvial sedimentary layer was also
the main stratum, and the thickness was about 5–8 m, which varied greatly across the
whole area, and even exhibited partial loss in the southwest of the study area; the shallow
lacustrine layer covered the whole study area, with the thickness varying sharply between
2 and 8 m, controlled by the evolution of Baiyangdian lake; and the thickness of the fluvial
deposit layer, which is dominated by the meandering river sediments, was mostly about
3–6 m, with partial loss in the middle and southwest of the study area (Figure 9).
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Finally, we verified the accuracy of the model by means of strata comparison between
the virtual boreholes extracted from the model at the same location as the verification
drillings and the 11 verification drillings themselves, finding that the accuracy of the
model was 92.7%. The verification results show that the modeling approach based on the
global strata discrete points is capable of accurately constructing a 3D geological model of
Quaternary loose sedimentary strata.

5. Discussion

In addition to accurately constructing the 3D model of Quaternary loose sedimentary
strata, the most significant application of the 3D geological structure modeling technology
based on the global stratigraphical discrete points was the layered simulation of the spatial
variation characteristics of the internal properties of strata, such as lithology, porosity, and
water content.

Due to the differences in sedimentary genesis, the spatial variation characteristics of
lithology, porosity, water content, and the other internal attributes of sedimentary strata will
be different. The layered geological structure model is able to simulate the spatial variation
characteristics of the internal properties of each stratum individually by using itself as the
simulation boundary. Therefore, compared with the overall simulation, the accuracy of
the layered simulation is always much higher. To verify it, in this study, we established
a lithology model of the study area using the sequential indicators stochastic simulation
method based on the Quaternary loose sedimentary strata model (Figure 10), and the levels
of accuracy of the lithology model were 93.5% (floodplain), 95.8% (alluvial–proluvial),
95.2% (shallow lacustrine) and 94.1% (fluvial), which are significantly higher than the 85.3%
achieved by the overall stochastic simulation.
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6. Conclusions

The 3D geological modeling of Quaternary loose sedimentary strata based on the
global stratigraphic discrete points, which were firstly used to obtain a spatial structure
control point set by applying limited field geological data for interpolation and encryption
based on Geostatistics theory; then, the contact relationships and intersection modes were
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determined via stratigraphic sequence analysis; and finally a model of the strata was
constructed using these as the geological basis.

Taking the citizen center of Xiong’an new area as the study area, this study constructed
a 3D geological model of four deposited genetic types of Quaternary loose sedimentary
strata, including the floodplain, the piedmont alluvial–proluvial of the Taihang mountains,
the shallow lacustrine of Baiyangdian lake, and fluvial, from top to bottom, with a depth
of 15 m from the surface by using the 3D geological modeling approach based on global
stratigraphic discrete points. Finally, we evaluated the accuracy (92.7%) of the model by
extracting virtual boreholes for stratigraphic comparison with the verification boreholes.

The 3D structure model of each sedimentary stratum can be used as a constraint
framework to establish a simulation model of the spatial variation of the properties of each
stratum, respectively, such as lithology, water content, and porosity. Compared with the
overall simulation, analysis results with higher precision were obtained.
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